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Abstract. This work addresses Faber-Krahn-type inequalities for quantum dot Dirac opera-
tors with nonnegative mass on bounded domains in R2. We show that this family of inequalities
is equivalent to a family of Faber-Krahn-type inequalities for ∂-Robin Laplacians. Thanks to
this, we prove them in the case of simply connected domains for quantum dot boundary con-
ditions asymptotically close to zigzag boundary conditions. Finally, we also study the case of
negative mass.
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1. Introduction

Dirac operators with different kind of boundary conditions —such as infinite mass, zigzag,
or armchair boundary conditions— are commonly used in the physics literature to model both
the confinement of (quasi-)particles in planar regions and electrons conducting electricity in
graphene quantum dots and nano-ribbons [2, 24, 30]. Two-dimensional Dirac operators with
these type of boundary conditions have been studied from a mathematical perspective; see for
example [3, 5, 6, 27]. Similarly, three-dimensional Dirac operators with analogous boundary
conditions have also been investigated; see, for instance, [4, 15, 20, 26].

In this context, Faber-Krahn-type inequalities are conjectured for the first nonnegative eigen-
value, both in dimension two [23, Problem 5.1] and dimension three [4, Conjecture 1.8]. In the
present work, we consider the two-dimensional setting, and we show that such Faber-Krahn-
type inequalities for quantum dot Dirac operators with nonnegative mass are equivalent to
corresponding inequalities for the ∂-Robin Laplacians studied in [14]. As a consequence, we
prove that among bounded simply connected domains with the same area, disks are the unique
minimizers (in an asymptotic sense made precise below) of the first nonnegative eigenvalue of
quantum dot Dirac operators with boundary conditions sufficiently close to the zigzag case.
Our approach to prove this result also allows us to address a shape optimization problem for
quantum dot Dirac operators with negative mass.

1.1. Quantum dot Dirac operators. To set the stage, throughout the present work Ω ⊂ R2

will be a bounded domain with C2 boundary. We denote by ν = (ν1, ν2) the unit normal
vector field at ∂Ω which points outwards of Ω. We set τ = (τ1, τ2) := (−ν2, ν1); in this way,
τ is the unit vector field tangent to ∂Ω such that {ν, τ} is positively oriented. Based on the
identification R2 ≡ C, in the sequel it will be convenient to abuse notation as follows:

R2 3 ν = (ν1, ν2) ≡ ν1 + iν2 = ν ∈ C

and, accordingly, we will write ν = ν1 − iν2; to which notation we are referring to will always
be clear from the context. Moreover, we will use the complex notation ∂z := 1

2
(∂1 − i∂2) and

∂z̄ := 1
2
(∂1 + i∂2), where ∇ := (∂1, ∂2) denotes the gradient in R2.

Let −iσ · ∇+mσ3 denote the differential expression of the free Dirac operator in R2. Here,
m ∈ R typically denotes the mass, σ := (σ1, σ2), and

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
are the Pauli matrices —as customary, we denote σ · p := σ1p1 + σ2p2 for p = (p1, p2).

Motivated by their applications in the description of graphene quantum dots and nano-
ribbons, the following family of quantum dot Dirac operators was studied in [5, 6] (for the
case m = 0). Given θ ∈ (−π

2
, 3π

2
) \ {π

2
}, let Dθ be the operator in L2(Ω)2 defined1 by

Dom(Dθ) :=
{
ϕ ∈ H1(Ω)2 : ϕ = (cos θ σ · τ + sin θ σ3)ϕ in H1/2(∂Ω)2

}
,

Dθϕ := (−iσ · ∇+mσ3)ϕ for all ϕ ∈ Dom(Dθ).
(1.1)

The infinite mass boundary conditions correspond to θ ∈ {0, π}. The values θ ∈ {−π
2
, π

2
}

excluded in the previous definition give rise to the so-called zigzag boundary conditions, which

1In Appendix A.1 we recall some basic definitions and standard notation to be used throughout the paper.
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in (1.1) formally lead to either ϕ = −σ3ϕ or ϕ = σ3ϕ on ∂Ω (forcing one of the components
of ϕ to vanish at ∂Ω). The self-adjoint realization of these operators is

Dom(D−π
2
) :=

{
ϕ = (u, v)ᵀ : u ∈ H1

0 (Ω), v ∈ L2(Ω), σ · ∇ϕ ∈ L2(Ω)2
}
,

D−π
2
ϕ := (−iσ · ∇+mσ3)ϕ for all ϕ ∈ Dom(D−π

2
),

and

Dom(Dπ
2
) :=

{
ϕ = (u, v)ᵀ : u ∈ L2(Ω), v ∈ H1

0 (Ω), σ · ∇ϕ ∈ L2(Ω)2
}
,

Dπ
2
ϕ := (−iσ · ∇+mσ3)ϕ for all ϕ ∈ Dom(Dπ

2
).

Note that in these cases ϕ need not be in H1(Ω)2.
For the case in which m = 0 and θ ∈ (−π

2
, 3π

2
) \ {π

2
}, in [5] it is proven that Dθ is self-adjoint

in L2(Ω)2, and that its spectrum2 consist of eigenvalues of finite multiplicity accumulating only
at ±∞. Still in the case m = 0, in [27] it is proven that D−π

2
is self-adjoint in L2(Ω)2, and that 0

is an eigenvalue of infinite multiplicity; by unitary equivalence, the same holds true for Dπ
2

with
m = 0. Analogous conclusions hold for the general case when m ∈ R: since the Pauli matrix σ3

is self-adjoint, by the Kato-Rellich theorem [21, Theorem 4.3 in Section 5.4.1] the operator Dθ
is self-adjoint in L2(Ω)2 for every θ ∈ [−π

2
, 3π

2
). It has purely discrete spectrum when θ 6= ±π

2
,

and ±m is an eigenvalue of D±π
2

of infinite multiplicity. Furthermore, as a consequence of [27,
Proposition 3], it holds that

σ(D±π
2
) = {±m} ∪

{
±
√

Λ +m2 : Λ ∈ σ(−∆D)
}
, (1.2)

where −∆D denotes the self-adjoint realization of the (positive) Dirichlet Laplacian in L2(Ω).
Before proceeding further, let us make some considerations based on unitary equivalences

to delimit a bit the spectral study of Dθ. First, since the boundary condition in (1.1) is 2π-
periodic in θ, it is enough to consider θ ∈ [−π

2
, 3π

2
) to cover the whole range of parameters

θ ∈ R. Furthermore, even if due to physical considerations one usually assumes m ≥ 0, by
the chiral transformation described in Appendix A.2 it is enough to study the operator Dθ for
θ ∈ [−π

2
, π

2
], but now considering both the cases m ≥ 0 and m < 0 (as we will see, these two

cases give rise to qualitatively different situations). Finally, by charge conjugation (see again
Appendix A.2) it suffices to study the nonnegative part of the spectrum of Dθ.

