A CONNECTION BETWEEN QUANTUM DOT DIRAC OPERATORS
AND 0-ROBIN LAPLACIANS IN THE CONTEXT OF
SHAPE OPTIMIZATION PROBLEMS

JOAQUIM DURAN, ALBERT MAS, AND TOMAS SANZ-PERELA

ABSTRACT. This work addresses Faber-Krahn-type inequalities for quantum dot Dirac opera-
tors with nonnegative mass on bounded domains in R?. We show that this family of inequalities
is equivalent to a family of Faber-Krahn-type inequalities for 0-Robin Laplacians. Thanks to
this, we prove them in the case of simply connected domains for quantum dot boundary con-
ditions asymptotically close to zigzag boundary conditions. Finally, we also study the case of
negative mass.
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1. INTRODUCTION

Dirac operators with different kind of boundary conditions —such as infinite mass, zigzag,
or armchair boundary conditions— are commonly used in the physics literature to model both
the confinement of (quasi-)particles in planar regions and electrons conducting electricity in
graphene quantum dots and nano-ribbons [2 24], [30]. Two-dimensional Dirac operators with
these type of boundary conditions have been studied from a mathematical perspective; see for
example [3, B, [0, 27]. Similarly, three-dimensional Dirac operators with analogous boundary
conditions have also been investigated; see, for instance, [4} [15] 20, 26].

In this context, Faber-Krahn-type inequalities are conjectured for the first nonnegative eigen-
value, both in dimension two [23, Problem 5.1] and dimension three [4, Conjecture 1.8]. In the
present work, we consider the two-dimensional setting, and we show that such Faber-Krahn-
type inequalities for quantum dot Dirac operators with nonnegative mass are equivalent to
corresponding inequalities for the d-Robin Laplacians studied in [14]. As a consequence, we
prove that among bounded simply connected domains with the same area, disks are the unique
minimizers (in an asymptotic sense made precise below) of the first nonnegative eigenvalue of
quantum dot Dirac operators with boundary conditions sufficiently close to the zigzag case.
Our approach to prove this result also allows us to address a shape optimization problem for
quantum dot Dirac operators with negative mass.

1.1. Quantum dot Dirac operators. To set the stage, throughout the present work 2 C R?
will be a bounded domain with C* boundary. We denote by v = (vy,1v) the unit normal
vector field at 02 which points outwards of Q2. We set 7 = (71, 72) := (—1»,11); in this way,
7 is the unit vector field tangent to 9 such that {v, 7} is positively oriented. Based on the
identification R? = C, in the sequel it will be convenient to abuse notation as follows:

R*>v=(v,n)=v+ir,=vcC

and, accordingly, we will write 7 = 11 — i15; to which notation we are referring to will always
be clear from the context. Moreover, we will use the complex notation 0, := %(01 —10,) and
0z := 5(01 + i0,), where V := (8y,0,) denotes the gradient in R?.

Let —io - V + mos denote the differential expression of the free Dirac operator in R?. Here,
m € R typically denotes the mass, o := (01, 03), and

0 1 0 —i 1 0
"1::(1 0)’ “2::<z' 0>’ "3::<0 —1)

are the Pauli matrices —as customary, we denote o - p := o1p; + g9ps for p = (p1,p2).
Motivated by their applications in the description of graphene quantum dots and nano-
ribbons, the following family of quantum dot Dirac operators was studied irdlE!E), 0] (for the

case m = 0). Given § € (—%,2%)\ {%}, let Dy be the operator in L?(2)? defined’| by
Dom(Dy) := {p € H'(Q)*: ¢ = (cosfo -7 +sinfo3)p in H1/2(8(2)2}, (1.1)
Dy := (—io -V +mos)e for all ¢ € Dom(Dy). '

T T

The infinite mass boundary conditions correspond to # € {0,7}. The values § € {5, %
excluded in the previous definition give rise to the so-called zigzag boundary conditions, which

n Appendix we recall some basic definitions and standard notation to be used throughout the paper.
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in ([1.1)) formally lead to either ¢ = —o3p or ¢ = o3¢ on I (forcing one of the components
of ¢ to vanish at 092). The self-adjoint realization of these operators is

Dom(D,g ={p=(u,v)": ue H)(Q),veLQ),o-VpeL*Q)?},
D_zp:=(—io -V +ma3)p forall ¢ € Dom(D_xz),

m\:\

and
Dom(Dz) := {¢ = (u,v)T: w € L*(Q), v € Hy(Q), 0 - Vo € L*(Q)*},
Dwgo = (—io - V +masz)p  for all ¢ € Dom(Dx).

Note that in these cases ¢ need not be in H*(Q2)2.

For the case in which m = 0 and 0 € (=%, 35)\ {2}, in [f] it is proven that Dy is self-adjoint
in L?(Q2)2, and that its spectrumﬂ consist of elgenvalues of finite multiplicity accumulating only
at oo. Still in the case m = 0, in [27] it is proven that D_= is self-adjoint in L*(2)?, and that 0
is an eigenvalue of infinite multiplicity; by unitary equivalence, the same holds true for Dz with
m = 0. Analogous conclusions hold for the general case when m € R: since the Pauli matrix o3
is self-adjoint, by the Kato-Rellich theorem [21], Theorem 4.3 in Section 5.4.1] the operator Dy
is self-adjoint in L*(Q2)? for every 0 € [—Z, 7) It has purely discrete spectrum when 6 # £7
and £m is an eigenvalue of Dyz of infinite multiplicity. Furthermore, as a consequence of [27

Proposition 3], it holds that
0(Dyz) = {+m} U {£VA+m?:Aeo(-Ap)}, (1.2)

where —Ap denotes the self-adjoint realization of the (positive) Dirichlet Laplacian in L?(2).

Before proceeding further, let us make some considerations based on unitary equivalences
to delimit a bit the spectral study of Dy. First, since the boundary condition in (1.1]) is 27-
periodic in @, it is enough to consider 6 € [—g, 7) to cover the whole range of parameters
6 € R. Furthermore, even if due to physical considerations one usually assumes m > 0, by
the chiral transformation described in Appendix [A.2|it is enough to study the operator Dy for
0el|-% 3 7], but now considering both the cases m > 0 and m < 0 (as we will see, these two
cases give rise to qualitatively different situations). Finally, by charge conjugation (see again
Appendix it suffices to study the nonnegative part of the spectrum of Dy.

Taking into account these considerations, for m € R and 6 € [—Z, %], we shall denote the

273
first (smallest) nonnegative eigenvalue of Dy by Aq(f), that is,
Aa(6) :=min (o(Dg) N [0, +0)). (1.3)

Note that we use the subscript to highlight the dependence on 2. Likewise, in the sequel we
will denote the first (smallest) eigenvalue of the Dirichlet Laplacian —Ap by Agq, that is,

Ag == mino(—Ap).

1.2. The shape optimization problem. A usual problem in spectral geometry is to opti-
mize certain spectral quantities (such as eigenvalues) among all bounded domains satisfying a
geometric constraint. In the context of generalized MIT bag models in R3, in [4, Conjecture 1.8]
it is conjectured that, among all bounded C? domains with prescribed volume, the first nonneg-
ative eigenvalue of the underlying operator is minimal for a ball. In view of the correspondence

In the sequel, we will denote by o(T) the spectrum of a given operator T. This notation should not be
confused with the vector of Pauli matrices o = (01, 03).
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described in [I5, Section 1.3] between three-dimensional and two-dimensional settings, in the
context of quantum dot Dirac operators in R? this conjecture reads as follows.

Conjecture 1.1. Assume that m > 0. Let Q C R? be a bounded domain with C* boundary
and let D C R? be a disk with the same area as 2. If Q is not a disk, then A\q(6) > A\p(0) for
all b € (—

2’2)

The important case m = 6 = 0 in Conjecture is known as the Faber-Krahn inequality for
the Dirac operator with infinite mass boundary condition. It is considered a hot open problem
in spectral geometry; see [23, Problem 5.1]. An important contribution towards its possible
resolution can be found in [3, Theorem 4], in which a variational characterization of Aq(0) is
given —see Remark for a comparison with our results. Using this characterization, in [3]
Section 8] some numeric simulations are done and the results strongly support the validity of
Conjecture [I.1], at least for case m =6 = 0.

and for m > 0. This a priori comes from the range of parameters studied in [4] taking%n%o
account the correspondence of [I5, Section 1.3] mentioned before, but let us comment on why
0 € (=%, %) and m > 0 is the natural range of parameters in Wthh Conjecture |1.1| makes sense.

First, note that for m > 0 the zigzag cases § = +7 are excluded in the statement of
Conjecture for obvious reasons. On the one hand, if § = 7, by we have A\q(5) = m
independently of the shape of Q C R? —the same conclusion holds true if § = —% and m = 0.
On the other hand, if § = —5 and m > 0, by we have Ao(—%) = v Aq +m?, which is
minimal for a disk among all bounded C? domains with prescribed area, by the Faber-Krahn
inequality [17), 22].

The reason to exclude the range (%

Remark 1.2. As the reader may have noticed, Conjecture is only posed for § € (=%, Z)

T 3

5, 5 ) for m > 0 (or, equivalently, to exclude the case m < 0

for 6 € (=7, 7%); see Appendix [A.2 m and also compare Figure (1| with Figure {4) is the following:
while for 9 € (—%,%) and m > 0 the eigenvalues are always outside the interval [—m,m] (seﬂ

Lemma , this is no longer true for 6 € (7, 37”) and m > 0. In fact, for 6 € (7, 37”) it may
make no sense to optimize A\g(6).

To visualize this better, let us show a description of the spectrum of Dy when €2 is a disk. In
this case, one can explicitly compute the eigenfunctions of Dy and obtain implicit equations for
the eigenvaluesﬁ which can be represented graphically as functions of 6, as done in Figure .

We should mention that in the previous picture we only plotted some eigenvalues, but actually
there are infinitely many eigenvalue curves converging to m as 6 1 7, accounting for the infinite
multiplicity of m as eigenvalue of Dz. Each of these curves —always above the plotted ones

in the range (—3,%)— can be continued smoothly in (Z,27), as the ones in Figure I As
a consequence, if we extend the definition of A\g(f) in . to ( —’—2r, <), the function 6
Aa(0), which in (=%,%) is continuous and decreasmg, in (%,%) has infinitely many jump

discontinuities accumulating at 7. This indicates that Ag(6) is not the right quantity to optimize

in (3,2°) for m > 0.

3Lemma states that any nonnegative eigenvalue must be strictly bigger than m. Then, the result for
negative eigenvalues follows from charge conjugation; see Appendix

4This can be done following [25, Appendix A], or also using [14, Appendix A] taking into account the
connection between quantum dot Dirac operators and d-Robin Laplacians described in Section
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Eigenvalue curves of quantum dot Dirac operators

FiGURE 1. Eigenvalue curves of the quantum dot Dirac operators Dy for the
disk Dpg of radius R = 2 and with m = 1. We have included two solid horizontal
black lines to highlight the location of +£m. The dashed vertical lines at 6 = 0
and 0 = 7/2 help to locate, respectively, the infinite mass and zigzag cases. The
horizontal dashed lines represent the values £4/Ap, + m?.

