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Abstract. We study stable solutions to fractional semilinear equations (−∆)su = f(u) in

Ω ⊂ Rn, for convex nonlinearities f , and under the Dirichlet exterior condition u = g in

Rn \ Ω with general g. We establish a uniqueness and a classification result, and we show

that weak (energy) stable solutions can be approximated by a sequence of bounded (and

hence regular) stable solutions to similar problems.

As an application of our results, we establish the interior regularity of weak (energy) stable

solutions to the problem for the half-Laplacian in dimensions 1 ⩽ n ⩽ 4.

Contents

1. Introduction 1

2. Uniqueness of stable solutions 7

3. A classification result 10

4. Approximation of stable solutions 12

5. Application: regularity of stable solutions in low dimensions 18

6. Unbounded L1-weak stable solutions in low dimensions 19

Appendix A. An “intermediate value theorem” in fractional Sobolev spaces 21

Appendix B. Some comments on the exterior condition in the notions of solution 21

Appendix C. L1-theory for the fractional Laplacian 23

References 29

1. Introduction

There is a common property among many scenarios in nature: the observed state of a

system is that which, in some sense, minimizes an energy (or action). When the system

configuration is described by a function of several variables, this usually gives rise to a PDE.

A prominent example consists of considering, for a given domain Ω ⊂ Rn, the functional

E[u] =
1

2

�
Ω

|∇u|2 dx−
�
Ω

F (u) dx.

Key words and phrases. Fractional Laplacian, stable solutions, Dirichlet problem, approximation.
The author is supported by grants PID2020-113596GB-I00, MTM2017-84214-C2-1-P, and RED2018-

102650-T funded by MCIN/AEI/10.13039/501100011033 and by “ERDF A way of making Europe”, and

by the EPSRC grant EP/S03157X/1.
1
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Critical points of this functional satisfy the Euler-Lagrange equation −∆u = f(u) in Ω, with

f = F ′. This type of reaction-diffusion equations has been used through many years as a

basic model for combustion of substances, phase transitions, and population dynamics.

When studying physically observable states of a system, one looks for solutions which are

not only critical points of E[·], but which are also local minimizers. More generally, the class

of solutions taken into account is the class of stable solutions. These are solutions at which

the second variation of E[·] is nonnegative. This fact provides some extra information which,

together with the PDE, in many cases yields the rigidity and/or regularity of stable solutions.

This kind of properties has been investigated in the last decades from some part of the PDE

community —see the monograph [12] and also the introduction of [6].

The regularity of stable solutions to −∆u = f(u) has been a long-standing problem in

elliptic PDEs since the 1970s. After important efforts devoted to investigate the optimal

dimension up to which stable solutions are bounded, the problem has been recently solved

by Cabré, Figalli, Ros-Oton, and Serra [6], by proving that stable solutions are regular in

dimensions n ⩽ 9 for all nonnegative nonlinearities f . Our main motivation for this paper

was the study of the same problem in the nonlocal framework, where one replaces −∆ by the

fractional Laplacian —see (1.2) below—, the most canonical example of integro-differential

operator used to model diffusion with long-range interactions. In this case, the few known

results1 (mainly those contained in the four papers [18, 16, 19, 7]) reach the expected optimal

dimension for boundedness of stable solutions only when f(u) = λeu, even in the radial case.

The recent paper [7] succeeded in extending some of the techniques of [6] to the fractional

setting, obtaining a universal Hölder estimate in dimensions 1 ⩽ n ⩽ 4 for semilinear equa-

tions driven by the half-Laplacian. That result (stated with precision in Theorem 5.1 below)

is an a priori estimate for regular stable solutions. One of the main motivations for this

paper was to provide the necessary tools in order to use the result in [7] (and possible future

estimates) to establish regularity of weak (energy) stable solutions (see Definition 1.2). This

is done in this work through an approximation argument. We show that weak (energy) stable

solutions can be approximated by a sequence of regular stable solutions to similar problems

with different nonlinearities. Then, the key point is to have at hand universal estimates not

depending on the nonlinearity, as the one obtained in [7], to carry the estimates to the limit.

One of the purposes of this article is to provide some general results that can be used in the

future when studying stable solutions —at the moment the only known universal estimate

for stable solutions in the fractional setting is that of [7]. For this, and although usually

one considers nonnegative stable solutions vanishing outside the domain where the equation

holds, for the sake of generality in this paper we will consider stable solutions which are

bounded by below, and which satisfy a rather general exterior condition.

Before stating our main results in Section 1.2, we need to define properly the notions of

solution used in this paper, as well as the definition of stable solution. We also settle some

notation.

1We refer to the introduction of [7] for a more precise description of the state of the art of the problem, and
also to Figure 1 in that paper for a graphical summary of the known results.
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1.1. Definitions and notation. In this paper, we study stable solutions (see Definition 1.6

below) to {
(−∆)su = f(u) in Ω,

u = g in Rn \ Ω, (1.1)

where Ω is a bounded domain of Rn and (−∆)s is the fractional Laplacian,

(−∆)sw (x) := cn,s

�
Rn

w(x)− w(y)

|x− y|n+2s
dy, s ∈ (0, 1), (1.2)

with cn,s being a positive normalizing constant. Through the article, f will be a convex

nonlinearity, and we will consider general exterior datum g satisfying

|g(x)− g(z)| ⩽ C0|x− z|α0 for all x ∈ Rn \ Ω and z ∈ ∂Ω (1.3)

for some α0 ∈ (max{0, 2s− 1}, s) and some positive constant C0. This assumption provides

the regularity near ∂Ω and the growth at infinity that guarantees that the three notions of

solution considered through the article are well defined for such exterior conditions g. For a

more detailed discussion on how much this condition can be relaxed depending on the class

of solution considered, see Appendix B.

We define dΩ := dist(·, ∂Ω), which denotes the distance to ∂Ω, and

Nsw(x) := cn,s

�
Ω

w(x)− w(y)

|x− y|n+2s
dy for x ∈ Rn \ Ω,

which is usually called nonlocal normal derivative for its analogies with the classical normal

derivative (in terms of the Neumann problem and the integration by parts formula for the

fractional Laplacian, see [11]).2

The study of stable solutions usually involves three different notions of solutions to the

Dirichlet problem {
(−∆)su = h in Ω,

u = g in Rn \ Ω, (1.4)

which we define properly next. This first one is the notion of L1-weak solution. Although in

the literature these are called sometimes very weak solutions or distributional solutions, we

prefer to use the same terminology as is [12].3

Definition 1.1. Given Ω ⊂ Rn a smooth bounded domain, and given h ∈ L1(Ω, dsΩ dx) and

g satisfying (1.3), we say that u is an L1-weak solution to (1.4) if u ∈ L1(Ω), u = g in Rn \Ω,
and �

Ω

u(−∆)sφ dx+

�
Rn\Ω

gNsφ dx =

�
Ω

hφ dx

for every φ such that φ and (−∆)sφ are bounded in Ω and such that φ ≡ 0 in Rn \ Ω.4

2Note that if w ≡ 0 in Rn \ Ω, then Nsw = (−∆)sw in Rn \ Ω.
3L1-weak solutions can be equivalently defined through the Green kernel when g = 0, see [1].
4Note that by standard regularity for the fractional Laplacian, the test functions φ that we consider are Cs(Ω).
In particular, for all x ∈ Ω it holds |φ(x)| ⩽ CdsΩ(x) for some constant C —this is why the integrability
assumption on h involves the weight dsΩ.
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The second notion of solution that we will consider is the one naturally associated with

the variational formulation of the problem, and we give it next. It requires the solution to

belong to the energy space Hs
Ω := {w : Rn → R : w ∈ L2(Ω) and [w]2Hs

Ω
< +∞}, where

[w]2Hs
Ω
:=

cn,s
2

� �
R2n\(Ωc×Ωc)

|w(x)− w(y)|2

|x− y|n+2s
dx dy,

and Ωc := Rn \ Ω. Note that Hs
Ω is a separable Hilbert space with norm ∥·∥2Hs

Ω
:= ∥·∥2L2(Ω) +

[·]2Hs
Ω
, and scalar product given by ⟨·, ·⟩L2(Ω) + ⟨·, ·⟩Hs

Ω
, where ⟨·, ·⟩L2(Ω) is the standard scalar

product in L2(Ω) and

⟨v, w⟩Hs
Ω
:=

cn,s
2

� �
R2n\(Ωc×Ωc)

(
v(x)− v(y)

)(
w(x)− w(y)

)
|x− y|n+2s

dx dy.

Through the paper we will also use the space Hs
Ω,0 := {w ∈ Hs

Ω : w = 0 a.e. in Rn \ Ω},
which is the closure of C∞

c (Ω) under the norm ∥·∥Hs
Ω
. Note that thanks to the fractional

Sobolev inequality, if Ω is a bounded smooth domain then the fractional Poincaré inequality

holds and therefore ∥·∥Hs
Ω
and [·]Hs

Ω
are equivalent norms in Hs

Ω,0 —and, as a byproduct,

⟨·, ·⟩Hs
Ω
is a scalar product in Hs

Ω,0. For more details, see [9, Section 3.1] and the references

therein.

Definition 1.2. Given Ω ⊂ Rn a smooth bounded domain, h ∈ L2(Ω), and g satisfying

(1.3), we say that u is an energy solution (or variational solution) to (1.4) if u ∈ Hs
Ω, u = g

in Rn \ Ω, and

⟨u, φ⟩Hs
Ω
=

cn,s
2

� �
R2n\(Ωc×Ωc)

(
u(x)− u(y)

)(
φ(x)− φ(y)

)
|x− y|n+2s

dx dy =

�
Ω

hφ dx.

for all φ ∈ Hs
Ω with φ ≡ 0 in Rn \ Ω.

Note that the test functions considered in the energy formulation belong to Hs(Rn), and

that by density it is enough to consider test functions φ ∈ C∞
c (Ω). Using integration by parts

(since φ is regular enough), one sees that

⟨u, φ⟩Hs
Ω
=

�
Ω

u (−∆)sφ dx+

�
Rn\Ω

uNsφ dx,

showing that energy solutions are always L1-weak solutions.

Remark 1.3. If u is an L1-weak solution to (1.4) and u ∈ Hs
Ω, by taking φ ∈ C∞

c (Ω) in the

weak formulation we can integrate by parts to obtain that

⟨u, φ⟩Hs
Ω
=

�
Ω

hφ dx.

Then, by density this holds for every φ ∈ Hs
Ω,0 such that hφ ∈ L1(Ω). We will consider this

setting in most of the results of this paper, exploiting the previous variational-like formulation.

As a terminological remark, we note that since the right-hand sides that we consider through

the paper are merely in L1(Ω), we will not call our solutions ‘energy solutions’.
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The third notion of solution considered in this article is the classical one.