Taking into account these considerations, for m ∈ R and θ ∈ [−π
2
, π

2
], we shall denote the

first (smallest) nonnegative eigenvalue of Dθ by λΩ(θ), that is,

λΩ(θ) := min
(
σ(Dθ) ∩ [0,+∞)

)
. (1.3)

Note that we use the subscript to highlight the dependence on Ω. Likewise, in the sequel we
will denote the first (smallest) eigenvalue of the Dirichlet Laplacian −∆D by ΛΩ, that is,

ΛΩ := minσ(−∆D).

1.2. The shape optimization problem. A usual problem in spectral geometry is to opti-
mize certain spectral quantities (such as eigenvalues) among all bounded domains satisfying a
geometric constraint. In the context of generalized MIT bag models in R3, in [4, Conjecture 1.8]
it is conjectured that, among all bounded C2 domains with prescribed volume, the first nonneg-
ative eigenvalue of the underlying operator is minimal for a ball. In view of the correspondence

2In the sequel, we will denote by σ(T ) the spectrum of a given operator T . This notation should not be
confused with the vector of Pauli matrices σ = (σ1, σ2).
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described in [15, Section 1.3] between three-dimensional and two-dimensional settings, in the
context of quantum dot Dirac operators in R2 this conjecture reads as follows.

Conjecture 1.1. Assume that m ≥ 0. Let Ω ⊂ R2 be a bounded domain with C2 boundary
and let D ⊂ R2 be a disk with the same area as Ω. If Ω is not a disk, then λΩ(θ) > λD(θ) for
all θ ∈ (−π

2
, π

2
).

The important case m = θ = 0 in Conjecture 1.1 is known as the Faber-Krahn inequality for
the Dirac operator with infinite mass boundary condition. It is considered a hot open problem
in spectral geometry; see [23, Problem 5.1]. An important contribution towards its possible
resolution can be found in [3, Theorem 4], in which a variational characterization of λΩ(0) is
given —see Remark 3.5 for a comparison with our results. Using this characterization, in [3,
Section 8] some numeric simulations are done and the results strongly support the validity of
Conjecture 1.1, at least for case m = θ = 0.

Remark 1.2. As the reader may have noticed, Conjecture 1.1 is only posed for θ ∈ (−π
2
, π

2
)

and for m ≥ 0. This a priori comes from the range of parameters studied in [4] taking into
account the correspondence of [15, Section 1.3] mentioned before, but let us comment on why
θ ∈ (−π

2
, π

2
) and m ≥ 0 is the natural range of parameters in which Conjecture 1.1 makes sense.

First, note that for m ≥ 0 the zigzag cases θ = ±π
2

are excluded in the statement of
Conjecture 1.1 for obvious reasons. On the one hand, if θ = π

2
, by (1.2) we have λΩ(π

2
) = m

independently of the shape of Ω ⊂ R2 —the same conclusion holds true if θ = −π
2

and m = 0.

On the other hand, if θ = −π
2

and m > 0, by (1.2) we have λΩ(−π
2
) =
√

ΛΩ +m2, which is
minimal for a disk among all bounded C2 domains with prescribed area, by the Faber-Krahn
inequality [17, 22].

The reason to exclude the range (π
2
, 3π

2
) for m ≥ 0 (or, equivalently, to exclude the case m < 0

for θ ∈ (−π
2
, π

2
); see Appendix A.2 and also compare Figure 1 with Figure 4) is the following:

while for θ ∈ (−π
2
, π

2
) and m ≥ 0 the eigenvalues are always outside the interval [−m,m] (see3

Lemma 3.1), this is no longer true for θ ∈ (π
2
, 3π

2
) and m ≥ 0. In fact, for θ ∈ (π

2
, 3π

2
) it may

make no sense to optimize λΩ(θ).
To visualize this better, let us show a description of the spectrum of Dθ when Ω is a disk. In

this case, one can explicitly compute the eigenfunctions of Dθ and obtain implicit equations for
the eigenvalues,4 which can be represented graphically as functions of θ, as done in Figure 1.

We should mention that in the previous picture we only plotted some eigenvalues, but actually
there are infinitely many eigenvalue curves converging to m as θ ↑ π

2
, accounting for the infinite

multiplicity of m as eigenvalue of Dπ
2
. Each of these curves —always above the plotted ones

in the range (−π
2
, π

2
)— can be continued smoothly in (π

2
, 3π

2
), as the ones in Figure 1. As

a consequence, if we extend the definition of λΩ(θ) in (1.3) to (−π
2
, 3π

2
), the function θ 7→

λΩ(θ), which in (−π
2
, π

2
) is continuous and decreasing, in (π

2
, 3π

2
) has infinitely many jump

discontinuities accumulating at π
2
. This indicates that λΩ(θ) is not the right quantity to optimize

in (π
2
, 3π

2
) for m ≥ 0.

3Lemma 3.1 states that any nonnegative eigenvalue must be strictly bigger than m. Then, the result for
negative eigenvalues follows from charge conjugation; see Appendix A.2.

4This can be done following [25, Appendix A], or also using [14, Appendix A] taking into account the
connection between quantum dot Dirac operators and ∂-Robin Laplacians described in Section 3.1.
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Figure 1. Eigenvalue curves of the quantum dot Dirac operators Dθ for the
disk DR of radius R = 2 and with m = 1. We have included two solid horizontal
black lines to highlight the location of ±m. The dashed vertical lines at θ = 0
and θ = π/2 help to locate, respectively, the infinite mass and zigzag cases. The
horizontal dashed lines represent the values ±

√
ΛDR +m2.

Let us advance that in Section 2.3 we will study the optimization of another spectral quantity
in (π

2
, 3π

2
) for m ≥ 0, which roughly speaking will be the crossing point with the level set −m

of the natural continuation of θ 7→ λΩ(θ) from (−π
2
, π

2
) to (π

2
, 3π

2
).

Our main motivation for this work is to address Conjecture 1.1 through a connection with
another family of operators. As we will see in more detail in Section 3, for m ≥ 0, the
nonnegative eigenvalues of the family {Dθ}θ∈(−π

2
,π
2

) are related to the eigenvalues of the family

{Ra}a>0, where Ra is the operator in L2(Ω) defined by

Dom(Ra) :=
{
u ∈ H1(Ω) : ∂z̄u ∈ H1(Ω), 2ν̄∂z̄u+ au = 0 in H1/2(∂Ω)

}
,

Rau := −∆u for all u ∈ Dom(Ra).
(1.4)

This operator is studied in the recent paper [14], where it is called the ∂-Robin Laplacian
because of its similarity with the standard Robin Laplacian.5 In particular, in [14, Theorem 1.1]
it is shown that Ra is self-adjoint in L2(Ω) for every a > 0, and that its spectrum is purely
discrete and strictly positive [14, Theorem 1.2]. In Figure 2 we graphically represent the
eigenvalues of Ra in terms of the boundary parameter a. As before, to highlight the dependence
on Ω, for a > 0 we shall denote the first (smallest) eigenvalue of Ra by µΩ(a), that is,

µΩ(a) := min
(
σ(Ra)

)
.