Let us advance that in Section [2.3| we will study the optimization of another spectral quantity

in (%,2) for m > 0, which roughly speaking will be the crossing point with the level set —m
of the natural continuation of § — Aq(6) from (-2, %) to (%, 2).

Our main motivation for this work is to address Conjecture through a connection with
another family of operators. As we will see in more detail in Section [3, for m > 0, the
nonnegative eigenvalues of the family {Dg}ge(_%’%) are related to the eigenvalues of the family

{R.}a>0, where R, is the operator in L*(€2) defined by
Dom(R,) :={u € H'(Q) : d:u € H'(Q), 200;u + au =0 in H1/2(8Q)},

(1.4)
Rou:=—Au for all u € Dom(R,).

This operator is studied in the recent paper [14], where it is called the O-Robin Laplacian
because of its similarity with the standard Robin Laplacianﬂ In particular, in [I4, Theorem 1.1]
it is shown that R, is self-adjoint in L?*(2) for every a > 0, and that its spectrum is purely
discrete and strictly positive [14, Theorem 1.2]. In Figure [2[ we graphically represent the
eigenvalues of R, in terms of the boundary parameter a. As before, to highlight the dependence
on Q, for a > 0 we shall denote the first (smallest) eigenvalue of R, by uqg(a), that is,

pio(a) :== min (0(R,)).

5The sesquilinear associated to the Robin Laplacian is based on the decomposition A = div V and integration
by parts. Instead, the one for the 0-Robin Laplacian comes from the decomposition A = 40,05; see Remark
for more details.
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Eigenvalue curves of 3-Robin Laplacians

T T T
0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
a

FIGURE 2. Eigenvalue curves of the 9-Robin Laplacians R, for the disk Dy of
radius R = 2. The horizontal dashed line represents the value Ap,.

The relation between the nonnegative spectrum of {Dg}ge(_%%) and the spectrum of {R, }a>0
mentioned above —and, in particular, between A\ and pug—, naturally leads to the following
open problem based on Conjecture [1.1}]

Conjecture 1.3. ([14, Conjecture 1.10]) Let Q C R? be a bounded domain with C? boundary
and let D C R? be a disk with the same area as Q. If Q is not a disk, then pg(a) > pp(a) for
all a > 0.

The main purpose of the present work is to show that Conjecture |1.1| and Conjecture (1.3
are equivalent, and to prove that they hold true in the asymptotic regimes of the parameters 6
and a. The precise statements of these results are presented in the next section.

2. MAIN RESULTS

2.1. Equivalence of conjectures. Our first main result is Theorem below. It asserts
that Conjecture for quantum dot Dirac operators holds true for a given {2 and a given
0 € (—=5,5), provided that Conjecture for 9-Robin Laplacians holds true for the same
domain €2 and for some specific choice of a > 0 depending on {2 and #. Conversely, it also
asserts that Conjecture holds true for a given €2 and a given a > 0, if Conjecture holds
true for the same domain  and for some specific choice of § € (=7, %) depending on € and a.

To properly state the theorem, we shall need the following qualitative properties of uq, the
first eigenvalue of R, seen as a function of a; they are proven throughout [I4] and the precise

statements will be given in Theorem (77). The function a — pq(a) is continuous, strictly



QUANTUM DOT DIRAC OPERATORS AND 9-ROBIN LAPLACIANS IN SHAPE OPTIMIZATION 7

increasing, and bijective from (0,400) to (0,Aq). In particular, the inverse function ug' is
well-defined, continuous, strictly increasing, and bijective from (0, Ag) to (0, +00). From these
properties, we will deduce in Proposition that the function 6 — A\q(0) is continuous, strictly
decreasing, and bijective from (=%, ) to (m, v/Aq + m?). In particular, the inverse function A"
is well-defined, continuous, strictly decreasing, and bijective from (m,/Aq +m?) to (=5, %).

One can visualize these properties in Figure [3]

First eigenvalue of 3-Robin Laplacians First (positive) eigenvalue of quantum dot Dirac operators

FIGURE 3. Plot of a — pg(a) (left) and 6 — Aq(@) (right), where  is a disk
Dpg of radius R = 2, and with m = 1 (represented as a solid black horizontal line
in the right picture). The horizontal dashed lines represent Ap, in the left and

/Ap,, +m? in the right.

Theorem 2.1. Assume that m > 0. Let Q C R? be a bounded domain with C? boundary and
let D C R? be a disk with the same area as Q. The following hold:

(i) Given 0 € (—7%,5), set

a = g (Ap(0)? —m?) > 0. (2.1)
If pa(a) > ppla) then A\q(0) > Ap(0).
(17) Given a > 0, set
0 :=A,' (vVpn(a) + m?) € (-2,
If Aa(0) > Ap(0) then pq(a) > pp(a).
With this theorem in hand, we will be able to prove the following result. Both its proof and
that of Theorem [2.1] are given in Section [3]

Corollary 2.2. Conjectures and[1.3 are equivalent.

).

NE]

We think these results may help to tackle the Faber-Krahn inequality for the Dirac operator
with infinite mass boundary condition (recall that it corresponds to m = 6 = 0 in Conjec-
ture [L.I). In view of Corollary [2.2] the strategy of establishing such inequality by proving
Conjecture for the operators R, has some advantages. First, it reduces to a single PDE —
see (|3.4)— while for Dy we have a system of two equations —see . Moreover, the spectrum
of R, is positive and well characterized as min-max levels of a certain Rayleigh quotient which
is linear in the parameter a —see Theorem and [14, Theorem 1.2]—, while, so far, the only
known variational characterization of Aq(#) is given in [3, Theorem 4], for 6 = m = 0, as the
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zero of a Rayleigh quotient quadratic in the parameter —see Remark below for more details.
Actually, as we will explain in the following section, we will prove the validity of Conjecture
for the operators R, in a certain asymptotic sense, and then use Theorem to transfer this
information to Dy.

Note that a disadvantage of our approach is the following: if one wants to prove Conjecture|[L.]]
for a given § € (-3, %) —for example § = 0—, a priori one needs to know that Conjecture
holds true for all a > 0, since the change of variables 6 — a in . depends on €2 1tself.
Nevertheless, in contrast with what happens for Dy (for which the value § = 0 is somehow
special since, for example, the spectrum is symmetric with respect to 0), it does not seem that
the problem for R, has a distinguished value of a, and this suggests that the parameter a could
not have a relevant role in a hypothetical proof of Conjecture —as happens with the Robin
Laplacian, for which the same argument works for all values of the parameter; see [12].

Remark 2.3. Note that Theorem shows that the value of m > 0 should not play an important
role. Indeed, assume that Conjecture|l.1|is true for a given value of m. Then, Theorem (17)
would lead the validity of Conjecture|l.3| but now we could use Theorem [2 - ) with a different
value of m to deduce Conjecture [1.1] also for this other value of m. This entalls in particular,
that it is enough to prove ConJecture [L.1) for m = 0 to get it for all m > 0.

2.2. Asymptotic regimes. Our second main contribution of this work is to show that Con-
jectures and hold true in their asymptotic regimes ¢ | —7 and a 1 +o00, respectively,
as well as in the regimes 6 1 7 and a | 0 under the additional assumption that € is simply
connected. The following two theorems, whose proofs are given in Section 4] contain the precise
results in this regard.

Theorem 2.4. Assume that m > 0. Let Q C R? be a bounded domain with C? boundary
and let D C R? be a disk with the same area as Q. If Q is not a disk, then there exists
0y € (=5, %) depending on Q such that Aa(0) > Ap(0) for all 0 € (=73, 00). If in addition ) is
simply connected, then there exists 6, € (— depending on ) such that \q(0) > Ap(0) for
all 6 € (91, 2).

Theorem 2.5. Let Q C R? be a bounded domain with C? boundary and let D C R? be a disk
with the same area as ). If ) is not a disk, then there exists ag > 0 depending on €2 such that
pal(a) > pp(a) for all a € (ag, +00). If in addition § is simply connected, then there exists
a; > 0 depending on Q such that pg(a) > pp(a) for all a € (0,a,).

The cases 6 | —5 and a T 400 described in Theorems and will easily follow from the
Faber-Krahn inequality for the Dirichlet Laplacian, since

lim \g(f) = VAq+m? and lim pg(a) = Ag;

0l—2 at+oo

275)

see Proposition and Theorem (11), respectively. We mention that, in view of the corre-
spondence described in [I5, Section 1.3], the analogous result for § | —7 in the three-dimensional
setting is established in [4, Corollary 1.6]. Moreover, the result for a 1 +o0 is already pointed
out at the end of [I4], Section 1.4].

However, the proof for the other asymptotic regimes of 6 and a in Theorems [2.4] and [2.5] will
be more involved, and should be considered the main contribution of this section. The difficulty
comes from the fact that

191%1 Xa(f) =m and 1;&)1 pala) =0
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independently of the shape of €2; see again Proposition and Theorem [3.3| (ii), respectively.
Regarding the case a | 0, our approach to prove the last statement in Theorem will be to
analyze the slope of the function pug when departing from the origin. Since lim, o pq(a) = 0,
this slope is given by limg o pto(a)/a. In Proposition below, we show that this slope is related
to the best constant in the embedding of a Hardy space into a Bergman space of holomorphic
functions in ) —see and below. This fact, once combined through a conformal
mapping with a well-known inequality for holomorphic functions in the unit disk, will lead to
a key estimate of the slope —see — from which the case a | 0 will be deduced. Then, the
case ¢ T 7 will be a consequence of the case a | 0 and Theorem (). Let us finally emphasize
that, again in view of the correspondence described in [I5, Section 1.3], the last statement in
Theorem gives a positive answer to the problem stated at the end of the paragraph below
[4, Theorem 1.7] for simply connected domains in the two-dimensional setting.
Before stating Proposition [2.6, we need to introduce some notation. Firstly, set

E(Q) :={ue L*Q): d.u € L*(Q) and u € L*(9Q)}. (2.2)

Recall from [3, Lemma 15] that if v and d;u belong to L*(Q2) then the trace of u belongs to
H~1/2(0Q) —analogous results were shown previously in [5, Lemma 2.3] and in [26, Propo-
sition 2.1] in the two and three-dimensional settings, respectively. The Hilbert space E({2)
defined in is precisely made by those functions v € L*(Q) such that d;u € L*(Q) and
whose traces actually belong to the smaller space L*(992); see [14, Section 3.1] for a detailed
study.

Secondly, the above-mentioned embedding of a Hardy space into a Bergman space of holo-
morphic functions in €2 refers to the quantity

2
in Jon Iul* (2.3)
ueB@\{0}: 0:u=0in @ [, [uf?

With the definitions of E(£2) and S in hand, we are ready to state the key result, proven in
Section [4] that we will use to show the last statement in Theorem [2.5
Proposition 2.6. Let Q C R? be a bounded domain with C? boundary. Then,
(i) the infimum in (2.3) is attained. Actually, there exists a nonzero ug € H'(Q) C E()
with Ozug = 0 in Q and such that
_ Jog lual®
fQ |UQ|2

In addition, any minimizer u of (2.3)) satisfies

Sa

Sg/uﬂ = / uv  for allv € E(Q2) with Osv =0 in Q. (2.4)
0 o9
(79) Furthermore, it holds that
lim 224 _ g (2.5)
al0 a

As a consequence of (1) and (ii), if in addition § is simply connected, then

lim #2(9) _ So > 2
a0« 19

and the equality holds if and only if Q) is a disk.