Definition 1.4. Given Ω ⊂ Rn a smooth bounded domain, h ∈ C(Ω), and g satisfying (1.3),

we say that u is a pointwise solution (or classical solution) to (1.4) if u ∈ C(Ω) and (1.4) is

satisfied pointwise.5

Remark 1.5. For the semilinear problem (1.1) the three notions of solution coincide when u is

bounded in Ω. Indeed, if u is an L1-weak solution to (1.1) which is bounded in Ω, then it is a

classical solution (and by assumption (1.3) also an energy solution, arguing as in Appendix B).

To see this, one first uses that the fractional Laplacian commutes with convolution and, by

considering a standard mollifier ηε, it follows that (−∆)s(u ∗ ηε) = f(u) ∗ ηε in any smaller

domain Ω′ ⊂⊂ Ω for ε small enough depending on Ω′. Using the usual interior estimates for

the fractional Laplacian (see [17, Corollaries 2.4 and 2.5]) and letting ε → 0 it follows that

u ∈ Cα(Ω) for some α > 2s and thus (−∆)su = f(u) holds pointwise in Ω. Moreover, by the

results of Audrito and Ros-Oton [2], u is continous up to the boundary.6

We recall now the definition of stability in the fractional setting.

Definition 1.6. Let u be a solution (in any of the previous three senses defined above) to

the semilinear problem (1.1). We say that u is stable in Ω if f ′(u) ∈ L1
loc(Ω) and�

Ω

f ′(u)ξ2 dx ⩽ [ξ]2Hs
Ω

for every ξ ∈ C∞
c (Ω). (1.5)

Note that if one considers the energy functional associated to problem (1.1),

E[w] =
1

2
[w]2Hs

Ω
−
�
Ω

F (w) dx with F ′ = f,

then the stability condition (1.5) is equivalent to

d2

dε2
E[u+ εξ] ⩾ 0 for every ξ ∈ C∞

c (Ω)

1.2. Main results. Let us now present the main results of this article. We will always

assume that the nonlinearity f is strictly convex, although after the proof of each result we

will make some comments on the (possible) differences if one allows f to be affine.

Our first result is the following uniqueness theorem for stable solutions. It is proved in

Section 2.

Theorem 1.7. Let Ω ⊂ Rn a bounded smooth domain of Rn and let f ∈ C1(R) be a strictly

convex function.

Then, there exists at most one stable solution u to (1.1) —in the L1-weak sense and for g

as in (1.3)— such that u is bounded by below and u ∈ Hs
Ω.

5A typical assumption to ensure that (−∆)su is well defined pointwise is that u ∈ C2(Ω)∩L1
s(Rn) (see (5.1)

for this last space). The C2 assumption can be relaxed depending on s ∈ (0, 1), requiring only u ∈ Cα(Ω)
for some α > 2s. The required integrability at infinity is satisfied under assumption (1.3)
6The results of [2] hold for L1-weak solutions since are based on the comparison principle; see [2, Remark 1.5].
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Our next result states that when u vanishes in Rn \Ω and f(0) = 0, then u ≡ 0 is the only

possible nonnegative stable solution. We prove it in Section 3.

Theorem 1.8. Let Ω ⊂ Rn be a bounded smooth domain of Rn and let f ∈ C1(R) be a

strictly convex function with f(0) = 0. Let u ∈ Hs
Ω be a nonnegative L1-weak stable solution

to {
(−∆)su = f(u) in Ω,

u = 0 in Rn \ Ω. (1.6)

Then, u ≡ 0 and f ′(0) ⩽ λ1, where λ1 > 0 is the first eigenvalue of (−∆)s in Ω with zero

exterior Dirichlet condition.

Finally, we present our approximation result for stable solutions. It is proved in Section 4.

Theorem 1.9. Let Ω ⊂ Rn be a bounded smooth domain, and let f ∈ C1(R) be a strictly

convex function. Let u be a stable L1-weak solution to (1.1) for some g as in (1.3). Assume

that u ∈ Hs
Ω, that u ⩾ −M in Rn for some M , and that f(−M) ⩾ 0.

Then, there exists a nondecreasing sequence {fk}k∈N ⊂ C1([−M,+∞)) of globally Lipschitz

convex nonlinearities converging pointwise to f in [−M,+∞), and a sequence {uk}k∈N of

bounded stable solutions to {
(−∆)suk = fk(uk) in Ω,

uk = g in Rn \ Ω, (1.7)

such that −M ⩽ uk ⩽ u in Rn and such that uk → u in Hs
Ω as k → +∞.

Moreover, if f is nonnegative, then all fk are nonnegative as well, and if f ∈ C1,γ(R) for
some γ ∈ (0, 1), then fk ∈ C1,γ(R) for all k ∈ N.

As mentioned before, the previous result can be combined with uniform a priori estimates

for stable solutions to establish the regularity of Hs
Ω stable solutions. In view of the main re-

sult of [7] (see Theorem 5.1 below), our approximation theorem yields the following regularity

result in low dimensions.

Corollary 1.10. Let Ω ⊂ Rn be a bounded smooth domain, and let f be a nonnegative strictly

convex C1,γ function for some γ > 0. Let u be a stable L1-weak solution to (1.1) for s = 1/2

and for some g as in (1.3). Assume that u ∈ H
1/2
Ω and that u is bounded by below in Rn.

Then, u ∈ C2,δ(Ω) for some δ > 0 provided that 1 ⩽ n ⩽ 4.

1.3. Organization of the paper: Theorems 1.7 and 1.8 are proved respectively in Section 2

and Section 3. Our main approximation result, Theorem 1.9, is established in Section 4,

where we also prove another approximation theorem for stable solutions (Theorem 4.2).

Corollary 1.10 is proved in Section 5 and, finally, in Section 6 we provide a counterexample

for our approximation result when we drop the assumption of u belonging to Hs
Ω.

The article contains three appendices. In Appendix A we recall an “intermediate value

theorem” for functions in fractional Sobolev spaces which is needed in the arguments of

Remark 2.4. Appendix B is devoted to some comments on the regularity assumptions on

the exterior condition g needed to define each notion of solution. Finally, in Appendix C we

collect several results concerning L1-weak solutions which are used through the paper.
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2. Uniqueness of stable solutions

In this section, we present several results concerning stable solutions to the semilinear

problem (1.1). We will conclude by proving our uniqueness result, Theorem 1.7.

Through the paper we will consider L1-weak solutions which are in Hs
Ω (exploiting the

variational formulation of the equation, see Remark 1.3). Furthermore, we will always assume

that f is convex. Regarding the stability inequality (1.5), through the section we intend

to take test functions ξ ∈ Hs
Ω,0 —not necessarily belonging to C∞

c (Ω). As explained in

the following remark, (1.5) holds as well for this wider class of test functions thanks to

the convexity of f . Here and through the paper we denote positive and negative parts by

w+ := max{w, 0} and w− := max{−w, 0} (and thus w = w+ − w−).

Remark 2.1. Let us show that we can take ξ ∈ Hs
Ω,0 as a test function in the stability

condition (1.5), at least when f is convex and the stable solution u is bounded below in Ω.

To do it, it suffices to show that

f ′(u)ξ2 ∈ L1(Ω) for all ξ ∈ Hs
Ω,0, (2.1)

and use an approximation argument. Note first that since f is convex and u ⩾ −M in Ω for

some M , we have f ′(−M) ⩽ f ′(u) in Ω, which shows that f ′(u)− ∈ L∞(Ω), and therefore

f ′(u)−ξ2 ∈ L1(Ω) for every ξ ∈ Hs
Ω,0. Now, from the stability of u we have�

Ω

f ′(u)+ξ2 dx ⩽ [ξ]2Hs
Ω
+

�
Ω

f ′(u)−ξ2 dx for every ξ ∈ C∞
c (Ω). (2.2)

Then, for every ξ ∈ Hs
Ω,0, let {ξk}k∈N ⊂ C∞

c (Ω) be a sequence converging to ξ in Hs
Ω,0 as

k → +∞. Taking ξ = ξk in (2.2), and using Fatou’s lemma, by letting k → +∞ we obtain

that (2.2) holds for every ξ ∈ Hs
Ω,0. This yields that f ′(u)+ξ2 ∈ L1(Ω) for every ξ ∈ Hs

Ω,0,

establishing (2.1) and, as a byproduct, showing that the stability condition (1.5) holds for

all ξ ∈ Hs
Ω,0.

Our first result in this section states that if the nonlinearity f is convex, then a bounded

by below stable solution cannot cross another solution which is also bounded by below.

Proposition 2.2. Let Ω ⊂ Rn be a bounded smooth domain and let f ∈ C1(R) be a convex

function. Let u, v ∈ Hs
Ω be two L1-weak solutions to the problem (1.1), for some exterior

condition g as in (1.3). Assume that both u and v are bounded by below in Ω and that at

least one solution is stable in Ω.

Then, u and v are ordered: either u < v in Ω, u ≡ v in Ω, or u > v in Ω.

Proof. Without loss of generality we will assume that u is stable. We will also use through

the proof that u ⩾ −M and v ⩾ −M in Ω for some M .

First, using that for every two numbers a, b ∈ R, it holds

|a+ − b+|2 ⩽ (a− b)(a+ − b+) ⩽ |a− b|2, (2.3)

it follows that (u−v)+ ∈ Hs
Ω. Moreover, since both u and v agree outside Ω, (u−v)+ ∈ Hs

Ω,0.

Now, we claim that (
f(u)− f(v)

)
(u− v)+ ∈ L1(Ω). (2.4)
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To show this, note that from the convexity of f and the lower bound of v we have

f ′(−M)|(u− v)+|2 ⩽ f ′(v)(u− v)(u− v)+ ⩽
(
f(u)− f(v)

)
(u− v)+

and (
f(u)− f(v)

)
(u− v)+ ⩽ f ′(u)(u− v)(u− v)+ ⩽ f ′(u)|(u− v)+|2.

Using that (u− v)+ ∈ Hs
Ω,0 and (2.1), the claim follows.

Note that u− v ∈ Hs
Ω,0 is an L1-weak solution to{
(−∆)s(u− v) = f(u)− f(v) in Ω,

u− v = 0 in Rn \ Ω.
Testing the above equation with (u − v)+ ∈ Hs

Ω,0 (thanks to (2.4) and taking into account

Remark 1.3), and using (2.3), we get

[(u− v)+]2Hs
Ω
⩽ ⟨u− v, (u− v)+⟩Hs

Ω
=

�
Ω

(
f(u)− f(v)

)
(u− v)+ dx.