5The sesquilinear associated to the Robin Laplacian is based on the decomposition ∆ = div∇ and integration
by parts. Instead, the one for the ∂-Robin Laplacian comes from the decomposition ∆ = 4∂z∂z̄; see Remark 3.4
for more details.
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Figure 2. Eigenvalue curves of the ∂-Robin Laplacians Ra for the disk DR of
radius R = 2. The horizontal dashed line represents the value ΛDR .

The relation between the nonnegative spectrum of {Dθ}θ∈(−π
2
,π
2

) and the spectrum of {Ra}a>0

mentioned above —and, in particular, between λΩ and µΩ—, naturally leads to the following
open problem based on Conjecture 1.1.

Conjecture 1.3. ([14, Conjecture 1.10]) Let Ω ⊂ R2 be a bounded domain with C2 boundary
and let D ⊂ R2 be a disk with the same area as Ω. If Ω is not a disk, then µΩ(a) > µD(a) for
all a > 0.

The main purpose of the present work is to show that Conjecture 1.1 and Conjecture 1.3
are equivalent, and to prove that they hold true in the asymptotic regimes of the parameters θ
and a. The precise statements of these results are presented in the next section.

2. Main results

2.1. Equivalence of conjectures. Our first main result is Theorem 2.1 below. It asserts
that Conjecture 1.1 for quantum dot Dirac operators holds true for a given Ω and a given
θ ∈ (−π

2
, π

2
), provided that Conjecture 1.3 for ∂-Robin Laplacians holds true for the same

domain Ω and for some specific choice of a > 0 depending on Ω and θ. Conversely, it also
asserts that Conjecture 1.3 holds true for a given Ω and a given a > 0, if Conjecture 1.1 holds
true for the same domain Ω and for some specific choice of θ ∈ (−π

2
, π

2
) depending on Ω and a.

To properly state the theorem, we shall need the following qualitative properties of µΩ, the
first eigenvalue of Ra seen as a function of a; they are proven throughout [14] and the precise
statements will be given in Theorem 3.3 (ii). The function a 7→ µΩ(a) is continuous, strictly
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increasing, and bijective from (0,+∞) to (0,ΛΩ). In particular, the inverse function µ−1
Ω is

well-defined, continuous, strictly increasing, and bijective from (0,ΛΩ) to (0,+∞). From these
properties, we will deduce in Proposition 3.8 that the function θ 7→ λΩ(θ) is continuous, strictly
decreasing, and bijective from (−π

2
, π

2
) to (m,

√
ΛΩ +m2). In particular, the inverse function λ−1

Ω

is well-defined, continuous, strictly decreasing, and bijective from (m,
√

ΛΩ +m2) to (−π
2
, π

2
).

One can visualize these properties in Figure 3.

Figure 3. Plot of a 7→ µΩ(a) (left) and θ 7→ λΩ(θ) (right), where Ω is a disk
DR of radius R = 2, and with m = 1 (represented as a solid black horizontal line
in the right picture). The horizontal dashed lines represent ΛDR in the left and√

ΛDR +m2 in the right.

Theorem 2.1. Assume that m ≥ 0. Let Ω ⊂ R2 be a bounded domain with C2 boundary and
let D ⊂ R2 be a disk with the same area as Ω. The following hold:

(i) Given θ ∈ (−π
2
, π

2
), set

a := µ−1
Ω (λD(θ)2 −m2) > 0. (2.1)

If µΩ(a) > µD(a) then λΩ(θ) > λD(θ).
(ii) Given a > 0, set

θ := λ−1
Ω

(√
µD(a) +m2

)
∈ (−π

2
, π

2
).

If λΩ(θ) > λD(θ) then µΩ(a) > µD(a).

With this theorem in hand, we will be able to prove the following result. Both its proof and
that of Theorem 2.1 are given in Section 3.

Corollary 2.2. Conjectures 1.1 and 1.3 are equivalent.

We think these results may help to tackle the Faber-Krahn inequality for the Dirac operator
with infinite mass boundary condition (recall that it corresponds to m = θ = 0 in Conjec-
ture 1.1). In view of Corollary 2.2, the strategy of establishing such inequality by proving
Conjecture 1.3 for the operators Ra has some advantages. First, it reduces to a single PDE —
see (3.4)— while for Dθ we have a system of two equations —see (3.2). Moreover, the spectrum
of Ra is positive and well characterized as min-max levels of a certain Rayleigh quotient which
is linear in the parameter a —see Theorem 3.3 and [14, Theorem 1.2]—, while, so far, the only
known variational characterization of λΩ(θ) is given in [3, Theorem 4], for θ = m = 0, as the
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zero of a Rayleigh quotient quadratic in the parameter —see Remark 3.5 below for more details.
Actually, as we will explain in the following section, we will prove the validity of Conjecture 1.3
for the operators Ra in a certain asymptotic sense, and then use Theorem 2.1 to transfer this
information to Dθ.

Note that a disadvantage of our approach is the following: if one wants to prove Conjecture 1.1
for a given θ ∈ (−π

2
, π

2
) —for example θ = 0—, a priori one needs to know that Conjecture 1.3

holds true for all a > 0, since the change of variables θ 7→ a in (2.1) depends on Ω itself.
Nevertheless, in contrast with what happens for Dθ (for which the value θ = 0 is somehow
special since, for example, the spectrum is symmetric with respect to 0), it does not seem that
the problem for Ra has a distinguished value of a, and this suggests that the parameter a could
not have a relevant role in a hypothetical proof of Conjecture 1.3 —as happens with the Robin
Laplacian, for which the same argument works for all values of the parameter; see [12].

Remark 2.3. Note that Theorem 2.1 shows that the value of m ≥ 0 should not play an important
role. Indeed, assume that Conjecture 1.1 is true for a given value of m. Then, Theorem 2.1 (ii)
would lead the validity of Conjecture 1.3, but now we could use Theorem 2.1 (i) with a different
value of m to deduce Conjecture 1.1 also for this other value of m. This entails, in particular,
that it is enough to prove Conjecture 1.1 for m = 0 to get it for all m ≥ 0.

2.2. Asymptotic regimes. Our second main contribution of this work is to show that Con-
jectures 1.1 and 1.3 hold true in their asymptotic regimes θ ↓ −π

2
and a ↑ +∞, respectively,

as well as in the regimes θ ↑ π
2

and a ↓ 0 under the additional assumption that Ω is simply
connected. The following two theorems, whose proofs are given in Section 4, contain the precise
results in this regard.

Theorem 2.4. Assume that m ≥ 0. Let Ω ⊂ R2 be a bounded domain with C2 boundary
and let D ⊂ R2 be a disk with the same area as Ω. If Ω is not a disk, then there exists
θ0 ∈ (−π

2
, π

2
) depending on Ω such that λΩ(θ) > λD(θ) for all θ ∈ (−π

2
, θ0). If in addition Ω is

simply connected, then there exists θ1 ∈ (−π
2
, π

2
) depending on Ω such that λΩ(θ) > λD(θ) for

all θ ∈ (θ1,
π
2
).