™
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Proposition [2.6| () is already proven in [14, Proposition 2.14] using the Riesz-Fréchet theorem
and the spectral theorem. However, in [14] it is not shown that there exists a minimizer
belonging to H'(Q2). This regularity result will follow from an alternative proof of (i) that we
shall provide, which is based on (ii) exploiting the regularity of the eigenfunctions of R, of
eigenvalue fqg(a).

2.3. Quantum dots with negative mass. Recall that, up to now, we have restricted our-
selves to the range ¢ € (-7, 7) for m > 0. Now we Would like to study the range 0 € (3, 37”)
for m > 0 which, in view of Appendix , is equivalent to study the range § € (-7, %) for
m < 0. In order to highlight the dependence on m € R of the operator defined in , within

this section let us denote Dy by Dy(m). Namely,
Dom(Dy(m)) := {p € H'(Q)*: ¢ = (cosf o -7 +sinfo3)p in Hl/z(ﬁﬂ)Q},
Dy(m)p := (—io - V +mo3)p for all ¢ € Dom(Dy(m)).

To motivate the shape optimization problem considered in this section, let us first take a look
at the situation when m < 0 and 2 is a disk of radius R, denoted by Dg. In this case, one can
perform the same analysis as for m > 0 (see Remark , explicitly finding the eigenfunctions
of the operator and deriving the implicit eigenvalue equations. If one plots the eigenvalues of
Dy(m) as functions of 6, the result is the one contained in Figure [4]

Note that, by comparing this with Figure [I| one can see the unitary equivalence of Dy(m)
and —D,_y(—m), and that A € R is an eigenvalue of Dy(m) if and only if —\ is an eigenvalue
of D,_g(m); this is proved in detail in Appendix

Let us return for a moment to Figure [1] with m > 0. If Conjecture [1.1] holds true and we
plotted 6 — A\q(#) for any other simply connected C? domain € with the same area as Dy, we
would obtain, in (=%, %), a curve lying above Ap, (¢). From Theorem we actually know that
this is the case at least for ¢ close to 7. Now, if we consider the natural smooth continuation
for 0 € (—2,3%) of A\p,(#) and Aq(f), one might expect that, in the interval (3, 32r), the curve
Aa(0) would lie below the curve Ap, (). Therefore, it is natural to conjecture that Ap,(6) will
cross the level set —m “later” (i.e., for a greater value of #) than any other curve Aq (6 I]ﬂ Thus
a natural quantity to optimize is the largest value of 6 at which an eigenvalue curve crosses the
level set —m. More formally, we seek the largest 6 for which —m is an eigenvalue of Dy(m),
and we want to optimize such 6 depending on €; recall that here we are considering m > 0.

Taking into account the unitary equivalence between Dy(m) and —D,_g(—m), this is the
same as asking, for m < 0, which is the first (i.e., smallest) § € (-7, %) for which an eigenvalue
curve of Dy(m) crosses the level set [m|; this crossing point is illustrated in Figure [} In other

words, we seek the smallest § € (—7, %) for which [m] is an eigenvalue of Dy(m). Therefore, we
are concerned with the eigenvalue problem
¢ € Dom(Dy(m)), 2.7)
Dy(m)p = |mle  in L*(Q)% '

We look for the smallest 6 for which has a nonzero solution and we want to find the domain
2 which makes such € as small as possible (under area constraint). Our third main result in
this paper is the following theorem, which asserts that among all bounded simply connected
C? domains with prescribed area, such 6 is the closest to —5 if and only if €2 is a disk.

SIn general, for any level set £, if it happened that Ap, > Aq in (2,25),if Ap,(0pys) =€ = Aa(f) for some

Opr,00 € (5, 37”) and if the curves were monotone, then it would hold that g < 0p,,.
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Eigenvalue curves of quantum dot Dirac operators with negative mass

=

N

_3 T T T
-1 0 1 2 3 4

2]

FIGURE 4. Eigenvalue curves of the quantum dot Dirac operators Dy(m) for
the disk Dpg of radius R = 2 and with m = —1. We have included two solid
horizontal black lines to highlight the location of +m. The dashed vertical lines
at @ = 0 and 0 = 7/2 help to locate, respectively, the infinite mass and zigzag
cases. The horizontal dashed lines represent the values +1/Ap, + m?2. The black
dot illustrates the first crossing point in (—%, %) between an eigenvalue curve of
Dy(m) and the level set |m|, which is studied in Theorem

Theorem 2.7. Assume that m < 0. Let Q C R? be a bounded domain with C? boundary. Then

2
min {0 € (—%,%): ([2.7) has a nonzero solution} = 9" (M), (2.8)

Sa
where ¥ : (=%,%) — (0,400) is defined by V(0) = =228 and Sq is defined in (2.3). As a
consequence, if in addition € is simply connected, then
Q
min {0 € (—%,5): [2.7) has a nonzero solution} > 9" (|m\ u) (2.9)
s

and the equality holds if and only if Q is a disk.

The proof of this result, which strongly relies on Proposition [2.6] is carried out in Section [6
As a consequence of this and the unitary equivalence between Dy(m) and —D,_y(—m), we
obtain the equivalent result in the range (7, 37“) and for m > 0 mentioned before. It refers to
the eigenvalue problem

{gp € Dom(Dy(m)), (2.10)

Dy(m)p = —my  in L*(Q)?,
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under the assumptions 6 € (Z,%8) and m > 0.

Corollary 2.8. Assume that m > 0. Let Q C R? be a bounded domain with C* boundary.
Then

2m
max {9 € (5, 7” - ) has a nonzero solutzon} =1 -9 (S—),
Q
where ¥ and Sq are defined in (3.6) and (2.3)), respectively. As a consequence, if in addition €
1s simply connected, then

27 2 T

Q
max{@ €% —” - has a nonzero solutzon} <7T-—-9 (m u)

and the equality holds if and only if Q2 is a disk.

3. EQUIVALENCE OF CONJECTURES

Throughout this section, we will only consider 6 € (=7, %) and m > 0 in . We will first
show how the nonnegative eigenvalues of quantum dot Dirac operators give rise to eigenvalues
of 0-Robin Laplacians, and vice versa. Then, we will recall some qualitative properties of g
proven in [I4], and we will show how to translate them to the Dirac setting. Finally, we will

give the proofs of Theorem [2.1] and Corollary 2.2

3.1. Connection between quantum dot Dirac operators and 0-Robin Laplacians.
Given 6 € (=73, %), assume that ¢ solves the eigenvalue problem

¢ € Dom(Dy),
: (3.1)
Dy = Ap in L?(Q)?

for some A > 0. Writing the equation Dy = Ap and the boundary condition of ¢ € Dom(Ds)
in terms of its components ¢ = (u,v)T (with v : Q@ — C and v : 2 — C) we get

—2i0,v = (A —m)u in L*(Q),
—2i0;u = (A +m)v in L*(), (3.2)
v =150y, in H2(09Q).

cos 0

As a first step, let us show that if ¢ is not identically zero then A\ > m. This means that, in

order to study the nonnegative eigenvalues A of Dy for 6 € (=7, %) and m > 0, we can always
assume that A > m. This is the purpose of the next lemma, whose proof is based on (3.2)) and

the arguments used in the proof of [28, Proposition 3.2].

Lemma 3.1. Let§ € (=%,%), m >0, and A > 0. Assume that there exists ¢ € Dom(Dy)\ {0}
which solves (3.1). Then A > m

Proof. The proof will follow by a contradiction argument. As before, we write ¢ = (u,v)T.
Multiplying the first equation in (3.2)) by @, and taking conjugates in the second equation and
multiplying it by v, we get

—2iu0,v = (A —m)|ul* and 2wd.uw = (A+m)lv]* in Q.
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If we subtract the second identity to the first one and then we integrate in €2, using the diver-
gence theorem, the third equation in ([3.2), and the fact that 7v = |v|*> = 1, we obtain

()\—m)/ uf? — (>\+m)/ of? = —22’/ (0.0 + v0.1) = —22’/ 0. ()
Q Q Q Q
[ 1—sind 9
= — /8(2 I = —— /asz |ul (3.3)
because 0 € (—%,%).

1—sin9/ ul? + cos 0 / Wl >0
= — ul®+ /= v
2cos0  Jaq 2(1 —sinf) Jyq -
2772

Recall that we are assuming m > 0 and A > 0. In order to prove that A > m if ¢ does not
vanish identically, it suffices to assume that m > A\ > 0 and reach a contradiction. If m > A >0
then the left-hand side of (3.3) is nonpositive and, thus, we deduce that

9 9 —sind 9 cos 0 s
A=m /\u! A+m) /\v| 2cos0 /WM +2(1—sin9) /aQM =0

which yields (A —m) [, [ul* = (A+m) [,v]* = 0 and v = v = 0 on JQ. At this point we
distinguish two cases: m > 0 and m = 0. On the one hand, if m > 0 then A +m > 0 and,
thus, [, [v[* = 0. That is, v = 0 in Q. Therefore, the second equation in leads to O;u = 0
in Q. Since u = 0 on 0f2, we conclude that v = 0 in 2 by the unique continuation principle
for holomorphic functions. This yields ¢ = (u,v)T = 0 in €2, which contradicts the assumption
in the statement of the lemma. On the other hand, if m = 0, since we are assuming that
m > X >0, we get \ = m = 0. Therefore, the first and second equations in lead to
0:0 = 0,v = 0 and dsu = 0 in §, respectively. Since v = T = 0 on 052, again by unique
continuation we conclude that ¢ = (u,v)T = 0 in , leading to a contradiction. U

In view of Lemma 7 from now on we will assume that A > m > 0 in . The following
argumentation, which is reminiscent of [3, Remark 5], shows how the eigenvalue equation asso-
ciated to Dy rewrites in terms of the Laplace dlfferentlal operator. As before, given 6 € (-7, %),
assume that ¢ solves the eigenvalue problem (3.1} . On the one hand, since 48 0: = A, applying
—2i0, in the distributional sense to the second equation in and then using the first one

we obtain
—Au= (N —m*u in L*(Q).

On the other hand, since Dom(Dy) C H'(Q2)?, from the second equation in we actually see
that —2i0;u = (A +m)v € HY(Q). If we now take boundary traces and then we multiply both
sides of the equality by 7, we deduce that —2iv0;u = (A +m)vv € H/2(99) which, combined
with the third equation in (3.2) and the fact that v = |v|* = 1, leads to

1 —sin@

0 i L2
L 0 in HV/(0Q).