Combining this inequality with the stability of u (taking ξ = (u − v)+ ∈ Hs
Ω,0 as a test

function in (1.5), see Remark 2.1), we obtain�
Ω

f ′(u)|(u− v)+|2 dx ⩽ [(u− v)+]2Hs
Ω

⩽
�
Ω

(
f(u)− f(v)

)
(u− v)+ dx

⩽
�
Ω

f ′(u)|(u− v)+|2 dx,

where in this last inequality we have used the convexity of f . As a consequence, we have

that

[(u− v)+]2Hs
Ω
−
�
Ω

f ′(u)|(u− v)+|2 dx = 0.

Since u is stable, the functional

w 7→ [w]2Hs
Ω
−
�
Ω

f ′(u)w2 dx

is nonnegative in Hs
Ω,0, and therefore (u− v)+ is a minimizer. Hence, it is an energy solution

(and in particular L1-weak solution) to{
(−∆)s(u− v)+ = f ′(u)(u− v)+ in Ω,

(u− v)+ = 0 in Rn \ Ω.

Writing f ′(u) = f ′(u)+ − f ′(u)−, we have (in the L1-weak sense)

(−∆)s(u− v)+ + f ′(u)−(u− v)+ = f ′(u)+(u− v)+ ⩾ 0 in Ω.

Then, by the strong maximum principle (we use Proposition C.4 taking into account that

f ′(u)− ∈ L∞(Ω), since f ′(t) ⩾ f ′(−M) for all t ⩾ −M by convexity) we deduce that either

u > v in Ω, or u ⩽ v in Ω. In this second case, we have (in the L1-weak sense again)

(−∆)s(v − u) = f(v)− f(u) ⩾ f ′(u)(v − u) in Ω,
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and as before, using now that v ⩾ u in Ω, we get

(−∆)s(v − u) + f ′(u)−(v − u) = f ′(u)+(v − u) ⩾ 0 in Ω.

The strong maximum principle yields that either u ≡ v in Ω, or u < v in Ω. □

Next, we show that if f is strictly convex then stable solutions are minimal in the sense

that below a stable solution there cannot exist another solution bounded by below. After the

proof, in Remark 2.4 below, we make some comments on the strict convexity assumption.

Proposition 2.3. Let Ω ⊂ Rn a bounded smooth domain of Rn and let f ∈ C1(R) be a

strictly convex function. Let u, v ∈ Hs
Ω be two L1-weak solutions to (1.1) for some exterior

condition g as in (1.3). Assume that −M ⩽ v ⩽ u in Ω for some M and that u is stable.

Then, u ≡ v.

Proof. By contradiction, we assume that u ̸≡ v in Ω. Then, we define w := u − v ∈ Hs
Ω,0,

which is an L1-weak solution to{
(−∆)sw = f(u)− f(v) in Ω,

w = 0 in Rn \ Ω.
Note that by the strong maximum principle (Proposition 2.2), w > 0 in Ω. Taking w as

a test function in the weak formulation of the above problem (arguing as in the proof of

Proposition 2.2 and taking into account Remark 1.3), we obtain

[w]2Hs
Ω
= ⟨w,w⟩Hs

Ω
=

�
Ω

(
f(u)− f(v)

)
w dx.

Using the convexity of f and the fact that u is stable —note that we can take ξ = w as a

test function in the stability condition, see Remark 2.1—, we get

[w]2Hs
Ω
⩽
�
Ω

(
f(u)− f(v)

)
w dx ⩽

�
Ω

f ′(u)w2 dx ⩽ [w]2Hs
Ω
.

This yields that

f(u)− f(v) = f ′(u)(u− v) in Ω, (2.5)

which is a contradiction with the strict convexity of f (since u ̸≡ v). □

Remark 2.4. If we drop the strict convexity assumption in the previous lemma, the conse-

quence may not be true, at least if s ⩾ 1/2. Indeed, if f is not strictly convex, then (2.5) does

not yield a contradiction. Instead, this entails that f(t) = a+ λ1t for all t ∈ (infΩ v, supΩ u),

for some a ∈ R and with λ1 being the first Dirichlet eigenvalue of (−∆)s in Ω. In this case,

u− v is any (positive multiple of the) first Dirichlet eigenfunction of (−∆)s in Ω.

Let us show the previous statement. First, we claim that (2.5) yields that f is affine in the

interval (I, S), where I := infΩ v and S := supΩ u. To prove this, we take a sequence of smooth

domains Ωk ⊂⊂ Ω with Ωk ⊂ Ωk+1 and ∪k⩾1Ωk = Ω such that, for every k ⩾ 1, dist(Ωk, ∂Ω) ⩾
1/k (without loss of generality, after scaling we may assume that supx∈Ω dist(x, ∂Ω) > 1).

Then, defining Ik := infΩk
v and Sk := supΩk

u, it suffices to show that f is affine in (Ik, Sk),

and by letting k → +∞ we will conclude the claim. The details go as follows.
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First, since f(u) − f(v) = f ′(u)(u − v) in Ωk, we have that f is affine in the interval

[v(x), u(x)] for a.e. x ∈ Ωk. Now, by the strong maximum principle (applied to u− v in Ωk)

there exists a positive constant δk > 0 such that

u− v ⩾ δk > 0 in Ωk.

As a consequence of this, each of the intervals of the form [v(x), u(x)] for a.e. x ∈ Ωk

has length at least δk. That f is affine in (Ik, Sk) will follow if we show that the union

of the intervals [v(x), u(x)], as x varies a.e. in Ωk, covers all the interval (Ik, Sk). Assume

by contradiction that this last assertion is not true. Then, there exist two numbers a < b

with b − a ⩾ δk such that |{a ⩽ u ⩽ b} ∩ Ωk| = 0 but |{u < a} ∩ Ωk| > 0 and |{u >

b}∩Ωk| > 0, contradicting the intermediate value theorem for functions in Hs with s ⩾ 1/2;

see Proposition A.1.

Now that we have proved our claim, we have that f(t) = a+ bt for t ∈ (I, S) and for some

a, b ∈ R. Thus, w solves 
(−∆)sw = bw in Ω,

w > 0 in Ω,

w = 0 in Rn \ Ω,
in the variational sense. As a consequence, since w is positive, it follows that w is (a multiple

of) the first Dirichlet eigenfunction of (−∆)s in Ω (see [20, Proposition 9]) and thus necessarily

b = λ1, the first Dirichlet eigenvalue of (−∆)s.

The previous two results yield our main uniqueness result for bounded by below stable

solutions in Hs
Ω.

Proof of Theorem 1.7. Assume by contradiction that there exist two different stable solutions

u1, u2 ∈ Hs
Ω to (1.1) (in the L1-weak sense) which are bounded by below. Then, by Proposi-

tion 2.2 they are ordered and we may assume that u1 < u2 in Ω. However, since f is strictly

convex, this contradicts Proposition 2.3. □

3. A classification result

In this section we show Theorem 1.8, our classification result for stable solutions in Hs
Ω,0

when the nonlinearity f is strictly convex and satisfies f(0) = 0. The proof follows essentially

from Proposition 2.3, but to establish the bound for f ′(0) we will use the next lemma.

Lemma 3.1. Let Ω ⊂ Rn be a bounded smooth domain and let f ∈ C1(R) be such that

f(t) > λ1t for t > 0, where λ1 is the first eigenvalue of (−∆)s in Ω with zero exterior

Dirichlet condition. Let u ∈ Hs
Ω be a nonnegative function such that (−∆)su ⩾ f(u) in Ω in

the L1-weak sense, i.e., such that f(u) ∈ L1(Ω, dsΩ dx) and�
Ω

u(−∆)sφ dx+

�
Rn\Ω

uNsφ dx ⩾
�
Ω

f(u)φ dx

for every nonnegative function φ such that φ and (−∆)sφ are bounded in Ω and such that

φ ≡ 0 in Rn \ Ω.
Then, u ≡ 0 in Rn, f(0) = 0, and u is a solution to (1.1) with g ≡ 0 which is not stable.
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Proof. From the strong maximum principle (Proposition C.4), either u > 0 in Ω or u ≡ 0 in

Rn. Let us assume by contradiction that u > 0 in Ω and let w ∈ Hs
Ω be the (energy) solution

to {
(−∆)sw = 0 in Ω,

w = u in Rn \ Ω.
Since u−w ∈ Hs

Ω,0, arguing as in Remark 1.3 using Fatou’s lemma (taking into account that

f(u) > 0 in Ω), we have that

⟨u− w,φ⟩Hs
Ω
⩾
�
Ω

f(u)φ dx (3.1)

for every nonnegative φ ∈ Hs
Ω,0.

Now, let ϕ1 ∈ Hs
Ω,0 be the first eigenvalue of (−∆)s with zero Dirichlet exterior condition

in Rn \ Ω. Recall that ϕ1 > 0 in Ω. On the one hand, taking φ = ϕ1 in (3.1) we have

⟨u− w, ϕ1⟩Hs
Ω
⩾
�
Ω

f(u)ϕ1 dx > λ1

�
Ω

uϕ1 dx.

On the other hand, taking u − w ∈ Hs
Ω,0 as a test function in the weak formulation of the

equation for ϕ1 and using that wϕ1 ⩾ 0 in Ω (note that 0 ⩽ w ⩽ u in Ω by the maximum

principle), we have

⟨u− w, ϕ1⟩Hs
Ω
= λ1

�
Ω

(u− w)ϕ1 dx ⩽ λ1

�
Ω

uϕ1 dx,

arriving at a contradiction. This shows that u ≡ 0 in Rn.

Finally, let us show that u is not stable. To do it, recall that by the definition of ϕ1 and

λ1, it holds that

λ1 =
[ϕ1]

2
Hs

Ω

∥ϕ1∥2L2(Ω)

.

Hence, since f ′(0) > λ1, we have�
Ω

f ′(u)ϕ2
1 dx = f ′(0)

�
Ω

ϕ2
1 dx > λ1 ∥ϕ1∥2L2(Ω) = [ϕ1]

2
Hs

Ω
,

showing that u is not stable. □

With the previous result at hand we can now establish Theorem 1.8.

Proof of Theorem 1.8. Since f(0) = 0, v ≡ 0 is a solution to (1.6). Then, by Proposition 2.3,

u ≡ v ≡ 0 and since u is stable, by Lemma 3.1 it follows that f ′(0) ⩽ λ1. □

Remark 3.2. If we relax the convexity assumption on f to allow non strict convex nonlin-

earities, then Theorem 1.8 may not be true, at least if s ⩾ 1/2. Indeed, as mentioned in

Remark 2.4, if f is (non strictly) convex and s ⩾ 1/2, then we have that either u ≡ 0 (as

occurs in the previous proof), or f(t) = a+ λ1t for t ∈ (0, supΩ u). In the second case, since

f(0) = 0, we have that f(t) = λ1t for t ∈ (0, supΩ u) and by the strong maximum principle

u > 0 in Ω. Thus, u is a first eigenfunction of (−∆)s with zero exterior Dirichlet condition

in Rn \ Ω.
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4. Approximation of stable solutions

In this section we establish our main results regarding the approximation of stable solutions

in Hs
Ω (by bounded stable solutions).