Theorem 2.5. Let Ω ⊂ R2 be a bounded domain with C2 boundary and let D ⊂ R2 be a disk
with the same area as Ω. If Ω is not a disk, then there exists a0 > 0 depending on Ω such that
µΩ(a) > µD(a) for all a ∈ (a0,+∞). If in addition Ω is simply connected, then there exists
a1 > 0 depending on Ω such that µΩ(a) > µD(a) for all a ∈ (0, a1).

The cases θ ↓ −π
2

and a ↑ +∞ described in Theorems 2.4 and 2.5 will easily follow from the
Faber-Krahn inequality for the Dirichlet Laplacian, since

lim
θ↓−π

2

λΩ(θ) =
√

ΛΩ +m2 and lim
a↑+∞

µΩ(a) = ΛΩ;

see Proposition 3.8 and Theorem 3.3 (ii), respectively. We mention that, in view of the corre-
spondence described in [15, Section 1.3], the analogous result for θ ↓ −π

2
in the three-dimensional

setting is established in [4, Corollary 1.6]. Moreover, the result for a ↑ +∞ is already pointed
out at the end of [14, Section 1.4].

However, the proof for the other asymptotic regimes of θ and a in Theorems 2.4 and 2.5 will
be more involved, and should be considered the main contribution of this section. The difficulty
comes from the fact that

lim
θ↑π

2

λΩ(θ) = m and lim
a↓0

µΩ(a) = 0
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independently of the shape of Ω; see again Proposition 3.8 and Theorem 3.3 (ii), respectively.
Regarding the case a ↓ 0, our approach to prove the last statement in Theorem 2.5 will be to
analyze the slope of the function µΩ when departing from the origin. Since lima↓0 µΩ(a) = 0,
this slope is given by lima↓0 µΩ(a)/a. In Proposition 2.6 below, we show that this slope is related
to the best constant in the embedding of a Hardy space into a Bergman space of holomorphic
functions in Ω —see (2.3) and (2.5) below. This fact, once combined through a conformal
mapping with a well-known inequality for holomorphic functions in the unit disk, will lead to
a key estimate of the slope —see (2.6)— from which the case a ↓ 0 will be deduced. Then, the
case θ ↑ π

2
will be a consequence of the case a ↓ 0 and Theorem 2.1 (i). Let us finally emphasize

that, again in view of the correspondence described in [15, Section 1.3], the last statement in
Theorem 2.4 gives a positive answer to the problem stated at the end of the paragraph below
[4, Theorem 1.7] for simply connected domains in the two-dimensional setting.

Before stating Proposition 2.6, we need to introduce some notation. Firstly, set

E(Ω) := {u ∈ L2(Ω) : ∂z̄u ∈ L2(Ω) and u ∈ L2(∂Ω)}. (2.2)

Recall from [3, Lemma 15] that if u and ∂z̄u belong to L2(Ω) then the trace of u belongs to
H−1/2(∂Ω) —analogous results were shown previously in [5, Lemma 2.3] and in [26, Propo-
sition 2.1] in the two and three-dimensional settings, respectively. The Hilbert space E(Ω)
defined in (2.2) is precisely made by those functions u ∈ L2(Ω) such that ∂z̄u ∈ L2(Ω) and
whose traces actually belong to the smaller space L2(∂Ω); see [14, Section 3.1] for a detailed
study.

Secondly, the above-mentioned embedding of a Hardy space into a Bergman space of holo-
morphic functions in Ω refers to the quantity

SΩ := inf
u∈E(Ω)\{0}: ∂z̄u=0 in Ω

´
∂Ω
|u|2´

Ω
|u|2

. (2.3)

With the definitions of E(Ω) and SΩ in hand, we are ready to state the key result, proven in
Section 4, that we will use to show the last statement in Theorem 2.5.

Proposition 2.6. Let Ω ⊂ R2 be a bounded domain with C2 boundary. Then,

(i) the infimum in (2.3) is attained. Actually, there exists a nonzero uΩ ∈ H1(Ω) ⊂ E(Ω)
with ∂z̄uΩ = 0 in Ω and such that

SΩ =

´
∂Ω
|uΩ|2´

Ω
|uΩ|2

.

In addition, any minimizer u of (2.3) satisfies

SΩ

ˆ
Ω

u v =

ˆ
∂Ω

u v for all v ∈ E(Ω) with ∂z̄v = 0 in Ω. (2.4)

(ii) Furthermore, it holds that

lim
a↓0

µΩ(a)

a
= SΩ. (2.5)

As a consequence of (i) and (ii), if in addition Ω is simply connected, then

lim
a↓0

µΩ(a)

a
= SΩ ≥ 2

√
π

|Ω|
(2.6)

and the equality holds if and only if Ω is a disk.
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Proposition 2.6 (i) is already proven in [14, Proposition 2.14] using the Riesz-Fréchet theorem
and the spectral theorem. However, in [14] it is not shown that there exists a minimizer
belonging to H1(Ω). This regularity result will follow from an alternative proof of (i) that we
shall provide, which is based on (ii) exploiting the regularity of the eigenfunctions of Ra of
eigenvalue µΩ(a).

2.3. Quantum dots with negative mass. Recall that, up to now, we have restricted our-
selves to the range θ ∈ (−π

2
, π

2
) for m ≥ 0. Now we would like to study the range θ ∈ (π

2
, 3π

2
)

for m ≥ 0 which, in view of Appendix A.2, is equivalent to study the range θ ∈ (−π
2
, π

2
) for

m < 0. In order to highlight the dependence on m ∈ R of the operator defined in (1.1), within
this section let us denote Dθ by Dθ(m). Namely,

Dom
(
Dθ(m)

)
:=
{
ϕ ∈ H1(Ω)2 : ϕ = (cos θ σ · τ + sin θ σ3)ϕ in H1/2(∂Ω)2

}
,

Dθ(m)ϕ := (−iσ · ∇+mσ3)ϕ for all ϕ ∈ Dom
(
Dθ(m)

)
.

To motivate the shape optimization problem considered in this section, let us first take a look
at the situation when m < 0 and Ω is a disk of radius R, denoted by DR. In this case, one can
perform the same analysis as for m ≥ 0 (see Remark 1.2), explicitly finding the eigenfunctions
of the operator and deriving the implicit eigenvalue equations. If one plots the eigenvalues of
Dθ(m) as functions of θ, the result is the one contained in Figure 4.

Note that, by comparing this with Figure 1, one can see the unitary equivalence of Dθ(m)
and −Dπ−θ(−m), and that λ ∈ R is an eigenvalue of Dθ(m) if and only if −λ is an eigenvalue
of Dπ−θ(m); this is proved in detail in Appendix A.2.

Let us return for a moment to Figure 1 with m ≥ 0. If Conjecture 1.1 holds true and we
plotted θ 7→ λΩ(θ) for any other simply connected C2 domain Ω with the same area as DR, we
would obtain, in (−π

2
, π

2
), a curve lying above λDR(θ). From Theorem 2.4 we actually know that

this is the case at least for θ close to ±π
2
. Now, if we consider the natural smooth continuation

for θ ∈ (−π
2
, 3π

2
) of λDR(θ) and λΩ(θ), one might expect that, in the interval (π

2
, 3π

2
), the curve

λΩ(θ) would lie below the curve λDR(θ). Therefore, it is natural to conjecture that λDR(θ) will
cross the level set −m “later” (i.e., for a greater value of θ) than any other curve λΩ(θ).6 Thus,
a natural quantity to optimize is the largest value of θ at which an eigenvalue curve crosses the
level set −m. More formally, we seek the largest θ for which −m is an eigenvalue of Dθ(m),
and we want to optimize such θ depending on Ω; recall that here we are considering m ≥ 0.