™ T

In conclusion, if 6 € (=%,%) and ¢ = (u,v)T € Dom(Dy) solves Dyp = Ay for some A\ > m,
then u solves the eigenvalue problem
u, O;u € HY(Q),
—Au = pu in L?(Q), (3.4)
200;u +au =0 in H/2(09),
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with ;
1«
pi=M-m?>>0 and a:= (A+m)&>0. (3.5)
cos 6

Note that (3.4) is precisely the eigenvalue equation for the d-Robin Laplacian R, —recall the

The relation (3.5)) motivates to introduce the following functions, which will be used in the
sequel. The first one is the smooth, strictly decreasing, and bijective function
D (=2,2) = (0,4+09)

1—sinf
“cosf

- (3.6)

and the second one, which describes the relation between the pairs (6, \) and (a, ) in (3.5)), is
T:(=%,%) x (m,4+00) = (0,+00) x (0, +00)

(0,2) = (A +m)d(0), A2 — m?).

With these definitions in hand, (3.5)) rewrites as (a, ) := T'(6, ). Note also that, given > 0

and a > 0, if we take A := \/p+m? > m then there exists a unique 0 € (-7, ) satisfying

= (A +m)J(h), since the function ¥ is bijective from (=%, %) to (0,400). Therefore, the
function T is bijective and its inverse is given by

T (0, +00) x (0, +oo) (=5,%) x (m,400)
( < ,u+m2+m> pt m2>.

We have seen that a solution to (3.1) yields a solution to (3.4). The reverse implication
follows similarly. Assume that u solves (3.4]) for some p > 0 and @ > 0. Then, setting

(3.7)

-1 — —2 1
0,\) ;=T "(a,p) and wv:= g m(?zu € H(Q), (3.8)
we deduce that u,v € H'(Q) solve (3.2)), or in other words, that ¢ := (u,v)T solves for
0 c(—%,5) and A > m as in (3.§).

In conclusion, the eigenvalue problem for the quantum dot Dirac operator with 6 €
(—%,%) and A > m is equivalent to the eigenvalue problem for the 0-Robin Laplacian
with @ > 0 and p > 0 under the relation (a,u) = T'(f,A). This will allow us to study the
first nonnegative eigenvalue \q(#) of Dy through its reformulation in the framework of the first
eigenvalue g (a) of R,.

The next key result (crucial to obtain Theorem [2.1)) shows that indeed A and pgq are mapped
to each other through the function 7" defined in. This intuitive fact is not completely
obvious because of the following observation: if, for a given @, one takes two different eigenvalues
A1 and Ay of Dy and then, using T', one constructs the corresponding eigenvalues p; and s
of the J-Robin Laplacian, it may happen that p; € 0(Rq,) and ps € 0(R,,) for different
parameters a; and ay, —recall that a in depends on A.

Proposition 3.2. Let (0,\) € (=%,%) x (m, +00) and (a, i) € (0,+00) x (0, +00) be such that

272

T(0,)\) = (a,p). Then, A = Xq(0) if and only if = pug(a).

The proof of this result will be given in Section As will be seen, it is not completely
obvious and requires some properties of the eigenvalue curve a — pg(a) that will be recalled
from [14] or obtained in the next section.
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3.2. Properties of the eigenvalue curves. Here we will recall some properties of the map
a — g (a) proven in [14] which will be key ingredients in the present work. Next, we will estab-
lish other properties needed to obtain Proposition [3.2] Finally, after proving Proposition [3.2]
we will transfer the properties of a — ug(a) to 8 — Aq(0).

To start with, in the next statement we recall the main properties of a — uq(a) proven
in [I4]. Recall that Aq denotes the first eigenvalue of the self-adjoint realization of the Dirichlet
Laplacian in L?*(Q).

Theorem 3.3. ([14, Theorems 1.2 and 1.3 (i)]) Given a > 0, let po(a) = min (6(R,)). The
following hold:
(i) Let E(Q) = {u € L*(Q) : dsu € L*(Q) and u € L*(0N)}, as in (2.2). Then,
4 [ 10zul? 4+ a [, [u]?

a)= in 3.9
al ue B(Q)\{0} o, ul? (39)

and the infimum is attained. Furthermore, any minimizer ug(a) of (3.9)) belongs to
Dom(R,) \ {0} C E(Q) and solves Ryuq(a) = pala)ug(a).
(13) The function a — pg(a) is continuous, strictly increasing, and bijective from (0,+00)

to (07 AQ)
Before continuing, for the sake of clarity, let us make a couple of remarks.

Remark 3.4. Let us recall the simple computation that motivates the variational formulation
of pg(a) stated in ([3.9). Assume that u does not vanish identically and solves for some
a > 0and pu > 0. Since pu = —Au = —40,0su in §Q, if we multiply this equality by u and
integrate it in 2, the divergence theorem and the boundary condition in (3.4) yield

,u/ lu|? = —4/8202uﬂz4/ |62u|2—/ 2?3zuﬂ:4/ |8zu|2+a/ |u|?.
Q Q Q o0 Q o9

This is the identity which gives rise to (3.9). Observe also the similitude of the variational
formulation of pg(a) in (3.9) with the one of the first eigenvalue of the Robin Laplacian

—Au = pu in €,
o,u+au =0 on 0,

which has the same form as in (3.9) but replacing d;u by Vu and E(Q) by H'(Q) —this also
motivates the name 0-Robin Laplacian.

Remark 3.5. Recall that, thanks to Proposition (to be proved later), Aq and pq are mapped
to each other through the function 7" defined in (3.7)). From this and the expression of ug
we have a characterization of A\g(6). Let us compare it with the variational characterization of
Aq(0) given in [3, Theorem 4].

As we mentioned in the introduction, the problem for § = m = 0 was studied in [3], which is
one of our main inspirations. In this particular case the relation (a, ) = T'(0, A) given in (3.5)
reduces to

p=2X and a=), (3.10)
and therefore the problem (3.4 can be written as

{—Au = d’u in L?(Q),

3.11
200;u +au =0 in H/2(09). (3:11)
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This is what is done in [3] to obtain a variational characterization of Ao (0). Indeed, [3, Theo-
rem 4] states that A > 0 is Ag(0) if and only if P(A) = 0, where

P(N) = inf 4f9’82u|2+)‘f89‘u’2_>‘2 fQ ‘UP
(A\):= in 5 :
u€E(Q)\{0} fQ [ul

From the point of view of the present work, as a consequence of (3.9)) and the relation (3.10]),
by Proposition [3.2 we are lead to find A > 0 such that

. 4 [ 10zul> + X [oq [ul®
ue E(O)\{0} Jo lul? ’

A2 =

which is precisely P(\) = 0.

Note that the parameter a appears in both in the equation (as a?) and the boundary
condition (as a). Similarly, P(\) has a linear and a quadratic term in A. In our case, it is
crucial that we decouple the parameter appearing in the PDE and the one appearing in the
boundary condition. By doing this, © = A\? = a? becomes an eigenvalue and we only have a
parameter in the boundary condition. This is a key point for us, since it allows us to work with
a characterization of the eigenvalue as a minimum of a Rayleigh quotient which is linear in a.
The price to pay, as we mentioned in the introduction, is that in order to prove Conjecture|l.1
for a given 0, we would have to prove Conjecture for all values a > 0.

Next, we establish two properties of a — pug(a) and related functions which will be used
later.

Lemma 3.6. The function a — uq(a)/a is strictly decreasing in (0,4+00). Moreover,

pala) _ |09
< — . .
PR for all a >0 (3.12)

Proof. We first show the claimed monotonicity; the argument will be the same as the one in
the proof of [3, Proposition 33(3)]. Assume that ay > a; > 0 and let ug(a;) be a minimizer
of ua(ar) as in Theorem (i) for @ = ay. Without loss of generality, we can assume that
|lua(a)||z2() = 1. Observe also that [ [0suq(ar)|* # 0, since otherwise

po(ar)ug(ar) = Reual(ar) = —Aug(ar) = —40,05uq(ar) = 0,
contradicting the fact that pg(a;) > 0, as stated in Theorem (73). Then, from (3.9) we get

a2

% () = 24 / eua(a) + as /8 ()

aj
>4 / Deug(an)|? + as / g (@) > po(as).
Q o0

This shows that pg(ai)/a; > pa(az)/as, as desired.
The proof of (3.12)) follows by testing (3.9) with the constant function v = 1 in . O

Lemma 3.7. The function

s fla) =9 (m>

is continuous, strictly decreasing, and bijective from (0,+4o00) to (=5, 75).
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Proof. Recall from Theorem [3.3| (#i) that the function a — pg(a) is continuous and strictly
positive in (0, 4+00). Consequently, the function f is well-defined and continuous in (0, +o0)
—recall the definition of ¥ in . We will see now that f is strictly decreasing. Note that
since a — pg(a)/a is strictly decreasing thanks to Lemma

VRS = \Jen ) (313)
is a strictly decreasing function of a € (0, 400) —recall that m > 0. Therefore, the function

N
G Jrm(@) tmE m
is strictly increasing in (0, +o00). Then, using that =1 is strictly decreasing, we deduce that
a — f(a) is strictly decreasing in (0, +00), as claimed.
Finally, from (3.13) and Theorem (77) (and using also Lemma for the second limit
below) we see that

Vi@ tmim o Vea@trtm

lim lim
at+oo a al0 a
which easily yields limgjio f(a) = —F and lim,yo f(a) = 5. From this we conclude that the

function a — f(a) is continuous, strictly decreasing, and bijective from (0, +o0) to (=3,%). O

With the previous properties of a — ug(a) and related functions at hand, we can now prove
that A\g and ugq are mapped to each other through the function 7' defined in ({3.7)).

Proof of Proposition[3.9 Let us first prove that, given a > 0, if T!(a, po(a)) = (6, \) for some

0 € (—%,%) and A > m, then A = \g(#). We will prove this statement by contradiction. Hence,

assume that T !(a, ug(a)) = (6,\) but that X # Aq(6). Then necessarily A > \g(6), since
Aq(0) is the first nonnegative eigenvalue of Dy. Since T~ (a, po(a)) = (6, \), we have that

a=M\+m)d0) and pg(a)=I*—m?
Next, set (a*, u*) := T(0, A\q(0)), that is,
a* = (Ma(0) + m)I(#) and p*:= A\q(0)* —m>.

Note that since (a*,u*) = T(0, () and Aq(f) > m is an eigenvalue of Dy, p* > 0 is
an eigenvalue of R,-. Thus, since pg(a*) is the smallest eigenvalue of R,«, we have that
w* > pa(a*). Note also that

a  A+m

at () +m’

Moreover, since A > Aq(f) we also have that a > a*.
We are now ready to reach the contradiction. On the one hand,

pola) A —m? A —m A+m A—m  a
o Aa(@)2—m2  A(0) —m Aq(0) +m  Ag(0) —m a*’

which, thanks to the fact that A > \q(0) > m, leads to

a’pgla) — A—m
woa (0 —m

> 1. (3.14)
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On the other hand, using that a > a*, that a — po(a)/a is strictly decreasing by Lemma [3.6]
and that p* > ug(a*), we obtain
a’ po(a) - a’ pa(a”)  po(a

which contradicts (3.14)).