Proof of Theorem 1.9. We proceed as in [13]. Note first that if f ′(t) ⩽ 0 for all t ⩾ −M , then

by convexity we have that f is globally Lipschitz in [−M,+∞) —since f ′(−M) ⩽ f ′(t) ⩽ 0

for t ∈ [−M,+∞)— and then a standard bootstrap argument (using Proposition C.5, as in

the proof of Lemma 4.4 below) yields that u ∈ L∞(Ω); thus we can take uk = u and fk = f

for all k ∈ N. As a consequence, in the rest of the proof we will assume that there exists

some t• > −M for which f ′(t•) > 0.

Under the previous assumption, by convexity there exists t0 > 0 such that f ′(t) > 0 for

t > t0. We set k0 := ⌈t0⌉, i.e., the smallest integer greater or equal than t0 (hence k0 ⩾ 1),

and for every integer k ⩾ k0 we define

fk(t) :=

{
f(t) if t ⩽ k,

f(k) + f ′(k)(t− k) if t > k.
(4.1)

Note that each fk is a C1 convex function which is globally Lipschitz in [−M,+∞) (since

f ′(−M) ⩽ f ′
k(t) ⩽ f ′(k) for all t ⩾ −M) and bounded below by C◦ := mint∈[−M,k0] f(t). By

convexity we have that fk(t) ⩽ f(t) for all t ⩾ −M , and clearly fk ↑ f pointwise in [−M,+∞)

as k → +∞. Moreover, if f is nonnegative, all the functions fk are also nonnegative, and if

f is C1,γ for some γ, so are fk.

In order to build a solution to (1.7) for a nonlinearity fk as in (4.1), we will use the

monotone iteration method (see Proposition C.7). As a subsolution, we will take u := −M

(recall that 0 ⩽ f(−M) and that u ⩾ −M in Rn), while as a supersolution we will take

u := u (note that u ⩾ −M in Ω, and thus fk(u) ⩽ f(u) in Ω). Then, since fk is globally

Lipschitz in [−M,+∞), we can apply Proposition C.7 (taking into account Remark C.8) to

obtain a solution uk to (1.7) such that −M ⩽ uk ⩽ u in Ω. Note that since fk is bounded by

below and linear at infinity, a standard bootstrap argument —as that of Lemma 4.4 below,

using Proposition C.5 taking into account that uk ⩽ u in Ω and that u ∈ L1(Ω)— yields

that uk is bounded in Ω, and hence regular (see Remark 1.5); in particular, uk ∈ Hs
Ω (see

Appendix B for more details on the role of the exterior condition). Furthermore, since f is

convex and f ′
k(t) ⩽ f ′(t) for t ⩾ −M , it follows that f ′

k(uk) ⩽ f ′
k(u) ⩽ f ′(u) in Ω, and hence

uk is stable.

It remains to show that uk → u in Hs
Ω as k → +∞. To do so, note first that fk(t) ⩽

fk+1(t) for all t ⩾ −M and k ∈ N and thus uk+1 is a supersolution of the problem for uk.

Hence, uk ⩽ uk+1 in Ω and taking the pointwise limit of uk as k → +∞ (which exists by

monotonicity) we obtain a function v such that v ⩽ u in Ω. Furthermore, by the dominated

convergence theorem, uk → v in L2(Ω) as k → +∞.

Now, we test the equation for uk with u − uk ∈ Hs
Ω,0 (as in Remark 1.3 using that uk is

bounded) to obtain

⟨uk, u− uk⟩Hs
Ω
=

�
Ω

fk(uk)(u− uk) dx.



STABLE SOLUTIONS TO FRACTIONAL SEMILINEAR EQUATIONS 13

Hence, using that fk is bounded below by the constant C◦ = mint∈[−M,k0] f(t) which is

independent of k, we have

[uk]
2
Hs

Ω
= ⟨uk, uk⟩Hs

Ω
= ⟨uk, u⟩Hs

Ω
−
�
Ω

fk(uk)(u− uk) dx

⩽ ⟨uk, u⟩Hs
Ω
− C◦

�
Ω

(u− uk) dx

⩽
1

2
⟨uk, uk⟩Hs

Ω
+

1

2
⟨u, u⟩Hs

Ω
+ |C◦| ∥u∥L1(Ω) + |C◦| ∥uk∥L1(Ω) .

Thus, since −M ⩽ uk ⩽ u in Ω, it follows that ∥uk∥L1(Ω) and ∥uk∥L2(Ω) are bounded inde-

pendently of k, and therefore the sequence uk is uniformly bounded in Hs
Ω. By the reflexivity

of this space, there exists a subsequence kj for which ukj ⇀ v in Hs
Ω. To show that we have

indeed strong convergence, we test the equation for ukj with v − ukj ∈ Hs
Ω,0 and similarly as

before we obtain ∥∥ukj

∥∥2

Hs
Ω
⩽ ∥v∥2Hs

Ω
+ 2|C◦|

�
Ω

(v − ukj) dx.

Hence, using that ukj → v in L2(Ω) we obtain

lim sup
kj→+∞

∥∥ukj

∥∥2

Hs
Ω
⩽ ∥v∥2Hs

Ω
.

This together with the weak convergence yields that ukj → v in Hs
Ω as kj → +∞ (see [5,

Proposition 3.32]).

We shall prove now that v solves the same problem as u (in the L1-weak sense). To establish

this, it suffices to take the limit kj → ∞ in the L1-weak formulation of the equation for ukj

using that fkj(ukj) → f(v) in L1(Ω). This last statement follows by dominated convergence,

since

C◦ ⩽ fkj(ukj) ⩽ f(ukj) = f(ukj)χ{vkj⩽k0} + f(ukj)χ{vkj>k0} ⩽ sup
t∈[−M,k0]

f(t) + |f(u)|.

To conclude, since v is a stable L1-weak solution to (1.1) with −M ⩽ v ⩽ u, Proposition 2.3

yields that u ≡ v, concluding the proof. □

Remark 4.1. Note that the strict convexity hypothesis of f has been used only in the last

point of the proof, to use Proposition 2.3 in its general form. Nevertheless, Theorem 1.9 can

be generalized to (non strict) convex nonlinearities, at least if s ⩾ 1/2. Indeed, if f is affine,

then necessarily f(t) = a + λ1t for all t ⩾ −M , and since f is globally Lipschitz it follows

that u is bounded (this can be seen using a bootstrap argument); we can take then fk = f

and uk = u for every k ∈ N. Otherwise, if f is not affine then uniqueness of solutions holds

as well (as explained in Remark 2.4).

In the rest of the section, we establish another approximation result in which the non-

linearity f (which we additionally assume to be nonincreasing) is replaced by (1 − εk)f for

some sequence εk ↓ 0. Note that this approximation reminds of the problem of the extremal

solution (see [7, Section 1.1]). For the sake of simplicity, and since Theorem 1.9 already gives

an approximation result for more general stable solutions, we will consider here nonnegative
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stable solutions which vanish outside Ω. Nevertheless, the obvious modifications in the proofs

establish the result for more general exterior data. We will also assume that f(0) > 0, since

otherwise our classification result (Theorem 1.8) yields that u ≡ 0 in Rn.

Theorem 4.2. Let Ω ⊂ Rn be a bounded smooth domain, and let f ∈ C1(R) be a nonde-

creasing strictly convex function with f(0) > 0. Let u be a stable L1-weak solution to{
(−∆)su = f(u) in Ω,

u = 0 in Rn \ Ω, (4.2)

such that u ∈ Hs
Ω.

Then, there exists a sequence {εk}k∈N ⊂ [0, 1) such that εk ↓ 0 as k → +∞, and a sequence

{uk}k∈N of bounded stable solutions to{
(−∆)suk = (1− εk)f(uk) in Ω,

uk = 0 in Rn \ Ω,
such that 0 ⩽ uk ⩽ u in Rn, and such that uk → u in Hs

Ω as k → +∞.

To establish Theorem 4.2 we need two preliminary results, Lemma 4.3 and Lemma 4.4.

The first one is a general statement of what is usually known as concave truncation method.7

We include the detailed proof for L1-weak solutions and with nontrivial exterior data for the

sake of completeness.

Lemma 4.3. Let Ω ⊂ Rn a bounded smooth domain. Given h ∈ L1(Ω, dsΩ dx) and g as in

(1.3), let u be the L1-weak solution to{
(−∆)su = h in Ω,

u = g in Rn \ Ω.

Then, for every concave function Φ ∈ C1(R) such that Φ′ is bounded, we have Φ(u) ∈ L1(Ω)

and (−∆)sΦ(u) ⩾ Φ′(u)h in Ω in the L1-weak sense, that is,�
Ω

Φ(u)(−∆)sφ dx+

�
Rn\Ω

Φ(u)Nsφ dx ⩾
�
Ω

Φ′(u)hφ dx

for every φ such that φ and (−∆)sφ are bounded in Ω, and such that φ ⩾ 0 in Ω and φ ≡ 0

in Rn \ Ω.

Proof. Let hk ∈ C∞
c (Ω) be a sequence of functions such that hk → h in L1(Ω, dsΩ dx), and

define uk as the solution to {
(−∆)suk = hk in Ω,

uk = g in Rn \ Ω.

By the regularity of the fractional Laplacian (see [17, 2]), it follows that uk ∈ C∞(Ω)∩Cα0(Ω)

with α0 as in (1.3), and therefore the equation holds pointwise. Note that the functions uk are

uniformly bounded in L1(Ω) and converge to u in L1(Ω) (by uniqueness of L1-weak solutions).

7Sometimes referred to as Kato’s inequality when Φ(u) = −u+.
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Now, assume for a while that Φ is smooth. Since it is concave, we have Φ(a) − Φ(b) ⩾
Φ′(a)(a− b) for all a, b ∈ R, and thus it readily follows that

(−∆)sΦ(uk) ⩾ Φ′(uk)(−∆)suk = Φ′(uk)hk in Ω. (4.3)

Multiplying the above inequality by a function φ being as in the statement of the result, and

integrating by parts the fractional Laplacian (using that φ ≡ 0 in Rn \ Ω), we have�
Ω

Φ(uk)(−∆)sφ dx+

�
Rn\Ω

Φ(uk)Nsφ dx ⩾
�
Ω

Φ′(uk)hkφ dx. (4.4)

Note that we have assumed that Φ is smooth in order to compute the fractional Laplacian

in (4.3) —we require Φ(uk) to be Cβ for β > 2s. To avoid this issue if Φ is only C1, we can

just simply take Φϵ being a smooth concave approximation8 of Φ in the range of uk (which

is smooth and hence bounded) and carry out the previous argument for such Φϵ. Then, by

letting ϵ → 0 and using that Φ is C1 and that Φ′ is bounded, we obtain (4.4).