Taking into account the unitary equivalence between Dθ(m) and −Dπ−θ(−m), this is the
same as asking, for m < 0, which is the first (i.e., smallest) θ ∈ (−π

2
, π

2
) for which an eigenvalue

curve of Dθ(m) crosses the level set |m|; this crossing point is illustrated in Figure 4. In other
words, we seek the smallest θ ∈ (−π

2
, π

2
) for which |m| is an eigenvalue of Dθ(m). Therefore, we

are concerned with the eigenvalue problem{
ϕ ∈ Dom

(
Dθ(m)

)
,

Dθ(m)ϕ = |m|ϕ in L2(Ω)2.
(2.7)

We look for the smallest θ for which (2.7) has a nonzero solution and we want to find the domain
Ω which makes such θ as small as possible (under area constraint). Our third main result in
this paper is the following theorem, which asserts that among all bounded simply connected
C2 domains with prescribed area, such θ is the closest to −π

2
if and only if Ω is a disk.

6In general, for any level set `, if it happened that λDR
> λΩ in (π2 ,

3π
2 ), if λDR

(θDR
) = ` = λΩ(θΩ) for some

θDR
, θΩ ∈ (π2 ,

3π
2 ), and if the curves were monotone, then it would hold that θΩ < θDR

.
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Figure 4. Eigenvalue curves of the quantum dot Dirac operators Dθ(m) for
the disk DR of radius R = 2 and with m = −1. We have included two solid
horizontal black lines to highlight the location of ±m. The dashed vertical lines
at θ = 0 and θ = π/2 help to locate, respectively, the infinite mass and zigzag
cases. The horizontal dashed lines represent the values ±

√
ΛDR +m2. The black

dot illustrates the first crossing point in (−π
2
, π

2
) between an eigenvalue curve of

Dθ(m) and the level set |m|, which is studied in Theorem 2.7.

Theorem 2.7. Assume that m < 0. Let Ω ⊂ R2 be a bounded domain with C2 boundary. Then

min
{
θ ∈ (−π

2
, π

2
) : (2.7) has a nonzero solution

}
= ϑ−1

(
2|m|
SΩ

)
, (2.8)

where ϑ : (−π
2
, π

2
) → (0,+∞) is defined by ϑ(θ) := 1−sin θ

cos θ
and SΩ is defined in (2.3). As a

consequence, if in addition Ω is simply connected, then

min
{
θ ∈ (−π

2
, π

2
) : (2.7) has a nonzero solution

}
≥ ϑ−1

(
|m|
√
|Ω|
π

)
(2.9)

and the equality holds if and only if Ω is a disk.

The proof of this result, which strongly relies on Proposition 2.6, is carried out in Section 6.
As a consequence of this and the unitary equivalence between Dθ(m) and −Dπ−θ(−m), we
obtain the equivalent result in the range (π

2
, 3π

2
) and for m > 0 mentioned before. It refers to

the eigenvalue problem {
ϕ ∈ Dom

(
Dθ(m)

)
,

Dθ(m)ϕ = −mϕ in L2(Ω)2,
(2.10)
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under the assumptions θ ∈ (π
2
, 3π

2
) and m > 0.

Corollary 2.8. Assume that m > 0. Let Ω ⊂ R2 be a bounded domain with C2 boundary.
Then

max
{
θ ∈ (π

2
, 3π

2
) : (2.10) has a nonzero solution

}
= π − ϑ−1

(
2m

SΩ

)
,

where ϑ and SΩ are defined in (3.6) and (2.3), respectively. As a consequence, if in addition Ω
is simply connected, then

max
{
θ ∈ (π

2
, 3π

2
) : (2.10) has a nonzero solution

}
≤ π − ϑ−1

(
m

√
|Ω|
π

)
and the equality holds if and only if Ω is a disk.

3. Equivalence of conjectures

Throughout this section, we will only consider θ ∈ (−π
2
, π

2
) and m ≥ 0 in (1.1). We will first

show how the nonnegative eigenvalues of quantum dot Dirac operators give rise to eigenvalues
of ∂-Robin Laplacians, and vice versa. Then, we will recall some qualitative properties of µΩ

proven in [14], and we will show how to translate them to the Dirac setting. Finally, we will
give the proofs of Theorem 2.1 and Corollary 2.2.

3.1. Connection between quantum dot Dirac operators and ∂-Robin Laplacians.
Given θ ∈ (−π

2
, π

2
), assume that ϕ solves the eigenvalue problem{

ϕ ∈ Dom(Dθ),
Dθϕ = λϕ in L2(Ω)2

(3.1)

for some λ ≥ 0. Writing the equation Dθϕ = λϕ and the boundary condition of ϕ ∈ Dom(Dθ)
in terms of its components ϕ = (u, v)ᵀ (with u : Ω→ C and v : Ω→ C) we get

−2i∂zv = (λ−m)u in L2(Ω),

−2i∂z̄u = (λ+m)v in L2(Ω),

v = i1−sin θ
cos θ

νu in H1/2(∂Ω).

(3.2)

As a first step, let us show that if ϕ is not identically zero then λ > m. This means that, in
order to study the nonnegative eigenvalues λ of Dθ for θ ∈ (−π

2
, π

2
) and m ≥ 0, we can always

assume that λ > m. This is the purpose of the next lemma, whose proof is based on (3.2) and
the arguments used in the proof of [28, Proposition 3.2].

Lemma 3.1. Let θ ∈ (−π
2
, π

2
), m ≥ 0, and λ ≥ 0. Assume that there exists ϕ ∈ Dom(Dθ)\{0}

which solves (3.1). Then λ > m.

Proof. The proof will follow by a contradiction argument. As before, we write ϕ = (u, v)ᵀ.
Multiplying the first equation in (3.2) by u, and taking conjugates in the second equation and
multiplying it by v, we get

− 2iu∂zv = (λ−m)|u|2 and 2iv∂zu = (λ+m)|v|2 in Ω.
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If we subtract the second identity to the first one and then we integrate in Ω, using the diver-
gence theorem, the third equation in (3.2), and the fact that νν = |ν|2 = 1, we obtain

(λ−m)

ˆ
Ω

|u|2 − (λ+m)

ˆ
Ω

|v|2 = −2i

ˆ
Ω

(
u∂zv + v∂zu

)
= −2i

ˆ
Ω

∂z(uv)

= −i
ˆ
∂Ω

νuv =
1− sin θ

cos θ

ˆ
∂Ω

|u|2

=
1− sin θ

2 cos θ

ˆ
∂Ω

|u|2 +
cos θ

2(1− sin θ)

ˆ
∂Ω

|v|2 ≥ 0,

(3.3)

because θ ∈ (−π
2
, π

2
).