We have proven that, given a > 0,

if T7'(a, po(a)) = (6, \) for some 6 € (—Z,T) and A > m then A = \q(6). (3.15)

272
Since T is bijective, this proves the “if” implication of the lemma.

Let us now address the “only if” implication. Assume that, given ¢ € (-7,
T(0,\a(0)) = (a,p) for some @ > 0 and p > 0. We want to prove that u =
Lemma [3.7, we see that there exists a* > 0 such that

), we have

2
o(a). From

0 — ﬁ—l(m). (3.16)

Hence, from (3.16]), the definition of 771, and (3.15)), it follows that T (a*, ua(a*)) = (0, Aa(0)).
Using that T is bijective, we obtain that (a*, ug(a*)) = 7'(6, Aa(0)) = (a, ) and, therefore, that
a=a"*and u = pg(a*) = pg(a), as desired. O

As we mentioned, combining Theorem (77) with the mapping T defined in (3.7) one
can transfer the qualitative properties of g to Aq, as the following result shows. Let us also
mention that these properties of Ao can be proven without appealing to ug but using instead
boundary integral operators and perturbation theory at the level of resolvents —as it is done
in the three-dimensional framework in [4, Section 3.

Proposition 3.8. Given 0 € (=3, %), let A\o(0) be as in (1.3). Then, the function 6 — Ao (0)
is continuous, strictly decreasing, and bijective from (=75, 7%) to (m VA + m2)

Proof. Recall from Lemma [3.7] that the function

a— f(a):= ﬁl<m>

is continuous, strictly decreasing, and bijective from (0,+o00) to (=F,7). In particular, its
inverse function 6 — f~1(6) is well-defined, continuous, strictly decreasing, and bijective from

(—5,%) to (0,4+00). Next, consider the function

0 — \/ia(f1(0) + 2.

From the previous comments and Theorem (1), this function is continuous, strictly de-
creasing, and bijective from (—%,7) to (m, VAq + m2). Our goal now is to show that this
function actually is 6 — Aq(f), which would conclude the proof of the result. To check it,
simply note that if 6 € (=%, %) then Proposition 3.2 shows that T'(6, A\o(#)) = (a, pa(a)) for
some a > 0. Now, applying T~! to this identity and looking at the components of T~!
realize that = f(a) and, thus, that

Via(f71(0) +m? = Vo (a) +m* =
as desired. ]
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3.3. Proof of the equivalence of conjectures. With all the previous ingredients in hand, we
are now ready to prove Theorem 2.1]which, in turn, will lead to the equivalence of Conjecture(l.1
for the quantum dot Dirac operators and Conjecture for the 0-Robin Laplacians, as stated

in Corollary [2.2]

Proof of Theorem[2.1 Let us address the proof of (i). As a suggestion for the reader, it may
be helpful to read the proof having Figure [5[in mind.

MQ(G) *************** )\Q(e*)

I
)\D(H)z — m2

FIGURE 5. Schematic representation of the proof of (7).

First of all, let us check that a given in (), that is,

0= g (o (0)” — m?), (3.17)
is a well defined positive number for all # € (—%,%). Thanks to Proposition and the

Faber-Krahn inequality for the Dirichlet Laplacian [17, 22], we see that
0<Ap(@)?—m?><Ap<Aq forallfec (-2, 7).

272
Since the function a — pg(a) is bijective from (0,400) to (0, Aq) by Theorem (), given

0 € (=%, %) there exists a unique a > 0 such that pg(a) = Ap(#)* — m?, as desired.

Next, given 6 € (=7, %), let a be as in (3.17)) and assume that pg(a) > pp(a). Set (a*, u*) :=
T(0, p(0)), that is,
a* = (Ap(0) +m)I(0) and pu*:= Ap(0)* —m?>. (3.18)

From Proposition we actually see that u* = up(a*). Therefore, using the definition of u* in

(3.18), (3.17), and the assumption in (i), we get that up(a*) = p* = Ap(0)®> — m? = pq(a) >
wp(a). Now, since the function pp is strictly increasing by Theorem [3.3| (ii), we find that

a* > a. (3.19)
Now, set (6%, \*) := T~ (a, ua(a)), that is,
0" = 191( ¢ ) and A" :=+/pq(a) +m?. (3.20)
po(a) +m? +m

On the one hand, as before, from Proposition we see that A* = Aq(6*). On the other hand,
replacing (3.17)) in (3.20) we deduce that

o =9 (m) and M\ = Ap(6). (3.21)

In particular, we obtain that

Xa(07) = Ap(6). (3.22)
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In addition, using and - in - we deduce that

y a a*
From this, and since the function ¥ is strlctly decreasing, we get that * > . Finally, using
that 0" > 6, that the function \q is strictly decreasing, and , we conclude that Aq(6) >
Aa(0*) = Ap(0). This finishes the proof of (i).

Let us now address the proof of (ii), which will be completely analogous to the one of ().
As before, it may be helpful to have Figure [6] in mind while reading this proof.

Aa(0)

FIGURE 6. Schematic representation of the proof of (7).

First of all, let us check that the value 6 given in (i), that is,
0 := Ao' (Vpn(a) + m?), (3.23)
is a well defined real number in (—Z,Z) for all a > 0. Thanks to Theorem (77) and the

272
Faber-Krahn inequality for the Dirichlet Laplacian, we see that

2 for all a > 0.

m? < up(a) +m? < Ap +m? < Ag +m
Since the function 6 — Aq(f) is bijective from (=7, %) to (m VAo + m2) by Proposition ,
given a > 0 there exists a unique 6 €

—5, 5) such that A\q(6) = \/pp(a) +m?, as desired.

(
Next, given a > 0, let 6 be as in (3.23) and assume that Ag(f) > Ap(f). Set (6*,\*) :=
T~*(a, pp(a)), that is,

e -1(____a * L D)
0= <\/#D(a)+m2+m) and A" pp(a) +m?. (3.24)

From Proposition [3.2| we actually see that A* = Ap(6*). Therefore, using the definition of )\* in

(3-24), (3:23), and the assumption in (ii), we get that Ap(0*) = \* = \/up(a)? + m? =

Ap(#). Now, since the function Ap is strictly decreasing by Proposmon we find that
0" < 0. (3.25)
Now, set (a*, u*) := T(0, A\q(0)), that is,
= (Aa(0) +m)I(0) and p* = Ag(0)* —m?> (3.26)
On the one hand, as before, from Proposition we see that p* = ug(a*). On the other hand,

applying (3.23) to (3.26|) we deduce that

a* = (vpp(a) + m>+m)d(#) and p* = pp(a). (3.27)
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In particular, we obtain that
pa(a®) = pp(a). (3.28)

In addition, thanks to (3.25)) and the fact that the function ¢ is strictly decreasing, we see that
¥(0) < 9(0*). Using this and (3.24) in (3.27)), we deduce that

a* = (vVpp(a) + m?>+m)d(0) < (up(a) +m? +m)d(0*) = a.

Finally, using that a* < a, that the function ugq is strictly increasing, and (3.28]), we conclude
that po(a) > po(a*) = up(a). This finishes the proof of (i7). O

Proof of Corollary[2.3. 1f Conjecture holds true then Conjecture holds true by Theo-
rem (7). The reverse implication follows analogously but using now Theorem (). O

4. ASYMPTOTIC REGIMES

This section is devoted to the proofs of Theorems and and of Proposition 2.6 Recall
that Theorem refers to the optimality of the disk for the first eigenvalue of R, in the
asymptotic regimes a | 0 and a T +o0, and Theorem refers to the optimality of the disk
for the first nonnegative eigenvalue of Dy in the asymptotic regimes 6 1 7 and 0 | —7. As
we mentioned in the introduction, the proofs in the cases a 1 +o0o and 6 | —% will essentially
follow by the Faber-Krahn inequality for the Dirichlet Laplacian. Instead, the case 6 1 5 will
be derived from Theorem (1) and the case a | 0, the latter being the most complicated to
prove.

As an advance to help the reader, next we recall the main ideas used in the case a | 0. Since
limyo po(a) = 0 = limyyo up(a), in order to prove that if € is not a disk then puq(a) > pp(a) for
all @ > 0 small enough, it suffices to show that the slope of the function pg when departing from
the origin is strictly bigger than the one of pup. This last claim will follow from Proposition [2.6]
More precisely, we will first give a variational characterization of the slope as

lim Hol) = Sq = inf fm ]u|2

al0 a ue€E(Q)\{0}: 9zu=0 in Q fQ ]u|2
This is in Proposition (#7). Then, we will use this characterization to prove, for
simply connected domains, a sharp lower bound of the slope for which the disks are the only
minimizers; this will yield Sq > 24/7/|Q|, which is in Proposition . This last lower
bound is precisely the content of the next result, which can be rephrased as the optimal constant
for an embedding of a Hardy space into a Bergman space; see Section |5| for more details.

(4.1)

Proposition 4.1. Let Q C R? be a simply connected bounded domain with C? boundary. Then,

1 /1€
<

||U||%2(Q) =3 ||U||%2(an) (4.2)

for all u € E(Q) such that Osu = 0 in Q. Moreover, if u does not vanish identically, then the
equality in (4.2) holds if and only if Q is a disk and w is a constant function.

™

Our proof of this bound requires the Riemann mapping theorem and a quantitative version
of a theorem for holomorphic functions in the unit disk due to Hardy and Littlewood; see Theo-
rem Since the arguments require some technical tools from complex analysis, we postpone
the proof until Section [l Here, assuming Proposition proved, we establish Proposition [2.6]
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Proof of Proposition [2.6. We begin the proof of the theorem addressing (i), that is, . As
we will see, the arguments used for its proof will also yield the first part of (7).

As a preliminary comment, note that lim,jo uo(a)/a exists and is a positive real number
thanks to Lemma 3.6} since the function a — pq(a)/a is positive, strictly decreasing in (0, 4+00),
and bounded from above. The easy step to get (i¢) is to prove that lim, o pa(a)/a < Sq. To
check this, simply restrict the infimum in to the set {u € E(2)\ {0} : 0;u =0 1in Q} and
then divide by a. This actually shows that pg(a)/a < Sq for all @ > 0, and not only in the
limit a | 0.

Next, we will prove that lim,jo pua(a)/a > Sq. This step will follow by compactness. For
every a > 0, let ug(a) be as in Theorem (7). By normalization, we can assume that
lua(a)||z2@) = 1 for all @ > 0. This, combined with (3.12), leads to

Q
0< 4/ |0sua(a)? +a | |ug(a)]® = pala) < a 109 for all a > 0.
o o0 1ar

Therefore, lim, o ||Ozuq(a)|/ L2y = 0 and [juq(a)||L2p0) < +/[1092]/|€2] for all @ > 0. In particu-

lar,

(@) | s /|uQ (@) + /|au9 (@) + /|uQ(a)|2§C' forallae (0,1,  (43)

for some C' > 0 independent of a.

On the one hand, since E(Q) is compactly embedded in L?(2) by [14, Lemma 3.1], form (4.3))
we deduce that there exist ug € L?(Q2) and a sequence ay, | 0 as k 1 400 such that
leIIIl |lug — ua(ar)|| L2y =0 and, consequently, that

Osuq = lelm Ozuq(ag) in the sense of distributions in €.
+oo

The first statement in (4.4)) yields ||ug||z2@) = 1. From the second statement in (4.4) and the
fact that limgyo [|Ozuq(a)| L2 = 0, we deduce, firstly, that Osuq = 0 in the sense of distributions
in Q —which entails d;uq € L*(2)— and, secondly, that

(4.4)

lel—iI-réo |0:uq — Osuqa(ar)|| 2@ = 0.