Now, since Φ′ is bounded, it follows that |Φ(t)| ⩽ C|t|+ |Φ(0)| for all t in R, and therefore

Φ(uk) are uniformly bounded in L1(Ω). Hence, there exists a sequence kj such that Φ(ukj) →
Φ(u) in L1(Ω) as kj → +∞ (to see this, we use convergence a.e., the continuity of Φ, and

dominated convergence). Similarly, we also have that Φ′(ukj)hkj → Φ′(u)h in L1(Ω, dsΩ dx)

—up to a subsequence which we relabel as kj abusing of notation. Thus, taking the limit

kj → +∞ in (4.4) and noting that Φ(ukj) = Φ(g) = Φ(u) in Rn \ Ω for all kj, the desired

conclusion follows. □

With the previous tool at hand we can now establish the second result needed in the

proof of Theorem 4.2. In its proof, which follows the same lines of [12, Theorem 3.2.1],

the construction of the approximate solutions is explicitly described. The main idea is to

construct the solution uε using monotone iteration, taking 0 as a subsolution, and Φε(u), for

some concave function Φε, as a supersolution.

Lemma 4.4. Let Ω ⊂ Rn be a bounded smooth domain and let f ∈ C1(R) be a nondecreasing

convex function with f(0) > 0. Assume that u is a stable L1-weak solution to (1.6).

Then, for every ε ∈ (0, 1) there exists a stable solution uε to{
(−∆)suε = (1− ε)f(uε) in Ω,

uε = 0 in Rn \ Ω,
which is bounded (and hence it is a pointwise solution).

Proof. For δ ∈ (0, 1), let Φδ be the solution of the initial value problem{
Φδ(t)

′f(t) = (1− δ)f(Φδ(t)) for t > 0,

Φδ(0) = 0,
(4.5)

8Note that the convolution of a convex function with a standard mollifier provides a smooth approximation
which is convex, see [14].
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defined implicitly by � Φδ(t)

0

dτ

f(τ)
= (1− δ)

� t

0

dτ

f(τ)
for t > 0. (4.6)

From (4.5) and (4.6), using that f is positive, it follows that Φδ is strictly increasing and

that 0 ⩽ Φδ(t) ⩽ t for all t ⩾ 0 (and thus, since f is nondecreasing, we have Φ′
δ(t) ⩽ 1 − δ

for t ⩾ 0). Now, using this last assertion, the ODE for Φδ, and that f is nonnegative,

nondecreasing, and convex, we obtain

Φ′′
δ(t) = (1− δ)

f ′(Φδ(t))Φ
′
δ(t)f(t)− f(Φδ(t))f

′(t)

f(t)2

= (1− δ)
f(Φδ(t))

f(t)2

(
f ′(Φδ(t))(1− δ)− f ′(t)

)
⩽ (1− δ)

f(Φδ(t))

f(t)2

(
f ′(Φδ(t))− f ′(t)

)
⩽ 0,

showing that Φδ is concave. Therefore, we can apply Lemma 4.3 to see that Φδ(u) ∈ L1(Ω)

and that�
Ω

Φδ(u)(−∆)sφ dx+

�
Rn\Ω

Φδ(u)Nsφ dx ⩾
�
Ω

Φ′
δ(u)f(u)φ dx =

�
Ω

(1− δ)f(Φδ(u))φ dx,

for every φ such that φ and (−∆)sφ are bounded in Ω, and such that φ ⩾ 0 in Ω and φ ≡ 0

in Rn \ Ω. Hence, recalling that u ≡ 0 in Rn \ Ω and that Φδ(0) = 0 we have proved that

Φδ(u) is an L1-weak supersolution to{
(−∆)sw = (1− δ)f(w) in Ω,

w = 0 in Rn \ Ω. (4.7)

Now, using that f(0) > 0, it follows that 0 is an L1-weak subsolution to (4.7). Therefore, by

the monotone iteration method (see Proposition C.7) we obtain a solution uδ,1 to (4.7) with

0 ⩽ uδ,1 ⩽ Φδ(u) ⩽ u in Ω.

Note that if Φδ is bounded,9 we already have the desired bounded solution setting δ = ε

and uε := uε,1. Otherwise, we need to iterate the previous procedure and, as we will see, in

each step we will improve the integrability of the solution, obtaining after a finite number of

iterations a bounded solution.

Repeating the previous arguments with uδ,1 playing the role of u (i.e., taking Φδ(uδ,1) as a

supersolution), and replacing f by (1− δ)f (noticing that this does not affect the definition

of Φδ), we obtain a function uδ,2 which is an L1-weak solution to{
(−∆)suδ,2 = (1− δ)2f(uδ,2) in Ω,

uδ,2 = 0 in Rn \ Ω,

9This is equivalent to say that
� +∞
0

dτ
f(τ) = +∞, and thus the boundedness or not of Φδ is completely

independent of δ ∈ (0, 1).



STABLE SOLUTIONS TO FRACTIONAL SEMILINEAR EQUATIONS 17

such that 0 ⩽ uδ,2 ⩽ Φδ(uδ,1) ⩽ u in Ω. Iterating this process, for each positive integer k we

obtain a function uδ,k which is an L1-weak solution to{
(−∆)suδ,k = (1− δ)kf(uδ,k) in Ω,

uδ,k = 0 in Rn \ Ω,

such that 0 ⩽ uδ,k ⩽ Φk
δ (u) ⩽ u in Ω.

We will prove that there exists a positive integer k0 for which uδ,k0 is bounded. To do so,

we show first that for every δ ∈ (0, 1) it holds

f(Φδ(t)) ⩽
C◦

δ
(1 + t) for all t ⩾ 0 (4.8)

and for some constant C◦ depending only on f . To prove (4.8), we set

ϕ(t) :=

� t

0

dτ

f(τ)

and noting that ϕ is increasing and concave in (0,+∞) —since ϕ′(t) = 1/f(t) and ϕ′′(t) =

−f ′(t)/f 2(t) for t > 0—, for every a, b ∈ (0,+∞) with a ⩽ b we have

ϕ(b) ⩽ ϕ(a) + ϕ′(a)(b− a) = ϕ(a) +
b− a

f(a)
.

Taking a = Φδ(b) and using that ϕ(a) = ϕ(Φδ(b)) = (1− δ)ϕ(b) —see (4.6)—, we obtain

ϕ(b) ⩽ (1− δ)ϕ(b) +
b− Φδ(b)

f(Φδ(b))
,

and therefore

δf(Φδ(b)) ⩽
b− Φδ(b)

ϕ(b)
⩽

b

ϕ(b)
.

Hence, on the one hand, for b ⩾ 1 we have ϕ(b) ⩾ ϕ(1), and thus

f(Φδ(b)) ⩽
b

δϕ(1)
.

On the other hand, for b ⩽ 1 it follows readily that

f(Φδ(b)) ⩽ f(b) ⩽ f(1),

and using that δ < 1 we establish (4.8) with C◦ = max{f(1), ϕ(1)−1}.
Once we have proved (4.8), let us show that there exists a positive integer k0 (depending

only on n and s) such that uδ,k0 is bounded. First, we notice that, since uδ,1 ⩽ Φδ(u), (4.8)

yields

f(uδ,1) ⩽ f(Φδ(u)) ⩽
C◦

δ
(1 + u)

and since u ∈ L1(Ω), by Proposition C.5 (i) it follows that uδ,1 ∈ Lp1(Ω) for some p1 <
n

n−2s
.

Repeating this argument we have

f(uδ,2) ⩽ f(Φδ(u1,δ)) ⩽
C◦

δ
(1 + u1,δ)
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and since uδ,1 ∈ Lp1(Ω), by Proposition C.5 (ii) we get that uδ,2 ∈ Lp2(Ω) for p2 := np1
n−2sp1

.

Iterating this procedure, it is easy to see that after a finite number of iterations we reach a

power pk0 > n/(2s), and thus Proposition C.5 (iii) yields that uδ,k0 ∈ L∞(Ω).

Taking δ = δ(ε) such that (1 − δ)k0 = (1 − ε), we have obtained the desired solution by

setting uε := uδ(ε),k0 . Finally, by convexity we have that f ′(uε) ⩽ f ′(u) in Ω and thus uε is

stable. □

Having proved the previous result, we conclude the section by establishing Theorem 4.2.

Proof of Theorem 4.2. For each ε ∈ (0, 1), let uε be the bounded stable solution given by

Lemma 4.4. By construction, 0 ⩽ uε ⩽ u in Rn for all ε ∈ (0, 1), and therefore ∥uε∥L2(Ω) ⩽
∥u∥L2(Ω). Now, since uε is a bounded solution (and thus regular enough), we can multiply

the equation that it satisfies by uε and integrate by parts to obtain

[uε]
2
Hs

Ω
= (1− ε)

�
Ω

f(uε)uε dx ⩽
�
Ω

f(u)u dx = [u]2Hs
Ω
, (4.9)

where we have used the monotonicity of f and the fact that u ∈ Hs
Ω,0 (and thus one can

perform one integration by parts in the L1-weak formulation, see Remark 1.3). Hence, uε

are uniformly bounded in Hs
Ω, and therefore there exists a sequence {εk}k∈N with εk → 0 as

k → +∞ such that uεk ⇀ v in Hs
Ω for some v ∈ Hs

Ω. Furthermore, since f is nondecreasing,

f(uε) ⩽ f(u) and thus, since f(u) ∈ L1(Ω), by dominated convergence we have f(uεk) → f(v)

in L1(Ω). Thus, taking the limit k → +∞ in the weak formulation of the equation for uεk

we obtain that v ∈ Hs
Ω is an L1-weak solution to (4.2). Hence, by Proposition 2.3, u = v.

Finally, we show that uεk → u in Hs
Ω as k → +∞. By the first equality in (4.9), this is

equivalent to showing that (1 − εk)f(uεk)uεk converges to f(u)u in L1(Ω), and this follows

from the inequality in (4.9) by dominated convergence, since [u]2Hs
Ω
< +∞. □

5. Application: regularity of stable solutions in low dimensions

In this section we show how to combine the approximation results of the previous section

with universal a priori estimates for stable solutions to establish the regularity of energy

solutions which are stable. In particular, we will use the following a priori estimate from [7],

which provides a universal Hölder estimate in low dimensions for half-Laplacian semilinear

equations. Here and through the paper, for s ∈ (0, 1) we denote by L1
s(Rn) the space of

measurable functions for which the norm

∥w∥L1
s(Rn) :=

�
Rn

|w(x)|
(1 + |x|2)n+2s

2

dx (5.1)

is finite.