Recall that we are assuming m ≥ 0 and λ ≥ 0. In order to prove that λ > m if ϕ does not
vanish identically, it suffices to assume that m ≥ λ ≥ 0 and reach a contradiction. If m ≥ λ ≥ 0
then the left-hand side of (3.3) is nonpositive and, thus, we deduce that

(λ−m)

ˆ
Ω

|u|2 − (λ+m)

ˆ
Ω

|v|2 =
1− sin θ

2 cos θ

ˆ
∂Ω

|u|2 +
cos θ

2(1− sin θ)

ˆ
∂Ω

|v|2 = 0,

which yields (λ − m)
´

Ω
|u|2 = (λ + m)

´
Ω
|v|2 = 0 and u = v = 0 on ∂Ω. At this point we

distinguish two cases: m > 0 and m = 0. On the one hand, if m > 0 then λ + m > 0 and,
thus,

´
Ω
|v|2 = 0. That is, v = 0 in Ω. Therefore, the second equation in (3.2) leads to ∂z̄u = 0

in Ω. Since u = 0 on ∂Ω, we conclude that u = 0 in Ω by the unique continuation principle
for holomorphic functions. This yields ϕ = (u, v)ᵀ = 0 in Ω, which contradicts the assumption
in the statement of the lemma. On the other hand, if m = 0, since we are assuming that
m ≥ λ ≥ 0, we get λ = m = 0. Therefore, the first and second equations in (3.2) lead to
∂z̄v = ∂zv = 0 and ∂z̄u = 0 in Ω, respectively. Since u = v = 0 on ∂Ω, again by unique
continuation we conclude that ϕ = (u, v)ᵀ = 0 in Ω, leading to a contradiction. �

In view of Lemma 3.1, from now on we will assume that λ > m ≥ 0 in (3.1). The following
argumentation, which is reminiscent of [3, Remark 5], shows how the eigenvalue equation asso-
ciated to Dθ rewrites in terms of the Laplace differential operator. As before, given θ ∈ (−π

2
, π

2
),

assume that ϕ solves the eigenvalue problem (3.1). On the one hand, since 4∂z∂z̄ = ∆, applying
−2i∂z in the distributional sense to the second equation in (3.2) and then using the first one
we obtain

−∆u = (λ2 −m2)u in L2(Ω).

On the other hand, since Dom(Dθ) ⊂ H1(Ω)2, from the second equation in (3.2) we actually see
that −2i∂z̄u = (λ+m)v ∈ H1(Ω). If we now take boundary traces and then we multiply both
sides of the equality by ν, we deduce that −2iν∂z̄u = (λ+m)νv ∈ H1/2(∂Ω) which, combined
with the third equation in (3.2) and the fact that νν = |ν|2 = 1, leads to

2ν∂z̄u+ (λ+m)
1− sin θ

cos θ
u = 0 in H1/2(∂Ω).

In conclusion, if θ ∈ (−π
2
, π

2
) and ϕ = (u, v)ᵀ ∈ Dom(Dθ) solves Dθϕ = λϕ for some λ > m,

then u solves the eigenvalue problem
u, ∂z̄u ∈ H1(Ω),

−∆u = µu in L2(Ω),

2ν∂z̄u+ au = 0 in H1/2(∂Ω),

(3.4)



14 J. DURAN, A. MAS, AND T. SANZ-PERELA

with

µ := λ2 −m2 > 0 and a := (λ+m)
1− sin θ

cos θ
> 0. (3.5)

Note that (3.4) is precisely the eigenvalue equation for the ∂-Robin Laplacian Ra —recall the
definition in (1.4).

The relation (3.5) motivates to introduce the following functions, which will be used in the
sequel. The first one is the smooth, strictly decreasing, and bijective function

ϑ : (−π
2
, π

2
)→ (0,+∞)

θ 7→ 1−sin θ
cos θ

,
(3.6)

and the second one, which describes the relation between the pairs (θ, λ) and (a, µ) in (3.5), is

T : (−π
2
, π

2
)× (m,+∞)→ (0,+∞)× (0,+∞)

(θ, λ) 7→
(
(λ+m)ϑ(θ), λ2 −m2

)
.

(3.7)

With these definitions in hand, (3.5) rewrites as (a, µ) := T (θ, λ). Note also that, given µ > 0

and a > 0, if we take λ :=
√
µ+m2 > m then there exists a unique θ ∈ (−π

2
, π

2
) satisfying

a = (λ + m)ϑ(θ), since the function ϑ is bijective from (−π
2
, π

2
) to (0,+∞). Therefore, the

function T is bijective and its inverse is given by

T−1 : (0,+∞)× (0,+∞)→ (−π
2
, π

2
)× (m,+∞)

(a, µ) 7→
(
ϑ−1
(

a√
µ+m2+m

)
,
√
µ+m2

)
.

We have seen that a solution to (3.1) yields a solution to (3.4). The reverse implication
follows similarly. Assume that u solves (3.4) for some µ > 0 and a > 0. Then, setting

(θ, λ) := T−1(a, µ) and v :=
−2i

λ+m
∂z̄u ∈ H1(Ω), (3.8)

we deduce that u, v ∈ H1(Ω) solve (3.2), or in other words, that ϕ := (u, v)ᵀ solves (3.1) for
θ ∈ (−π

2
, π

2
) and λ > m as in (3.8).

In conclusion, the eigenvalue problem (3.1) for the quantum dot Dirac operator with θ ∈
(−π

2
, π

2
) and λ > m is equivalent to the eigenvalue problem (3.4) for the ∂-Robin Laplacian

with a > 0 and µ > 0 under the relation (a, µ) = T (θ, λ). This will allow us to study the
first nonnegative eigenvalue λΩ(θ) of Dθ through its reformulation in the framework of the first
eigenvalue µΩ(a) of Ra.

The next key result (crucial to obtain Theorem 2.1) shows that indeed λΩ and µΩ are mapped
to each other through the function T defined in (3.7). This intuitive fact is not completely
obvious because of the following observation: if, for a given θ, one takes two different eigenvalues
λ1 and λ2 of Dθ and then, using T , one constructs the corresponding eigenvalues µ1 and µ2

of the ∂-Robin Laplacian, it may happen that µ1 ∈ σ(Ra1) and µ2 ∈ σ(Ra2) for different
parameters a1 and a2 —recall that a in (3.5) depends on λ.

Proposition 3.2. Let (θ, λ) ∈ (−π
2
, π

2
)× (m,+∞) and (a, µ) ∈ (0,+∞)× (0,+∞) be such that

T (θ, λ) = (a, µ). Then, λ = λΩ(θ) if and only if µ = µΩ(a).

The proof of this result will be given in Section 3.2. As will be seen, it is not completely
obvious and requires some properties of the eigenvalue curve a 7→ µΩ(a) that will be recalled
from [14] or obtained in the next section.
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3.2. Properties of the eigenvalue curves. Here we will recall some properties of the map
a 7→ µΩ(a) proven in [14] which will be key ingredients in the present work. Next, we will estab-
lish other properties needed to obtain Proposition 3.2. Finally, after proving Proposition 3.2,
we will transfer the properties of a 7→ µΩ(a) to θ 7→ λΩ(θ).