This last conclusion, combined with the first statement in (4.4) and [5, Lemma 2.3] show that
limgyy oo [[ua(ar) — uallg-1/2(90) = 0. In particular,

lelfl <UQ - uQ(ak), v)H—l/Q(aﬂ),Hl/Q(é?Q) =0 forallve H1/2(8Q) (45)

On the other hand, since |Jug(a)||r2@00) < +/|09|/]] for all @ > 0, combining weak-* com-

pactness (Banach—Alaoglu theorem) and Riesz-Fréchet theorem on the Hilbert space L?(992),

we deduce that there exist uf, € L*(09) and a subsequence of {ay}, which for simplicity we
call again {ay}x, such that

lim (v, ug, — ug(ak))r2@0) =0 for all v € L*(9Q). (4.6)

kT+o0
Since H'/2(0)) C L*(09), and in view of our convention for the pairing (A.1), (4.6) gives

kﬁg@(% —uq(ar), V) g-1/2(50) 11/2(90) = kﬁr;(v, ug — ug(ar))r2oa) = 0
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for all v € HY2(00). Using this and (4.5), we conclude that ug = uf in H~/2(982). To be
more precise, as a functional in H~'/2(09), ugq is equal to (-, uf)12(sq) for some ufy € L2(9Q).
This is what, abusing notation, we are denoting by uq € L*(09).

Summing up, from the previous arguments we have seen that ||uq||;2) = 1, that dzuq =
0 in Q, that uq € L?(09)) —these three facts yield uq € FE(Q) \ {0}—, and that ug =
limyt 400 ug(ar) weakly in L2(992) —recall (4.6)). In particular,

hmlnf||UQ(ak>||L2(89 = lim inf sup / uq(ay)w
kT+oo 00 wer2(09): |wl 12 o) =1 / 02

.. uQ
thlnf/ ug(ay) ——— = ||uql|r2(90);
Jet+o00 50 ( )HUQHL?(OQ) || ||L ( Q)’

this is nothing but the weakly lower semicontinuity of || - || 2(9). With all these ingredients in
hand, the fact that lim,jo ua(a)/a > Sq follows easily. Indeed,

4
lim 2200 _ py Hol@) (_/ |8ZuQ(ak)\2+/ ]ug(ak)]2>
al0 Qa kT+4o0 ag kt+oo \Gr Jo a0
[ aH%z [uollfzon)

as desired, completing the proof of . Actually, looking at this chain of inequalities (which,
as we have proved, are all equalities), we deduce that the infimum in the definition of Sg
—see ([2.3)— is attained by uq, which proves the first part of (i).

We next show that the minimizer ug € F(Q2) that we have found actually belongs to H'((2).
For this, we will use crucially that ug is the limit of functions ug(ax) € Dom(R,,). On the
one hand, we have seen that there exists a sequence a, | 0 as k 1 400 and ug(ax) as in
Theorem (i) such that uq(ax) — uq and d;uq(ay) — 0 strongly in L*(Q2) as k 1+ +00. On
the other hand, since ug(a;) € Dom(R,, ), by [14, Lemma 3.4] there holds

SQ?

= hkfﬁigf HUQ<GI€)H%2(BQ) 2 HUQHL?(aQ)

1
+ 5l Aua(a) o)

Jua(ar) || F1(q) < OQ<||UQ(ak)H%2(Q) + 10:u0(ar) 1720
k

- CQ<(1 NQEL 23 >HUQ((1}€)”L2 @ + 110z ug(ag) |72 Q))

k

for some constant Cg > 0 depending only on €2, where in the last equality we have used that
—Aug(ar) = palag)ug(ar) in L*(2). This estimate, together with and the aforemen-
tioned convergence of uq(ay) to ug, leads to the boundedness of ||uq(ax)|| g1 (o) uniformly in k.
Combining the compact embedding of H(2) in L?(2) and the weak-* compactness of H* (),
we deduce that there exists u, € H'(Q) and a subsequence of {ay }x, which we call again {a }s,
such that ug(ay) — u, in L*(Q) as k 1 +o00. Since we already had that ug(ax) — ug in L*(Q),
this yields that ug = u, € H'(Q2), as desired.

To conclude the proof of (i), it only remains to show (2.4]), which is nothing but the Euler-
Lagrange equation for any minimizer v of (2.3). Given v € E(Q) with 9;v = 0 in €, set

fBQ lu + to]? . faﬂ |ul? + 2t Re (fasz“@ + faQ [v?

)= Jolu+tv]? Jo lul?> + 2t Re (o uv) +1* [ [v]?
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for all ¢ € R with |¢| small enough. If w is a minimizer of (2.3)), we deduce that f(0) < f(¢) for
all |t| small enough and, thus,

_d _ Re (foqu®) Jo [ul® = [oq [ul* Re (J,u)
0= Ef(O) - 9 2 )
which yields
Re </ uU) = Sq Re (/ uﬁ) for all v € E(Q) with d;v =0 in Q. (4.7)
o9 Q

This proves at the level or real parts. To get the equality also for the imaginary parts,
given v € E(Q) with d;v = 0 in Q, simply apply to the function —iv.

Finally, note that (2.6)), that is, Sq > 21/7/|Q|, is a consequence of and Proposition .
Thus, it only remains to prove that the equality in (2.6]) holds if and only if 2 is a disk. On the
one hand if 2 is a disk of radius r > 0 then usmg (2.6), limgyo uo(a)/a = Sq, and comparing
the quotient in the definition of Sq —see — with its the value for constant functions, we

deduce that f | ‘2
Gl . pa(a) o0 |1 09 _ 2 i
2, /= <lim———+ = §q < = ="=2,/—,
Q] ~ a0 a fQ 1]2 19 r 19

which gives the equality in (2.6)). On the other hand, if the equality in (2.6]) holds, by points (7)
and (ii) already proved, we deduce that

i ( ) f{)Q |uQ| .
2 = lim =Sg="0—- f e E(2)\ {0 h Osug = 0 in €.
o T ime 0= [ lusl? or some ugq (Q) \ {0} such dsuq in
From this and Proposition we conclude that  must be a disk (and also that ug must be
constant), as desired. O

At this point, we are ready to prove Theorems [2.4]and 2.5l Namely, we show the asymptotic
optimality of the disk, both for the first elgenvalue of the 0-Robin Laplacian and for the first
nonnegative eigenvalue of the quantum dot Dirac operator.

Proof of Theorem[2.5. Let Q C R? be a bounded domain with C? boundary, assume that 2
is not a disk, and let D C R? be a disk with the same area as Q. Then, Aq > Ap by [13]
Theorem 1.2]. This, together with Theorem (1), leads to

lim pg(a) =Aq > Ap = lim up(a).

a—+00 a—+00

Therefore, pg(a) > up(a) for all @ > 0 big enough, as desired.
Next, assume in addition that €2 is simply connected. Since € is not a disk, Proposition

yields
\/ |Q \/ |D

From this, it follows that /m( ) > pp(a) for all a > 0 small enough as desired. O

Proof of Theorem[2.. Let Q C R? be a bounded domain with C? boundary, assume that € is
not a disk, and let D C R? be a disk with the same area as Q. Then, as in the previous proof,
Aq > Ap, which together with Proposition leads to

lim+)\g(9) =VAg+m2>/Ap+m?2= lim Ap(h).

s
——3 6—)—5




QUANTUM DOT DIRAC OPERATORS AND 9-ROBIN LAPLACIANS IN SHAPE OPTIMIZATION 25

Therefore, there exists 6y € (=7, §) such that Aq(0) > Ap(0) for all § € (—7,6), as desired.
From now on, assume in addition that € is simply connected. Then, by Theorem [2.5] there

exists a; > 0 depending on € such that ug(a) > pp(a) for all @ € (0,a;). Now, combining
Proposition (3.8 with Theorem (i1), identifying y := Ap(0)? — m? we see that

lim o' (Ap(0)* —m?) = lim pg' (y) = 0.
0—IT~ y40

2

This means that there exists §; € (=3, %) (depending on ) such that "' (Ap(#)*—m?) € (0, a,)
forall @ € (6,,%). Combining the fact that ug(a) > pup(a) for alla € (0, a;) with Theorem (1)

—in view of (2.1)—, we conclude that Ag(6) > Ap(@) for all § € (61, F), as desired. O

5. EMBEDDING OF A HARDY SPACE INTO A BERGMAN SPACE

In this section we will establish Proposition 4.1} which was a crucial tool to establish our main
results in the previous section. We will begin the section recalling the quantitative version of a
theorem of Hardy and Littlewood, next we will give a result relating the norm in a Hardy space
with a certain boundary L?-norm, and we will conclude by giving the proof of Proposition .

In 1932, Hardy and Littlewood proved in [I8, Theorem 31] the inclusion of Hardy spaces into
Bergman spaces in the unit disk, but their proof did not give the sharp constant of the injection
map. Based on the ideas of Carleman in [I0] for his proof of the isoperimetric inequality using
complex analytic methods, in 2003 Vukoti¢ gave, in [29], a rather elementary proof of the
Hardy-Littlewood result which, moreover, yields the exact value of the norm of the injection
map from Hardy spaces into Bergman spaces, as well as the extremal functions. This result
will be the starting point of our developments in this section. In order to state it in detail, let
us first recall some terminology and basic facts on these spaces.

For D := {z € C: |z| < 1}, one says that f : D — C belongs to the Hardy space H”(D),
for p > 0, if f is holomorphic in D and

1 27 ) 1/
sup Mp(r, f) < 400, where M,(r, f) := <—/ | f(ret) P dgb) "
0<r<1 2m Jo
As observed by Hardy in 1915 (see [16, Theorem 1.5]), if p > 0 and f is holomorphic in D then
the map r +— M, (r, f) is nondecreasing, hence sup,., 4 M,(r, f) = lim,_,;- M,(r, f). Moreover,
if such limit is finite, it is known that f(ei?) exists for almost every ¢ € [0,27) and

2

lim |f(re®) — f(e)Pdp =0 as wellas lim f(re®) = f(e'?) for a.e. ¢; (5.1)

r—=17 Jo r—1-

see [16, Theorems 2.2 and 2.6]. Then, as described in [16, page 23 in Section 2.3 for p > 1 or,
more generally, page 35 in Section 3.2 for p > 0], one defines the norm

1

2 A /p
||f||Hp(D) = Tl_i)riﬂi M,(r, f) = <%/0 |f(e“¢’)|i’ dgzﬁ)l for f € HP(D). (5.2)

Finally, recall that the Bergman space A”(ID), for p > 0, is defined as the set of all functions
f holomorphic in D such that

1 1/p
Iflwei= (5 [ 167) " < oo,
T Jo
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After all these considerations, we are ready to state the quantitative version of the theorem
of Hardy and Littlewood given by Vukoti¢. We must mention that a more general version of
this result was previously shown by Burbea in [9][]

Theorem 5.1. ([29, Theorem in page 534]) For arbitrary p > 0, every function f in HP(D)
belongs to A% (D) and satisfies || f || aze) < || f|lmp ), with equality if and only if f has the form

f(z)zcl( !