Theorem 5.1 ([7]). Let n ⩾ 1 and u ∈ C2(B1)∩L1
1/2(Rn) be a stable solution to (−∆)1/2u =

f(u) in B1 ⊂ Rn, where f is a nonnegative convex C1,γ function for some γ > 0.

Then,

∥u∥Cβ(B1/2)
⩽ C ∥u∥L1

1/2
(Rn) if 1 ⩽ n ⩽ 4, (5.2)

for some dimensional constants β > 0 and C.
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From the previous universal estimate and using Theorem 1.9 we establish the regularity of

H
1/2
Ω stable solutions in low dimensions.

Proof of Corollary 1.10. First, by Theorem 1.9, there exists a sequence {uk}k∈N of bounded

stable solutions to {
(−∆)1/2uk = fk(uk) in Ω,

uk = g in Rn \ Ω,
where {fk}k∈N ⊂ C1,γ(R) is a sequence of globally Lipschitz nonnegative convex nonlinearities

converging pointwise to f in R. Moreover, −M ⩽ uk ⩽ u in Rn for some M and uk → u in

H
1/2
Ω as k → +∞.

Now, given a point x0 ∈ Ω, let R > 0 be such that BR(x0) ⊂⊂ Ω. On the one hand, since

each uk is bounded in Ω and fk ∈ C1,γ(R), by standard regularity for the half-Laplacian it

follows that uk ∈ C2(BR(x0)) (see Corollaries 2.3 and 2.5 in [17]). On the other hand, by the

assumption (1.3), we get that u ∈ L1
1/2(Rn) —see Appendix B. Thus, since 1 ⩽ n ⩽ 4, the

universal estimate (5.2) yields

∥uk∥Cβ(BR/2(x0))
⩽ C ∥uk∥L1

1/2
(Rn) ⩽ C ∥u∥L1

1/2
(Rn)

for some universal β ∈ (0, 1) depending only on n, and some constant C depending on n,

M , and R. As a consequence, by the compact embedding of Hölder spaces, there exists a

subsequence (which we relabel as {uk}k∈N) such that uk → v for some v ∈ C β̃(BR/2(x0)) with

β̃ < β. Moreover, we already know that uk → u a.e. in BR/2(x0), and thus v = u in BR/2(x0).

Since this holds for every point x0 ∈ Ω, we obtain that u ∈ C β̃(Ω). The conclusion then

follows from standard interior estimates for the half-Laplacian using the regularity of f . □

6. Unbounded L1-weak stable solutions in low dimensions

In this section we show that the assumption on u belonging to Hs
Ω is crucial in our state-

ments. To do it, we provide a counterexample for our approximation result which is an

L1-weak solution not belonging to the energy space.

Recall (see [16]) that the fractional Laplacian of a function of the form |x|−β is given by

(−∆)s|x|−β = 22s
Γ
(
β+2s
2

)
Γ
(
n−β
2

)
Γ
(
n−β−2s

2

)
Γ
(
β
2

) |x|−β−2s , for β ∈ (0, n− 2s). (6.1)

For p > 1, we consider the function

up(x) := |x|−
2s

p−1 − 1,

and, for convenience, we define as well gp : Rn \B1 → R by

gp(x) := |x|−
2s

p−1 − 1, for x ∈ Rn \B1.

From (6.1), a formal computation shows that

(−∆)sup(x) = Λn,s,p|x|−
2s

p−1
−2s = Λn,s,p|x|−

2sp
p−1 = Λn,s,p(1 + up(x))

p
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where

Λn,s,p := 22s
Γ
(

s
p−1

+ s
)
Γ
(

n
2
− s

p−1

)
Γ
(

n−2s
2

− s
p−1

)
Γ
(

s
p−1

) .

Therefore, if p > n/(n− 2s), we have that (1 + up)
p ∈ L1(B1) up and thus up is an L1-weak

solution to the problem {
(−∆)su = Λn,s,p(1 + u)p in B1,

u = gp in Rn \B1.
(6.2)

In addition, note that if p ⩽ (n+ 2s)/(n− 2s), then

|x|−
2s

p−1
−s /∈ L2(B1),

and therefore up /∈ Hs
B1
. As a summary, we have that for p such that

n

n− 2s
< p ⩽

n+ 2s

n− 2s
(6.3)

the function up is an L1-weak solution to (6.2) not belonging to Hs
B1
.

Let us now see that, for some values of p satisfying (6.3), up is stable in B1. Note that this

is equivalent to check whether the inequality

pΛn,s,p

�
B1

ξ2

|x|2s
dx ⩽ [ξ]2Hs

B1

holds for every smooth function ξ ∈ C∞
c (B1). Recall that fractional Hardy inequality reads

Hn,s

�
Rn

ξ2

|x|2s
dx ⩽

cn,s
2

�
Rn

�
Rn

|ξ(x)− ξ(y)|2

|x− y|n+2s
dx dy where Hn,s = 22s

Γ2
(
n+2s
4

)
Γ2

(
n−2s
4

) .
Then, up is stable in B1 if and only if pΛn,s,p ⩽ Hn,s, which is explicitly written as

p
Γ
(

s
p−1

+ s
)
Γ
(

n
2
− s

p−1

)
Γ
(

n−2s
2

− s
p−1

)
Γ
(

s
p−1

) ⩽
Γ2

(
n+2s
4

)
Γ2

(
n−2s
4

) . (6.4)

Now, if we choose

p :=
n

n− 2s
+ ε for ε ⩽ 2s/(n− 2s),

then (6.4) is satisfied if ε is small enough. To check this last assertion, note that

n− 2s

2
− s

p− 1
=

n− 2s

2
− 1

2
n−2s

+ ε
s

= ε
n− 2s
4s

n−2s
+ 2ε

and thus

Γ

(
n− 2s

2
− s

p− 1

)
→ +∞ as ε → 0.

From this, and noticing that the other expressions appearing in Λn,s,p which involve the

Gamma function are uniformly controlled as ε → 0, we see that for ε small enough (6.4)

holds, and thus up is stable.
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As a conclusion, we have obtained an unbounded L1-weak solution which does not belong

to the energy space but which is stable. This provides a counterexample of our approximation

result (Theorem 4.2) for stable solutions if we do not assume that the solution belongs to

the energy space. Indeed, if up could be approximated by bounded stable solutions, in view

of the regularity results of [7] for s = 1/2 and 1 ⩽ n ⩽ 4, and arguing as in the proof of

Corollary 1.10, it would follow that up is bounded in B1/2, arriving at a contradiction.

Appendix A. An “intermediate value theorem” in fractional Sobolev spaces

In this appendix we recall an “intermediate value theorem” for functions in the fractional

Sobolev space W s,p, with ps ⩾ 1, which has been used in the discussion of Remark 2.4. In

this result we denote by |E| the n-dimensional Lebesgue measure of a measurable set E.

Proposition A.1. Let u ∈ W s,p(B1) be such that |{u ⩽ a}∩B1| > 0 and |{u ⩾ b}∩B1| > 0

for some a, b ∈ R with a < b. If sp ⩾ 1, then |{a < u < b} ∩B1| > 0.

Proof. Assume by contradiction that |{a < u < b}∩B1| = 0. Then, setting E := {u ⩽ a}∩B1

we have that B1 \ E = {u ⩾ b} ∩ B1 up to a set of measure zero. Therefore, if we consider

the function ua,b := min{max{u, a}, b}, which belongs to W s,p(B1), we have

2cn,s,p(b− a)p
�
E

�
B1\E

dx dy

|x− y|n+sp
= [ua,b]

p
W s,p(B1)

< +∞.

Then, since sp ⩾ 1 it holds that �
E

�
B1\E

dx dy

|x− y|n+1
< +∞

and then by [4, Corollary 2] it follows that either |E| = 0 or |B1 \E| = 0, a contradiction. □

Appendix B. Some comments on the exterior condition in the notions of

solution

In this appendix we discuss with more details which are the assumptions on the exterior

condition g needed to define each type of solution considered in this article. Our assumptions

concern its regularity near ∂Ω and its growth at infinity. On the one hand, we assume that

g satisfies

|g(x)− g(z)| ⩽ C0|x− z|α for all z ∈ ∂Ω and x ∈ Rn \ Ω such that dΩ(x) ⩽ C1 (B.1)

for some positive constants C0 and C1, and some exponent α ∈ (0, 1). On the other hand,

we assume that

|g(x)| ⩽ C0(1 + |x|γ) for all x ∈ Rn \ Ω (B.2)

for some γ ⩾ 0.

In the following discussion we will need two estimates for the nonlocal Neumann derivative

of a function φ which is C ᾱ across ∂Ω and has a growth of the form |φ(x)| ⩽ C(1+ |x|γ̄), for
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some ᾱ ∈ (0, 1) and some γ̄ ⩾ 0. On the one hand, for x ∈ Rn \ Ω with dΩ(x) ⩽ C we have

|Nsφ(x)| ⩽ C

�
Ω

|φ(x)− φ(y)|
|x− y|n+2s

dy ⩽ C

�
Ω

dy

|x− y|n+2s−ᾱ
dy ⩽ CdΩ(x)

ᾱ−2s. (B.3)

On the other hand, for x ∈ Rn \ Ω with dΩ(x) ⩾ C we have

|Nsφ(x)| ⩽
C

1 + |x|n+2s−γ̄
(B.4)

• L1-weak solutions

To properly define L1-weak solutions, the integral�
Rn\Ω

gNsφ dx

must be finite for any test function φ. Recall that any such φ vanishes in Rn \ Ω (and thus

is bounded at infinity) and is Cs across ∂Ω. Therefore the above estimates (B.3) and (B.4)

hold for ᾱ = s and γ̄ = 0 respectively. As a consequence, |gNs| ⩽ C|g|d−s
Ω near ∂Ω and

|gNs| ⩽ C(1 + |x|−n−2s) at infinity. We conclude that L1-weak solutions can be well defined

for every exterior datum g ∈ L1
loc(Rn \ Ω, d−s

Ω dx) ∩ L1
s(Rn \ Ω).

• Energy solutions

In this context, an energy solution can be seen as an extension (minimizing an Hs
Ω semi-

norm) of the function g inside Ω. To carry out this minimization process we need to ensure

that the set of admissible functions is not empty. For this, we define g to be the harmonic

extension of g inside Ω, which is the smoothest (in Ω) possible extension of g, as mentioned

in [2, Lemma 2.2]. Indeed, if g satisfies (B.1) for some α ∈ (0, 1), then g ∈ Cα(Ω) ∩ C∞(Ω).

We shall show next under which assumptions g ∈ Hs
Ω.