To start with, in the next statement we recall the main properties of a 7→ µΩ(a) proven
in [14]. Recall that ΛΩ denotes the first eigenvalue of the self-adjoint realization of the Dirichlet
Laplacian in L2(Ω).

Theorem 3.3. ([14, Theorems 1.2 and 1.3 (i)]) Given a > 0, let µΩ(a) = min
(
σ(Ra)

)
. The

following hold:

(i) Let E(Ω) = {u ∈ L2(Ω) : ∂z̄u ∈ L2(Ω) and u ∈ L2(∂Ω)}, as in (2.2). Then,

µΩ(a) = inf
u∈E(Ω)\{0}

4
´

Ω
|∂z̄u|2 + a

´
∂Ω
|u|2´

Ω
|u|2

(3.9)

and the infimum is attained. Furthermore, any minimizer uΩ(a) of (3.9) belongs to
Dom(Ra) \ {0} ⊂ E(Ω) and solves RauΩ(a) = µΩ(a)uΩ(a).

(ii) The function a 7→ µΩ(a) is continuous, strictly increasing, and bijective from (0,+∞)
to (0,ΛΩ).

Before continuing, for the sake of clarity, let us make a couple of remarks.

Remark 3.4. Let us recall the simple computation that motivates the variational formulation
of µΩ(a) stated in (3.9). Assume that u does not vanish identically and solves (3.4) for some
a > 0 and µ > 0. Since µu = −∆u = −4∂z∂z̄u in Ω, if we multiply this equality by u and
integrate it in Ω, the divergence theorem and the boundary condition in (3.4) yield

µ

ˆ
Ω

|u|2 = −4

ˆ
Ω

∂z∂z̄uu = 4

ˆ
Ω

|∂z̄u|2 −
ˆ
∂Ω

2ν∂z̄uu = 4

ˆ
Ω

|∂z̄u|2 + a

ˆ
∂Ω

|u|2.

This is the identity which gives rise to (3.9). Observe also the similitude of the variational
formulation of µΩ(a) in (3.9) with the one of the first eigenvalue of the Robin Laplacian{

−∆u = µu in Ω,

∂νu+ au = 0 on ∂Ω,

which has the same form as in (3.9) but replacing ∂z̄u by ∇u and E(Ω) by H1(Ω) —this also
motivates the name ∂-Robin Laplacian.

Remark 3.5. Recall that, thanks to Proposition 3.2 (to be proved later), λΩ and µΩ are mapped
to each other through the function T defined in (3.7). From this and the expression (3.9) of µΩ

we have a characterization of λΩ(θ). Let us compare it with the variational characterization of
λΩ(0) given in [3, Theorem 4].

As we mentioned in the introduction, the problem for θ = m = 0 was studied in [3], which is
one of our main inspirations. In this particular case the relation (a, µ) = T (θ, λ) given in (3.5)
reduces to

µ = λ2 and a = λ, (3.10)

and therefore the problem (3.4) can be written as{
−∆u = a2u in L2(Ω),

2ν∂z̄u+ au = 0 in H1/2(∂Ω).
(3.11)



16 J. DURAN, A. MAS, AND T. SANZ-PERELA

This is what is done in [3] to obtain a variational characterization of λΩ(0). Indeed, [3, Theo-
rem 4] states that λ > 0 is λΩ(0) if and only if P(λ) = 0, where

P(λ) := inf
u∈E(Ω)\{0}

4
´

Ω
|∂z̄u|2 + λ

´
∂Ω
|u|2 − λ2

´
Ω
|u|2´

Ω
|u|2

.

From the point of view of the present work, as a consequence of (3.9) and the relation (3.10),
by Proposition 3.2 we are lead to find λ > 0 such that

λ2 = inf
u∈E(Ω)\{0}

4
´

Ω
|∂z̄u|2 + λ

´
∂Ω
|u|2´

Ω
|u|2

,

which is precisely P(λ) = 0.
Note that the parameter a appears in (3.11) both in the equation (as a2) and the boundary

condition (as a). Similarly, P(λ) has a linear and a quadratic term in λ. In our case, it is
crucial that we decouple the parameter appearing in the PDE and the one appearing in the
boundary condition. By doing this, µ = λ2 = a2 becomes an eigenvalue and we only have a
parameter in the boundary condition. This is a key point for us, since it allows us to work with
a characterization of the eigenvalue as a minimum of a Rayleigh quotient which is linear in a.
The price to pay, as we mentioned in the introduction, is that in order to prove Conjecture 1.1
for a given θ, we would have to prove Conjecture 1.3 for all values a > 0.

Next, we establish two properties of a 7→ µΩ(a) and related functions which will be used
later.

Lemma 3.6. The function a 7→ µΩ(a)/a is strictly decreasing in (0,+∞). Moreover,

µΩ(a)

a
≤ |∂Ω|
|Ω|

for all a > 0. (3.12)

Proof. We first show the claimed monotonicity; the argument will be the same as the one in
the proof of [3, Proposition 33(3)]. Assume that a2 > a1 > 0 and let uΩ(a1) be a minimizer
of µΩ(a1) as in Theorem 3.3 (i) for a = a1. Without loss of generality, we can assume that
‖uΩ(a1)‖L2(Ω) = 1. Observe also that

´
Ω
|∂z̄uΩ(a1)|2 6= 0, since otherwise

µΩ(a1)uΩ(a1) = Ra1uΩ(a1) = −∆uΩ(a1) = −4∂z∂z̄uΩ(a1) = 0,

contradicting the fact that µΩ(a1) > 0, as stated in Theorem 3.3 (ii). Then, from (3.9) we get

a2

a1

µΩ(a1) =
a2

a1

4

ˆ
Ω

|∂z̄uΩ(a1)|2 + a2

ˆ
∂Ω

|uΩ(a1)|2

> 4

ˆ
Ω

|∂z̄uΩ(a1)|2 + a2

ˆ
∂Ω

|uΩ(a1)|2 ≥ µΩ(a2).

This shows that µΩ(a1)/a1 > µΩ(a2)/a2, as desired.
The proof of (3.12) follows by testing (3.9) with the constant function u = 1 in Ω. �

Lemma 3.7. The function

a 7→ f(a) := ϑ−1
(

a√
µΩ(a)+m2+m

)
is continuous, strictly decreasing, and bijective from (0,+∞) to (−π

2
, π

2
).
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Proof. Recall from Theorem 3.3 (ii) that the function a 7→ µΩ(a) is continuous and strictly
positive in (0,+∞). Consequently, the function f is well-defined and continuous in (0,+∞)
—recall the definition of ϑ in (3.6). We will see now that f is strictly decreasing. Note that
since a 7→ µΩ(a)/a is strictly decreasing thanks to Lemma 3.6,

√
µΩ(a)+m2+m

a
=
√

1
a
(µΩ(a)

a
+ m2

a
) + m

a
(3.13)

is a strictly decreasing function of a ∈ (0,+∞) —recall that m ≥ 0. Therefore, the function

a 7→ a√
µΩ(a)+m2+m

is strictly increasing in (0,+∞). Then, using that ϑ−1 is strictly decreasing, we deduce that
a 7→ f(a) is strictly decreasing in (0,+∞), as claimed.