1—cyz
for some ¢y, co € C with |co| < 1.

2/p
) forall z €D,

We will only use Theorem for p = 2. As can be seen from [29], this is a very simple case:
its proof essentially follows from Taylor series expansions, orthogonality (that is, Parseval’s
identity), and the Cauchy-Schwarz inequality applied to the coefficients. We also mention that
the general case p > 0 in Theorem follows from the case p = 2 by taking, for f € HP(D),
an analytic branch of fP/? after factoring out the zeroes of f through a Blaschke product.

Now, given a simply connected bounded domain 2 C R? with C? boundary, the first step of
our developments will be to bring Theorem for p = 2 to the context of functions u € FE(f2)
such that d;u = 0 in Q; recall for the definition of E(£2). This will be done using a
conformal mapping from D to 2. However, since the boundary trace of a function in E()
is defined in a Sobolev sense but the H?*(ID)-norm is defined in terms of the integral means
M, —recall —, as a preliminary step we find convenient to give a detailed proof of the
fact that any holomorphic function u € E({2) gives rise, through the conformal mapping, to a
function f € H*(D), whose norm || f||32(p) agrees with the norm ||u||12(aq). This is the purpose
of the next result.

Lemma 5.2. Let C_R2 be a simply connected bounded domain with C? boundary, and let
F:D — Q be a C'D) conformal map with F(D) = Q and F(OD) = 0. Then, for every
u € E(Q) such that O;u = 0 in Q, the function f := u(F)(0,F)Y? belongs to H*(D) and

V2T || fllaem) = llullz2a0)- (5.3)

Proof. First of all, let us mention that since Q C R? = C is a simply connected bounded
domain with C? boundary, by the Riemann mapping theorem [I, Theorem 1 in Section 6.1.1]
there always exists such a conformal map F € C'(D).

In order to prove that f := u(F)(9,F)Y? € H*(D), from [16, Corollary in page 169; Section
10.1], it suffices to show that u belongs to the (Smirnov) class of functions E?(Q2) defined in
[16, page 168; Section 10.1]. More precisely, it is enough to prove that u is holomorphic in
) (which holds by assumption) and that there exists a sequence of rectifiable Jordan curves
['1,T5,...1in €2, tending to the boundary in the sense that I',, eventually surrounds each compact
subdomain of €2, such that

sup [ |u* < +o0. (5.4)
n I'n

In order to prove this, let us first build the sequence I';,. Let v = (71,72) : R/|0QZ — 0Q C

R? be an arc-length parametrization of 92 with positive orientation. For every s € R/|0Q|Z,

it holds that 7(v(s)) = 7/(s), v(7(s)) = (%5(s), =1 (5)), and £ (v(v(s))) = K(v(s))¥ (s), where

"We thank J. Ortega-Cerda for pointing out this reference, as well as for helpful discussions regarding Hardy
and Bergman spaces.
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k(z) is the so-called signed curvature of 02 at the point z € 9. Given an integer n > 1, let
Yot R/|OQ|Z — 0 C R? be defined by

Yu(s) :=(s) — tv(y(s)) for s € R/|OQ|Z. (5.5)

Since €2 has a C? boundary, the curves T',, := 7,(R/|0Q|Z) are in Q for all n big enough, and
they tend to the boundary as n 1 +o0o in the sense described above. Moreover,

Y(s) = (1= Lk(v(s)))7(s) for s € R/|OQ|Z. (5.6)
Next we will show that (5.4)) holds for the sequence of curves {I', },,>n, if ng is large enough.
Since u € E(Q) is such that d;u = 0 in Q, by [14, Remark 2.6] (see also [3, Theorem 21}) it

holds that | .
u(z) = — [ M) e L[ O e (5.7)

21 QQC_Z 2 a0 C—
for all z € Q, where |d(| denotes integration with respect to arc-length —thus, the second

equality in (5.7) follows from the fact that d{ = iv({)|d{|— and, for f: 0Q — C, we denoted
, 1
TH:) = [ bz = QO] with k() =~
0 nz
Note that the operator T is as in [19, (3.2.2)] and k satisfies [19, (3.2.1)]. Therefore, [19,
Proposition 3.20] yields
IN(T (u))llz2(00) < Clluvlzzon) = Cllullz2on) (5.8)
for some C' > 0 depending only on Q. Here, and following [19, (2.1.6)], we denoted by N the
nontangential maximal operator defined, for w: 2 — C, by

Nw(() =sup{|w(z)|: z € Q, |¢ — 2| < 2dist(z,00)}.

With the estimate in hand, . 5.4]) follows easily, as we will see next. From (5.5 and ( .
we see that

09| 09|
/ uf? = / () P ()| ds = / u(3(3) — Lo ()P (L = Lulr(e) |17/ (5)] ds

Since Q2 has C? boundary, for all n large enough it holds that |Lx(v(s))| < 1 for all s. Moreover,
setting z(s) := y(s) — tv(y(s)), it is clear that, for all n large enough (uniformly in s thanks
to the C? regularity), 2(s) € Q and |y(s) — z(s)| = dist(2(s), dQ), and thus

|7(s) — z(s)| < 2dist(z(s),00) for all s.
This last observation together with ([5.7)) yields

|u(v(s) = v (v(5))) | = [u(z(s))] = [T (uv)(2(5))] < N(T (wv))(+(s)) for all s,

whenever n is large enough. Then, combining all these estimates with (/5.8]), we conclude that

09
: ul? < 2/0 (N (T () (7())) 17 ()] ds = 2| N (T (u) 2200y < Cllull?2(00)

for all n large enough, where C' > 0 depends only on 2. This proves (5.4) which, as we
mentioned, yields that f := u(F)(9,F)"? € H*(D).
It only remains to prove (5.3), that is, V27| f|l2m) = ||u|/2(00). From (5.1) and (5.2) we

know that
1 2 ) 1/2
e = (5 [ Jim 1£re) do)
T Jo

-
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Recall that f(re'?) = u(F(re'?))(0,F (re®))/2. On the one hand, since F' € C'(D), we have
that lim, ;- 0,F (re®®) = 9,F(e) for all ¢. On the other hand, from the comments in [I6,
page 45 in Section 3.5, F' preserves angles at almost every boundary point, which means that
F(re'®) approaches F(e'®) nontangentially as r — 1~ for a.e. ¢. Therefore, using and [19,
Theorem 3.32] we deduce that the limit

Uni(F(e)) := lim u(F(re)) = Tl_i)r{{ T (uv)(F(re'®)) exists for a.e. ¢. (5.9)

r—1-

Moreover, the fact that v € L?*(9) combined with and [I4, Lemma 2.7] shows that
u € HY2(Q). Then, since Au = 40.0;u = 0 in , and [7, Theorem 3.6 (ii)] give that
U (F(e?)) = u(F(e'?)) for a.e. ¢, where, by abuse of notation, we are denoting by u(F(e?)) the
Dirichlet trace of u —in the sense described below (2.2)— evaluated at the point F(¢?) € 9.
All in all, we have shown that

lim f(re’) = u(F(e?))(9,F(e)Y? for a.e. .

r—1-

Therefore, using that ¢ — ¢ := F(e'?) € 08 is a parametrization of 99 and that 0;F = 0 in D
—hence the change of variables ¢ +— ¢ leads to |0, F (e'?)| d¢ + |d¢|—, we conclude that

2w 2w
2 loey = [ Jim e do = [ TP )FI0F() do = lulfon,

which is ([5.3)). O

As a consequence of Theorem [5.1| for p = 2 and Lemma|5.2] we can finally establish the sharp
inequality of Proposition [4.1]

Proof of Proposition[{.1 Given u € E(Q) with d;u = 0 in Q, let F and f := u(F)(0.F)"? €

H?*(D) be as in Lemma . By Theorem for p =2, f € AYD) and || f||asmy < |flszm)-
Thus, by Lemma 5.2 we have

1
1 fllasy < N1 fllrem) = EH“HL?(@Q)- (5.10)

Now, since 0:F = 0 in D, by the change of variables formula in complex notation we have that

2 _ 2 _ 2 2 _ 1/22 _ 2
/Q ] / o / [u(F)P|0.F| / (F)(0.F) |0, F| / Pl F).

Therefore, using the Cauchy-Schwarz inequality, the definition of || - || 44y, (5.10), and the fact
that [0, F||72 ) = [, we get

lullZe) < 1Ly 10=F N2y = VAl Il w) 10:Fll 2oy
_ 119

1
m||u||L2(asz)||8zF||L2<D) 9V ||U||%2(an)a

IN

which proves (4.2)).

Moreover, from this chain of inequalities we see that the equality in holds if and only
if there is equality both in the Cauchy-Schwarz inequality and (5.10). If u does not vanish
identically, the first one yields |0, F| = ¢|f?| in D for some ¢ > 0 and, in view of Theorem [5.1]
the second one leads to o

f(z) = T for all z € D, (5.11)
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for some ¢, c; € C with ¢; # 0 and |cy| < 1. Note that the equality |0,F| = ¢|f?| means that
O.F = ce™ f2 in D for some h : D — R. Using (5.11]), this in turn implies that
_ 2
=) = 0-F(2) = (1= c22) 0,F(z) forall z€D.
cf(2) cct

Since the right-hand side is a holomorphic function in I but the left-hand side takes values in
0D (which has empty interior), the open mapping theorem for holomorphic functions forces h
to be a constant function. Therefore, we deduce that

0.F(z) = (10—?;@2 for all z € D and some ¢y, c3 € C with ¢3 # 0 and || < 1.  (5.12)
—C2
To conclude, we distinguish two cases. Assume first that ¢; = 0 in . Then, using that
0-F = 0, we deduce that F(z) = c3z + ¢4 for some c3,¢q4 € C with ¢3 # 0. This shows that
Q = F(D) is a disk. Moreover, since h is constant, we have 0.F = ¢ f? = du(F)*d,F with
¢ = cet" € C, which forces u(F)? and u to be constant functions in D and 2, respectively.
Assume now that ¢y # 0. Then ([5.12) gives

C3 C3 1
0,F(2) = 7——— =— @( >>
(2) (1—c22)? 1—cyz
which, using that 0;F = 0, means that
C4

F(z) = +c¢; forall zeD,
1—coz

for some ¢y, cy,c5 € C with ¢4 # 0 and |co| < 1. It is well known that such transformations
F carry disks onto disks or half-planes (see, for example, [I, Theorem 14 in Section 3.3]).
Since  is bounded, we conclude that = F(D) is a disk. Now, as before, the equalities
O0.F = f? = du(F)%*).F force u to be a constant function in 2.

In conclusion, we have seen that if u does not vanish identically and the equality in
holds then €2 is a disk and w is a constant function. Conversely, if (2 is a disk of radius r > 0
and v is constant in 2, we get

1 [ o 1 9]
ull72i) = [ul?|Q] = |ul*mr? = 5 7|U|227T7’ =3 |ul?10Q| = 3 [ull72 00,

™ v

as desired. O

6. QUANTUM DOTS WITH NEGATIVE MASS

This section is mainly devoted to the proof of Theorem [2.7] Namely, assuming that m < 0,
we will give a characterization of the smallest § € (—Z, ) for which |m| is an eigenvalue of Dy.