Note first that

[g]2Hs
Ω
= ⟨g, g⟩Hs

Ω
=

�
Ω

g (−∆)sg dx+

�
Rn\Ω

gNsg dx, (B.5)

and it suffices to check the finiteness of each integral separately. On the one hand, the

following estimate was proved in [2, Lemma 2.4]:

|(−∆)sg| ⩽ Cdα−2s
Ω in Ω. (B.6)

Thus, the first integral in (B.5) is finite provided that α > 2s− 1. On the other hand, using

estimates (B.3) and (B.4) with φ replaced by g and taking ᾱ = α and γ̄ = γ we readily see

that the second integral in (B.5) is finite provided that α > 2s − 1 (to ensure integrability

near ∂Ω), and 2γ < 2s (to guarantee integrability at infinity).

Summarizing, energy solutions are well defined if one assumes that g satisfies (B.1) and

(B.2) with α > max{0, 2s − 1} and γ < s respectively. Note that since we exclude the set

(Rn \ Ω)2 in the double integral defining the seminorm of Hs
Ω, we do not require any local

regularity of g in Rn \ Ω when we are at a positive distance of ∂Ω.

Remark B.1. Condition α > max{0, 2s− 1} illustrates again (as Proposition A.1) the differ-

ence of the fractional Sobolev spaces Hs
Ω depending on whether s < 1/2 or s ⩾ 1/2. Indeed,
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when s < 1/2 the functions in Hs
Ω can have jumps across ∂Ω but the singularity given by

|x − y|−n−2s is not strong enough so that integrals of the form
�
Ω

�
Rn\Ω |x − y|−n−2s dx dy

are infinite (assuming ∂Ω smooth enough). On the other hand, when s ⩾ 1/2 we need an

additional assumption, namely the Hölder regularity of the function g across ∂Ω, in order for

the difference g(x)− g(y) to compensate the singularity of |x− y|−n−2s.

• Pointwise solutions

In order to have (−∆)su well defined pointwise in Ω, apart from interior regularity we

require u ∈ L1
s(Rn). Since u = g in Rn \Ω, it is enough to assume that (B.2) holds fo γ < 2s.

Appendix C. L1-theory for the fractional Laplacian

In this section we collect the results that are needed through the paper concerning L1-weak

solutions. This setting (with minor modifications and usually for zero exterior condition)

has been used in several papers, see [1, 3, 15, 18] to name some of them. For the sake of

completeness, we will next provide elementary proofs of the results that we use in the paper,

paying especial attention to the role of the nontrivial exterior condition.

We first show how to prove existence and uniqueness of L1-weak solutions to the Dirichlet

problem for the fractional Laplacian (1.4).

Proposition C.1 (Existence and uniqueness of L1-weak solutions). Let Ω ⊂ Rn be a smooth

bounded domain, let h ∈ L1(Ω, dsΩ dx), and let g satisfy (1.3) for some α0 ∈ (max{0, 2s−1}, s)
and some positive constant C0.

Then, there exists a unique L1-weak solution u to (1.4) in the sense of Definition 1.1. In

addition,

∥u∥L1(Ω) ⩽ C
(
∥h∥L1(Ω,dsΩ dx) + C0

)
(C.1)

for some constant C depending only n, s, α0, and Ω.

Proof. The uniqueness will follow from the maximum principle (see (C.2) below), and thus

we concentrate on proving the existence. We will show first the result for g ≡ 0. In this case,

note that by splitting h into its positive and negative parts h = h+−h−, it is enough to prove

the existence assuming that h ⩾ 0 a.e. in Ω. For such a function h, set hk := min{h, k} and

since this is a bounded function, there exists a classical solution uk to (1.4) with h replaced

by hk and with g ≡ 0.

Now, take η ∈ C∞
c (Ω) and let φ be the solution to{

(−∆)sφ = η in Ω,

φ = 0 in Rn \ Ω. (C.2)

Multiplying the previous equation by uk and integrating in Ω, after using the equation for

uk we obtain �
Ω

ukη dx =

�
Ω

uk(−∆)sφ dx =

�
Ω

(−∆)sukφ dx =

�
Ω

hkφ dx. (C.3)

Here we have used that uk and φ are classical solutions of linear equations with bounded

right-hand sides, and hence regular enough to perform the usual integration by parts for the
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fractional Laplacian. Note that by standard boundary regularity for the fractional Laplacian

(see [17, Theorem 1.2]), for x ∈ Ω we have |φ(x)| ⩽ dsΩ(x)C ∥η∥L∞(Ω) for some constant C

depending on Ω. As a consequence, we obtain the estimate∣∣∣∣�
Ω

ukη dx

∣∣∣∣ ⩽ �
Ω

|hk||φ| dx ⩽ C ∥η∥L∞(Ω)

�
Ω

|hk|dsΩ dx ⩽ C ∥η∥L∞(Ω) ∥h∥L1(Ω,dsΩ dx) ,

and taking the supremum over all η with ∥η∥L∞(Ω) = 1 we get

∥uk∥L1(Ω) ⩽ C ∥h∥L1(Ω,dsΩ dx) .

By monotone convergence (note that the sequence uk is nondecreasing by the maximum

principle), as k → +∞ the sequence uk converges in L1(Ω) to some function u ∈ L1(Ω)

satisfying (C.1) with C0 = 0. Furthermore, from (C.3) and by dominated convergence, it

follows that u is an L1-weak solution to (1.4) with g ≡ 0 —note that we can take η ∈ L∞(Ω)

and φ the solution to (C.2).

Finally, to consider a nonzero exterior condition g, by the linearity of the problem it suffices

to add, to the previously built function u, the solution to{
(−∆)sw = 0 in Ω,

w = g in Rn \ Ω.
This solution can be obtained by standard methods (see [10] for more details) minimizing

the Hs
Ω seminorm in the convex set Kg := {v ∈ Hs

Ω : v − g ∈ Hs
Ω,0}, where g is a smooth

extension of g inside Ω (here we need to assume α0 > 2s − 1 to ensure that g ∈ Hs
Ω, see

Appendix B). By the maximum principle (see [2, Lemma 2.1]) it follows that

∥w∥L∞(Ω) ⩽ CC0

for some constant C depending only on n, s, α0, and Ω. From this, estimate (C.1) follows.

As an alternative method, one can consider directly the problem for u− g, whose right-hand

side is now h− (−∆)sg and belongs to L1(Ω) if α > 2s− 1 thanks to estimate (B.6), and use

the argument for zero exterior data. □

We next present the maximum principle in the L1-weak setting.

Proposition C.2 (Maximum principle). Let Ω ⊂ Rn be a smooth bounded domain and let

c ∈ L∞(Ω) be a nonnegative function in Ω. Let u ∈ L1
s(Rn)∩L1

loc(Rn\Ω, d−s
Ω dx) be a function

satisfying {
(−∆)su+ cu ⩾ 0 in Ω,

u ⩾ 0 in Rn \ Ω,
in the L1-weak sense, i.e., such that u ⩾ 0 a.e. in Rn \ Ω and�

Ω

u(−∆)sφ dx+

�
Rn\Ω

uNsφ dx+

�
Ω

cuφ dx ⩾ 0

for every nonnegative function φ such that φ and (−∆)sφ are bounded in Ω and such that

φ = 0 in Rn \ Ω.
Then u ⩾ 0 a.e. in Ω.
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Proof. Take η ∈ C∞
c (Ω) and let φ be the solution to{

(−∆)sφ+ cφ = η in Ω,

φ = 0 in Rn \ Ω.
Assume that η ⩾ 0. Then, since c ⩾ 0 in Ω, the standard maximum principle yields φ ⩾ 0.

Plugging this function into the definition of L1-weak solution we obtain�
Ω

uη dx+

�
Rn\Ω

uNsφ dx ⩾ 0.

Moreover, since φ = 0 in Rn \ Ω, then

Nsφ(x) = cn,s

�
Ω

φ(x)− φ(y)

|x− y|n+2s
dy = −cn,s

�
Ω

φ(y)

|x− y|n+2s
dy < 0 for x ∈ Rn \ Ω.

Hence, using that u ⩾ 0 a.e. in Rn \ Ω, we get that�
Ω

uη dx ⩾ 0 for every η ∈ C∞
c (Ω) such that η ⩾ 0 in Ω.

Thus, it follows that u ⩾ 0 a.e. in Ω. □

Following a similar argument we can establish a unique continuation principle in the L1-

weak setting.

Proposition C.3 (Unique continuation). Let Ω ⊂ Rn be a smooth bounded domain, and let

u ∈ L1
s(Rn) ∩ L1

loc(Rn \ Ω, d−s
Ω dx) be a function such that u ⩾ 0 a.e. in Rn and satisfying

(−∆)su+ cu ⩾ 0 in Ω (C.4)

in the L1-weak sense and for some c ∈ L∞(Ω).

If there exists a ball B ⊂ Ω such that u ≡ 0 a.e. in B, then u ≡ 0 a.e. in Rn.

Proof. From the L1-weak formulation of (C.4) we have that�
Ω

u(−∆)sφ dx+

�
Rn\Ω

uNsφ dx+

�
Ω

cuφ dx ⩾ 0

for every nonnegative φ such that φ and (−∆)sφ are bounded in Ω, and such that φ = 0 in

Rn \ Ω. Take φ being a nonnegative function with compact support in B. Then, it follows

that (−∆)sφ < 0 in Rn \B and therefore since u ≡ 0 a.e. in B we have�
Ω

u(−∆)sφ dx =

�
Ω\B

u(−∆)sφ dx ⩽ 0.

Moreover, since φ vanishes outside B we have that Nsφ < 0 in Rn \ Ω and that�
Ω

cuφ dx = 0.

Hence, from the weak formulation we have

0 ⩾
�
Rn\Ω

uNsφ dx ⩾
�
Ω

u(−∆)sφ dx+

�
Rn\Ω

uNsφ dx+

�
Ω

cuφ dx ⩾ 0
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and thus u ≡ 0 a.e. in Rn \ Ω. The same argument yields

0 ⩾
�
Ω\B

u(−∆)sφ dx =

�
Ω

u(−∆)sφ dx+

�
Rn\Ω

uNsφ dx+

�
Ω

cuφ dx ⩾ 0

and since u ⩾ 0 a.e. in Rn and (−∆)sφ < 0 in Rn \ B, it follows that u ≡ 0 a.e. in Ω \ B,

concluding the proof. □

Now we recall a strong maximum principle for L1-weak supersolutions in Hs
Ω. It is used

several times along the paper.

Proposition C.4 (Strong maximum principle). Let Ω ⊂ Rn be a smooth bounded domain,

and let u ∈ Hs
Ω be a function such that u ⩾ 0 a.e. in Rn and satisfying

(−∆)su+ cu ⩾ 0 in Ω

in the L1-weak sense and for some c ∈ L∞(Ω).

