

VI Congreso de Jóvenes Investigadores

Real Sociedad Matemática Española

León, Febrero de 2023

Nonlocal Concave-Convex Critical problems with Mixed Boundary Conditions

Alejandro Ortega*

In this talk we introduce some existence results for nonlocal critical problems with concave-convex nonlinearities,

$$(P_{\lambda}) \quad \left\{ \begin{array}{ll} (-\Delta)^{s}u = \lambda u^{q} + u^{2^{*}_{s}-1}, & u > 0 & \text{in } \Omega, \\ B(u) = 0 & \text{on } \partial\Omega, \end{array} \right.$$

with $\frac{1}{2} < s < 1$ and $0 < q < 2^*_s - 1, q \neq 1$, being $2^*_s = \frac{2N}{N-2s}$; $\lambda > 0$ and $\Omega \subset \mathbb{R}^N$, N > 2s, is a smooth bounded domain with mixed Dirichlet-Neumann boundary conditions

$$B(u) = u\chi_{\Sigma_{\mathcal{D}}} + \frac{\partial u}{\partial \nu}\chi_{\Sigma_{\mathcal{N}}},$$

where χ_A is the characteristic function of a set A, $\Sigma_{\mathcal{D}}$ and $\Sigma_{\mathcal{N}}$ are smooth (N-1)-dimensional submanifolds of $\partial\Omega$ such that $\Sigma_{\mathcal{D}}$ is closed with measure $|\Sigma_{\mathcal{D}}| = \alpha \in (0, |\partial\Omega|)$; $\Sigma_{\mathcal{D}} \cap \Sigma_{\mathcal{N}} = \emptyset$, $\Sigma_{\mathcal{D}} \cup \Sigma_{\mathcal{N}} = \partial\Omega$ and $\Sigma_{\mathcal{D}} \cap \overline{\Sigma}_{\mathcal{N}} = \Gamma$ is a smooth (N-2)-dimensional submanifold.

Using variational and topological methods we prove:

Theorem 0.1 Let 0 < q < 1 and N > 2s. Then, there exists $0 < \Lambda < \infty$ such that the problem (P_{λ})

- 1. has no solution for $\lambda > \Lambda$,
- 2. has a minimal solution for any $0 < \lambda < \Lambda$. Moreover, the family of minimal solutions is increasing in λ ,

- 3. has at least one solution for $\lambda = \Lambda$,
- 4. has at least two solutions for $0 < \lambda < \Lambda$.

Theorem 0.2 Let $1 < q < 2_s^* - 1$ and $N > 2s\left(1 + \frac{1}{q}\right)$. The problem (P_{λ}) has at least one solution for any $\lambda > 0$.

The existence of a second solution in Theorem 0.1 crucially relies on a Strong Maximum Principle for mixed fractional problems that will be also discussed in the talk. In particular, let \boldsymbol{u} be the solution to

$$\begin{cases} (-\Delta)^s u = f & \text{in } \Omega, \\ B(u) = 0 & \text{on } \partial\Omega, \end{cases}$$

with $f \in L^{\infty}(\Omega)$, $f \geq 0$ and v be the solution to

$$\left\{ \begin{array}{ll} (-\Delta)^s v = g & \quad \text{in } \Omega, \\ B(u) = 0 & \quad \text{on } \partial \Omega, \end{array} \right.$$

with $g \in L^p(\Omega)$, $p > \frac{N}{s}$ and $g \geq 0$. Then, the following holds.

Theorem 0.3 There exists a constant C > 0 such that

$$\left\| \frac{v}{u} \right\|_{L^{\infty}(\Omega)} \le C \|g\|_{L^{p}(\Omega)}.$$

^{*}Departamento de Matemáticas, Universidad Carlos III de Madrid, Av. Universidad 30, 28911 Leganés, Madrid. Email: alejandro.ortega@uc3m.es