272
More precisely, we will show that

2
min {0 € (—Z,%): (2.7) has a nonzero solution} = 9~ (%),
Q
this is (2.8) in Theorem 2.7 As we see, this characterization turns out to be related with
the constant Sg, defined in (2.3). Then, the optimality of the disk among simply connected
domains will follow from Proposition [2.6] Finally, by unitary equivalence we can rewrite the

result for 6 € (5, 28) and m > 0 as stated in Corollary .
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Proof of Theorem[2.7]. Let us address the proof of (2.8). As a first step, we will show that

2
inf {6 € (—%,%) : (2.7) has a nonzero solution} > 9" (%) (6.1)
Q
Assume that, for a given 6 € (—%,75), we have a nonzero solution to the eigenvalue prob-

lem (2.7). Writing the equation Dyp = |m|p and the boundary condition of ¢ € Dom(Dy) in
terms of its components ¢ = (u,v)T we get

—id,v = |mlu in L*(Q),
D.u=0 in L2(9), (6.2)
v=1id(@)vu  in H/2(09).

If we multiply the first equation by u, integrate by parts, use that d;u = 0 in 2 by the second
equation, and apply the boundary condition from the third equation, we end up with

|m|/ |u12:—¢/azvu:¢/vazu—3/ ma:m/ 2. (6.3)
Q Q Q 2 o002 2 o2

Note that, since m < 0 and ¢ is assumed to be a nonzero solution, we must have [, [u|* > 0.
Otherwise, would imply that « = 0 in €, and then the first and third equation in (6.2))
would imply that 0,v = 0 in Q and v = 0 on 0f2 respectively, which would lead to v = 0 in Q2
and, thus, ¢ = 0 in €, reaching a contradiction. Therefore, from , the second equation
in , and the definition of S , we deduce that

2 2
9O = 2m A2l oy alel 2ml 1]
SQ m

Joo lul? weB(@\{0}: 0:0=0 in @ [ [W[?

From this, and using also that 97! is strictly decreasing in (0, +00), we arrive to (6.1)).

The next step will be to prove that the infimum on the left-hand side of (6.1)) is attained
and that the inequality is actually an equality, which is precisely what (2.8)) states. For this
purpose, set

2
6 = 0 (27l (6.4)
So
and recall from Proposition (7) that
2
Sq = IBM—UQL for some uq € H'(Q) \ {0} with d;uq =0 in Q, (6.5)
and that
/ UQW = SQ/ ugw for any w € E(Q)\ {0} with d;w =0 in . (6.6)
o0 Q

We will see that ug yields a nonzero solution to (6.2)) for 6 and a suitably chosen function vg.
Since ([6.2]) and (2.7 are equivalent formulations of the same problem, this means that we will
have a nonzero solution to (2.7)) for § = 6. Once this is shown, (2.8)) follows from (6.1)).

For g and uq as in (6.4) and (6.5), let vq be the unique solution in H'(Q) to the Dirichlet
problem

{AUQ =0 in Q, (6.7)

vg = iW(0q)vug  in HY2(0Q).
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Since dsuq = 0 in Q and vg = i9(0q)vug in HY?(09), to get we only need to show that
—i0,vq = |mlug in L*(%). (6.8)
In order to prove this, recall that the Bergman space
A2 Q) = {f € L*(Q): 0:f =0in Q}

is a closed subspace of L*() (see [L1, Proposition 1.13]) and, thus, the orthogonal projections
P:L*Q) — A%(Q) € L*(Q) and P, :=1d — P : L*(Q) — L*(Q) are well-defined bounded
self-adjoint operators in L*(Q). In particular, given h € C>°(Q) C E(Q), by [14, Lemma 2.10]
we have that h = Ph + P, h and

9:(Ph) = 0 in Q with Ph € L*(99), / WPh =0 forallwe A2Q).  (6.9)
Q

With these ingredients in hand, the proof of follows easily. Indeed, by integration by
parts, we see that

/( i0,v0)h :—Z/aUQPh—Z/aUQPJ_
Q
:z/ 00=(Ph) — /VUQPh—Z\/\a'UQPL
Q 2 o0

The first term in the right-hand side of vanishes by the first equality in , while the
last term in the right-hand side of vanishes by the last equality in and the fact that
D.vq € A%(Q), since vg € HY(Q) and 9:(0,vq) = iA'UQ = 0in Q by (6.7). Therefore, applying
this, the boundary condition of , , the definition of fq in (6.4), and the last equality

in to (6.10)) leads to
0 2 Joa 2 T,

= \m]/uQP_h: ]m\/’zm(Ph%—Plh):/(\mlug)ﬁ.
0 Q Q

Since this holds for all h € C(Q), follows by a density argument, and the proof of ([2.8))
is complete.

The proof of (2.9) follows easily from ([2.8)), (6.5)), Proposition , and the fact that 97! is a
strictly decreasing function. O

(6.10)

As mentioned in the introduction, using the unitary equivalence between the operators Dy(m)
and —D,_s(—m) (see Appendix [A.2)), Theorem leads to a shape optimization result for
Dy(m) when m > 0 and 6 € (Z,37).

27 2

Proof of Corollary[2.8 Assume that ¢ is a nonzero solution to (2.10]), that is, to

¢ € Dom(Dy(m)),
Do(m)p = —my  in L*(Q)%

Then, setting ¢ := o3¢ —recall that ¢ € Dom (D ) by (A.2) -— from (A.3]) we see that
Dr_o(—m)tp = —a3Dy(m)osh = —Ung(m)go = maosp = my = |m|y.
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Thus, we get a nonzero solution to the eigenvalue problem

{w € Dom(Dy-(—m)), | (6.11)
Dy« (—m)y = |m|y in L2(Q)2

with 0* := 7 — 0 € (=75, %). That a nonzero solution to ) leads to a nonzero solution to
follows analogously. With these observations in hand the proof of the theorem follows
directly from Theorem applied to the eigenvalue problem , taking into account the
relation § = m — 6*. O

APPENDIX A.

A.1. Notation. In this section we recall some basic notation used within the paper. Through-
out the work, Q denotes a bounded domain in R? with C? boundary. Regarding integration, we
consider the natural measures depending on the situation: the Lebesgue measure on €2 and the
surface (arc-length) measure on 02. However, the reader should be aware that in Section [4| we
also make use of the line integral on 2 in the complex sense. For the sake of simplicity, when
computing integrals, we omit the measure of integration if it is clear from the context.

We denote by L?(Q) the Hilbert space of functions u : @ — C endowed with the scalar
product and the associated norm

(u, ) r2(0) ::/uﬁ and |[ullr2) == 1/ (U, w) 12(0),
Q

respectively. We denote by H'(€) the Sobolev space of functions in L?(2) with first weak
partial derivatives in L*(9).

Similarly, L?(9€) denotes the Hilbert space of functions u : 9Q — C endowed with the scalar
product and the associated norm

(u, v) 12(00) ::/ uv  and ||ul|r2e0) = 4/ (U, u) 250),
G

respectively. We denote by H'/2(9Q) the fractional Sobolev space of functions v € L?(9€2) such

that |
follary = ([t [ Py aal) " < oo
09 Joq 3/|

Here, |dz| and |dy| denote integration with respect to arc—lengthﬁ on OS).
The continuous dual of H'/2(9Q) is denoted by H~1/2(9). The action of u € H~/2(92) on
v € H'Y2(09) is denoted by (u, V) g-1/2(90),H1/2(90), and the norm in H=Y2(0Q) is

HUHH*U?(BQ) = sup (u, U>H*1/2(8Q),H1/2(8Q)'
H“HHl/Q(aQ)Sl
Recall that
<U7U>H*1/2(OQ),H1/2(8Q) = (v, U>L2(aﬂ) (A1)

whenever u € L?(0Q) ¢ H™/2(9Q) and v € H'/2(0Q) C L?*(99); see for example [8, Remark 3
in Section 5.2]. The reason why the functions u and v do not appear in the same order in both
sides of (A.1] - is that we defined (-, -)2(sn) to be linear with respect to the first entry.

8We use the same notation as in [16] in order to distinguish the integration with respect to arc-length (denoted
by |dz| for z € 9§2) and the line integral in complex variables (denoted by dz for z € 9Q and used in Section .
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Finally, we denote X2 := X x X for X any of the spaces defined above, with the natural
scalar products and norms.

A.2. Invariances of the Dirac operator. Here we give a detailed explanation of the unitary
equivalences that we have used in this work. For this, recall that Dy(m) is defined by

Dom(Dy(m)) := {p € H'(Q)?: ¢ = (cosfo - T +sinbo3)p in H1/2(3Q)2},
Dy(m)p := (—io - V + mo3)e for all ¢ € Dom(Dy(m)).
e Charge conjugation. Assume that ¢ € Dom (Dg(m)) and consider the charge conjugation
w = O'1¢ S H1<Q)2

From the boundary condition that ¢ satisfies (and the fact that o105 = 0901), we see that

=019 =01(cosbo -7+ sinbosz)p = o1(cosl o171 + cos 0 aa1 + sinf o3)p

= (cosf o111 + cosO ooy — sinf o3)o1p = (cos(—0) o - T + sin(—0) o3)1,
which shows that ¢ € Dom (D,g(m)). In addition, since o3 = —09,

D_g(m)w = (—z’alal — iO’Qag + m03)01¢ = 01(—i0101 + 2'0282 — mo;;)@

= 01(2'01(91 - 20_282 — mO':;)QO = 01(2'0181 + 7:0'2(92 - mag)go

= —0y(—io -V +mo3)p = —o1Dy(m)e.

Since these arguments are reversible, we deduce that ¢ is an eigenfunction of Dy(m) with
eigenvalue A € R if and only if ¢ is an eigenfunction of D_g(m) with eigenvalue —\.

Note that this invariance is precisely illustrated by the odd symmetry with respect to 0 and
7 in Figure [ and Figure

e Chiral transformation. Assume that ¢ € Dom(Dy(m)) and consider

V= o3p € H'(Q)2

From the boundary condition that ¢ satisfies (and the fact that 30 = —003), we see that
= o03p=o03(cosfo-T+sinbo3)p = (—cosfo-7+sinfo3)o3p (A2)
= (—cosfo-7+sinfo3) = (cos(m —0)o -7+ sin(m — 0) 03)1.
In addition, we have
o3(—io -V +mo3)o3 = —(—io - V — mos).
These two simple facts show that
03Dg(m)o3 = —D,_g(—m) for all §;m € R, (A.3)

which means that Dg(m) is unitarily equivalent to —D,_4(—m) —this unitary equivalence
was already considered in [20, Lemma 3.2]. Therefore, the spectral study of Dy(m) for 6 €
(—Z,25)\ {Z} reduces to the one of Dy(m) and Dy(—m) for § € (—Z, %), since -2 <7 —0 <
whenever 7 < 0 < 37” In particular, ¢ is an eigenfunction of Dy(m) with eigenvalue A € R if
and only if ¢ is an eigenfunction of D,_y(m) with eigenvalue —\.

Note that this invariance is precisely illustrated by comparing Figure (1| and Figure
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