If there exists a ball B ⊂⊂ Ω such that infB u = 0, then u ≡ 0 a.e. in Rn.

Proof. First, proceeding as in Remark 1.3 it follows that u is a weak supersolution to

(−∆)su = f(u) in Ω in the sense of [8, Definition 8.4], and for f such that |f(u)| ⩽
d1 + d2|u|q−1, with q = 2, d1 = 0, and d2 = ∥c∥L∞(Ω). Taking this into account, a de-

tailed inspection10 of the proof of Proposition 8.5 of [8] shows that u fulfills the hypothesis

of [8, Proposition 6.8] with d = d1 = 0, and therefore the following weak Harnack inequality

holds: ( 
B

|u|q dx
)1/q

⩽ C inf
B

u

for some q ∈ (0, 1) and some constant C depending on n, s, B, and ∥c∥L∞(Ω). Note that the

reason why no tail term appears in the weak Harnack inequality is because u ⩾ 0 a.e. in Rn.

Since infB u = 0 we get that u ≡ 0 a.e. in B, and the result follows from Proposition C.3. □

We now show how to easily extend the Lp estimates of [18] to L1-weak solutions and with

nonzero exterior conditions. The result that we use repeatedly through the paper (specially

in some bootstrap arguments) is the following.

Proposition C.5 (Lp regularity for L1-weak solutions). Let s ∈ (0, 1) and n > 2s. Let

Ω ⊂ Rn be a smooth bounded domain, let h ∈ L1(Ω, dsΩ dx), and let g satisfy (1.3) for some

α0 ∈ (max{0, 2s−1}, s) and some positive constant C0. Assume that u is the unique L1-weak

solution u to (1.4) given by Proposition C.1.

(i) If h ∈ L1(Ω), then u ∈ Lq(Ω) for every 1 ⩽ q < n
n−2s

and

∥u∥Lq(Ω) ⩽ C
(
∥h∥L1(Ω) + C0

)
, for 1 ⩽ q <

n

n− 2s
,

for some constant C depending only on n, s, q, α0, and Ω.

10More precisely, following the notation of [8, Proposition 8.5] one sees that if p = 2 (which is the situation
of the present paper), then one can take k0 = −∞.
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(ii) If h ∈ Lp(Ω) for p ∈ (1, n
2s
), then u ∈ L

np
n−2sp (Ω) and

∥u∥
L

np
n−2sp (Ω)

⩽ C
(
∥h∥Lp(Ω) + C0

)
,

for some constant C depending only on n, s, p, α0, and Ω.

(iii) If h ∈ Lp(Ω) for p ∈ ( n
2s
,+∞), then u ∈ Cβ(Ω) and

∥u∥Cβ(Ω) ⩽ C
(
∥h∥Lp(Ω) + C0

)
, with β = min

{
α0, 2s−

n

p

}
,

for some constant C depending only on n, s, p, α0, and Ω.

Proof. We prove first (i) and (ii) in the case g ≡ 0. As in the proof of Proposition C.1, by

splitting h = h+ − h− we can assume without loss of generality that h ⩾ 0, and thus u ⩾ 0

by the maximum principle; see Proposition C.2. Then, we consider the function

v := (−∆)−s(hχΩ),

in the sense that v is the Riesz potential of order 2s of hχΩ. Since v = (hχΩ) ∗ |x|−n+2s up

to a normalizing constant, using that the fractional Laplacian and the convolution commute

it is not difficult to see that {
(−∆)sv = h in Ω,

v ⩾ 0 in Rn \ Ω,

in the L1-weak sense, an therefore by the maximum principe it follows that 0 ⩽ u ⩽ v. From

this, (i) and (ii) (with C0 = 0) follow readily from the classical embeddings for the Riesz

potential exactly as in [18, Proposition 1.4].

To treat the case g ̸≡ 0, it suffices to write u = ṽ + w, where ṽ solves the same problem

as u but with zero exterior condition (and for which we have already established the desired

estimates), and w solves {
(−∆)sw = 0 in Ω,

w = g in Rn \ Ω, (C.5)

and for which it holds that ∥w∥L∞(Ω) ⩽ CC0; see [2, Lemma 2.1].

To establish (iii), we take as before

v := (−∆)−s(hχΩ),

and we write u = v + w, with w being the solution to{
(−∆)sw = 0 in Ω,

w = g − v in Rn \ Ω. (C.6)

From the embedding of the Riesz potential into Hölder spaces when p > n
2s

(see [18, Theo-

rem 1.6]), it follows that

[v]C2s−n/p(Rn) ⩽ C ∥h∥Lp(Ω)

for some constant C depending only on n, s, and p. Moreover, since Ω is bounded hχΩ

has compact support, and therefore v has a decay at infinity (and in particular is bounded).

Therefore, the exterior condition g−v satisfies (1.3) but with an exponent β = min{α0, 2s−n
p
}
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instead of α0. From the boundary regularity results of [2], it follows that

∥w∥Cβ(Ω) ⩽ CC0. (C.7)

Note that if p > n the solution to (C.6) is obtained by standard methods minimizing the

Hs
Ω seminorm in the convex set {φ ∈ Hs

Ω : φ − g + v ∈ Hs
Ω,0}. If p ⩽ n (which can only

happen if s > 1/2), then the regularity up to ∂Ω of the exterior condition g − v may not be

enough to define energy solutions (see the comments in Appendix B), but we can consider w

being a viscosity solution11 to (C.6) instead, for which the estimate (C.7) holds as well. □

Remark C.6. The previous result does not provide any estimate for n ⩽ 2s (which, since

s ∈ (0, 1), entails n = 1 and s ⩽ 1/2). Nevertheless, since the in this case the Green function

of any bounded domain (which is an interval) is explicit, we easily have an L∞ estimate

provided that h ∈ Lp(Ω) for some p > 1, as mentioned in Remark 1.5 of [18]. This is used

implicitly in all the bootstrap arguments carried out in this paper when the nonlinearity f(·)
is Lipschitz and n ⩽ 2s. Indeed, since we consider solutions in L2(Ω) ⊂ Hs

Ω, the previous L
∞

estimates yield the boundedness of the solution in the case n ⩽ 2s.

To conclude the section, we present the method of sub and supersolutions (also called

monotone iteration method) in the L1-weak setting. We show how to find an L1-weak solution

to the semilinear problem (1.1) once we have a sub and a supersolution in the L1-weak sense.

Proposition C.7 (Monotone iteration method in the L1-setting). Let Ω ⊂ Rn be a bounded

smooth domain, and let f ∈ C1(R) be a nondecreasing function. Assume that there exist

two functions u, u ∈ L1
s(Rn) ∩ L1

loc(Rn \ Ω, d−s
Ω dx) which are, respectively, a supersolution

and a subsolution of (1.1) in the L1-weak sense, for some exterior condition g as in (1.3).

Furthermore, assume that u ⩽ u a.e. in Ω.

Then, there exists an L1-weak solution u to (1.1) which is minimal relative to u, that is,

u ⩽ u ⩽ w for every L1-weak supersolution w such that u ⩽ w. In particular, u ⩽ u ⩽ u a.e.

in Rn.

Proof. Set u0 := u and, for k ⩾ 1, define recursively uk as the L1-weak solution to{
(−∆)suk = f(uk−1) in Ω,

uk = g in Rn \ Ω. (C.8)

Below we will see that in each step we have f(uk−1) ∈ L1(Ω, dsΩ dx) and thus uk are well

defined and uniquely determined by Proposition C.1.

We claim that for k ⩾ 0, u ⩽ uk ⩽ uk+1 ⩽ u a.e. in Ω. To prove it we proceed by

induction, using the maximum principle (see Proposition C.2) and the monotonicity of f .

First, note that (−∆)su0 = (−∆)su ⩽ f(u) = f(u0) = (−∆)su1 = f(u) ⩽ f(u) ⩽ (−∆)su

in the L1-weak sense in Ω. Then, the maximum principle yields u = u0 ⩽ u1 ⩽ u a.e.

11Note that viscosity solutions to (C.5) are L1-weak solutions. Indeed, the existence and boundary regularity
of viscosity solutions is proved in [2]. From this and the fact that w ∈ C∞(Ω) (since (−∆)sw = 0) it follows
that the equation holds pointwise and multiplying by a test function with compact support in Ω we can
integrate by parts to obtain the L1-weak formulation (note that the test functions with compact support are
dense among the test functions considered in the L1-weak formulation).



STABLE SOLUTIONS TO FRACTIONAL SEMILINEAR EQUATIONS 29

in Ω. Now, assume that we have uk−1 ⩽ uk ⩽ u a.e. in Ω. Then, using this hypothesis

and the monotonicity of f , we have (−∆)suk = f(uk−1) ⩽ f(uk) = (−∆)suk+1 = f(uk) ⩽
f(u) ⩽ (−∆)su in the L1-weak sense in Ω, and as before, the maximum principle yields

uk ⩽ uk+1 ⩽ u a.e. in Ω, establishing our claim. Note that the previous argument, together

with the monotonicity of f and the fact that f(u), f(u) ∈ L1(Ω, dsΩ dx), yields that in each

iteration step, after defining uk we get that f(uk) ∈ L1(Ω, dsΩ dx), guaranteeing the existence

of uk+1.

Once the previous claim is proved, since the sequence {uk}k⩾0 is nondecreasing and lies

between the two integrable functions u and u, we can define its pointwise limit u, and

by dominated convergence uk → u in L1(Ω) as k → +∞. By continuity, we also have

f(uk) → f(u) a.e. in Ω, and thus since f(u) ⩽ f(uk) ⩽ f(u), by the dominated convergence

theorem, f(uk) → f(u) in L1(Ω, dsΩ dx) as k → +∞. Taking all this into account, we can

take the limit k → +∞ in the L1-weak formulation of (C.8) to obtain that u is an L1-weak

solution to (1.1).

Note that we have only used u to guarantee some integrability properties, but since the

iteration has been done from u, in the previous arguments we can replace u by any other

supersolution w such that w ⩾ u a.e. in Ω, proving the minimality of u relative to u. □

Remark C.8. The same result holds without the assumption of f being nondecreasing, if we

assume that f is uniformly Lipschitz in the interval (infΩ u, supΩ u). Indeed, if we consider

the nonlinearity f̃(t) := f(t) + ℓt, where ℓ ⩾ 0 is the Lipschintz constant of f in the above

interval, the problem is equivalent to find a solution to (−∆)su+ℓu = f̃(u) in Ω with the same

exterior condition. Then, we can repeat the previous proof using that f̃ is nondecreasing and

that the maximum principle holds in this case since ℓ ⩾ 0 (see Proposition C.2).
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