Finally, from (3.13) and Theorem 3.3 (ii) (and using also Lemma 3.6 for the second limit
below) we see that

lim
a↑+∞

√
µΩ(a)+m2+m

a
= 0 and lim

a↓0

√
µΩ(a)+m2+m

a
= +∞,

which easily yields lima↑+∞ f(a) = −π
2

and lima↓0 f(a) = π
2
. From this we conclude that the

function a 7→ f(a) is continuous, strictly decreasing, and bijective from (0,+∞) to (−π
2
, π

2
). �

With the previous properties of a 7→ µΩ(a) and related functions at hand, we can now prove
that λΩ and µΩ are mapped to each other through the function T defined in (3.7).

Proof of Proposition 3.2. Let us first prove that, given a > 0, if T−1(a, µΩ(a)) = (θ, λ) for some
θ ∈ (−π

2
, π

2
) and λ > m, then λ = λΩ(θ). We will prove this statement by contradiction. Hence,

assume that T−1(a, µΩ(a)) = (θ, λ) but that λ 6= λΩ(θ). Then necessarily λ > λΩ(θ), since
λΩ(θ) is the first nonnegative eigenvalue of Dθ. Since T−1(a, µΩ(a)) = (θ, λ), we have that

a = (λ+m)ϑ(θ) and µΩ(a) = λ2 −m2.

Next, set (a∗, µ∗) := T (θ, λΩ(θ)), that is,

a∗ := (λΩ(θ) +m)ϑ(θ) and µ∗ := λΩ(θ)2 −m2.

Note that since (a∗, µ∗) = T (θ, λΩ(θ)) and λΩ(θ) > m is an eigenvalue of Dθ, µ∗ > 0 is
an eigenvalue of Ra∗ . Thus, since µΩ(a∗) is the smallest eigenvalue of Ra∗ , we have that
µ∗ ≥ µΩ(a∗). Note also that

a

a∗
=

λ+m

λΩ(θ) +m
.

Moreover, since λ > λΩ(θ) we also have that a > a∗.
We are now ready to reach the contradiction. On the one hand,

µΩ(a)

µ∗
=

λ2 −m2

λΩ(θ)2 −m2
=

λ−m
λΩ(θ)−m

λ+m

λΩ(θ) +m
=

λ−m
λΩ(θ)−m

a

a∗
,

which, thanks to the fact that λ > λΩ(θ) > m, leads to

a∗

µ∗
µΩ(a)

a
=

λ−m
λΩ(θ)−m

> 1. (3.14)
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On the other hand, using that a > a∗, that a 7→ µΩ(a)/a is strictly decreasing by Lemma 3.6,
and that µ∗ ≥ µΩ(a∗), we obtain

a∗

µ∗
µΩ(a)

a
<
a∗

µ∗
µΩ(a∗)

a∗
=
µΩ(a∗)

µ∗
≤ 1,

which contradicts (3.14).
We have proven that, given a > 0,

if T−1(a, µΩ(a)) = (θ, λ) for some θ ∈ (−π
2
, π

2
) and λ > m then λ = λΩ(θ). (3.15)

Since T is bijective, this proves the “if” implication of the lemma.
Let us now address the “only if” implication. Assume that, given θ ∈ (−π

2
, π

2
), we have

T (θ, λΩ(θ)) = (a, µ) for some a > 0 and µ > 0. We want to prove that µ = µΩ(a). From
Lemma 3.7, we see that there exists a∗ > 0 such that

θ = ϑ−1
(

a∗√
µΩ(a∗)+m2+m

)
. (3.16)

Hence, from (3.16), the definition of T−1, and (3.15), it follows that T−1(a∗, µΩ(a∗)) = (θ, λΩ(θ)).
Using that T is bijective, we obtain that (a∗, µΩ(a∗)) = T (θ, λΩ(θ)) = (a, µ) and, therefore, that
a = a∗ and µ = µΩ(a∗) = µΩ(a), as desired. �

As we mentioned, combining Theorem 3.3 (ii) with the mapping T defined in (3.7) one
can transfer the qualitative properties of µΩ to λΩ, as the following result shows. Let us also
mention that these properties of λΩ can be proven without appealing to µΩ but using instead
boundary integral operators and perturbation theory at the level of resolvents —as it is done
in the three-dimensional framework in [4, Section 3].

Proposition 3.8. Given θ ∈ (−π
2
, π

2
), let λΩ(θ) be as in (1.3). Then, the function θ 7→ λΩ(θ)

is continuous, strictly decreasing, and bijective from (−π
2
, π

2
) to

(
m,
√

ΛΩ +m2
)
.

Proof. Recall from Lemma 3.7 that the function

a 7→ f(a) := ϑ−1
(

a√
µΩ(a)+m2+m

)
is continuous, strictly decreasing, and bijective from (0,+∞) to (−π

2
, π

2
). In particular, its

inverse function θ 7→ f−1(θ) is well-defined, continuous, strictly decreasing, and bijective from
(−π

2
, π

2
) to (0,+∞). Next, consider the function

θ 7→
√
µΩ(f−1(θ)) +m2.

From the previous comments and Theorem 3.3 (ii), this function is continuous, strictly de-
creasing, and bijective from (−π

2
, π

2
) to

(
m,
√

ΛΩ +m2
)
. Our goal now is to show that this

function actually is θ 7→ λΩ(θ), which would conclude the proof of the result. To check it,
simply note that if θ ∈ (−π

2
, π

2
) then Proposition 3.2 shows that T (θ, λΩ(θ)) = (a, µΩ(a)) for

some a > 0. Now, applying T−1 to this identity and looking at the components of T−1 we
realize that θ = f(a) and, thus, that√

µΩ(f−1(θ)) +m2 =
√
µΩ(a) +m2 = λΩ(θ),

as desired. �
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3.3. Proof of the equivalence of conjectures. With all the previous ingredients in hand, we
are now ready to prove Theorem 2.1 which, in turn, will lead to the equivalence of Conjecture 1.1
for the quantum dot Dirac operators and Conjecture 1.3 for the ∂-Robin Laplacians, as stated
in Corollary 2.2.

Proof of Theorem 2.1. Let us address the proof of (i). As a suggestion for the reader, it may
be helpful to read the proof having Figure 5 in mind.

a

µDµΩ

a a∗

µΩ(a)

=

λD(θ)2 −m2

θ

λD

λΩ

θ θ∗

λΩ(θ∗)

Figure 5. Schematic representation of the proof of (i).

First of all, let us check that a given in (i), that is,

a := µ−1
Ω (λD(θ)2 −m2), (3.17)

is a well defined positive number for all θ ∈ (−π
2
, π

2
). Thanks to Proposition 3.8 and the

Faber-Krahn inequality for the Dirichlet Laplacian [17, 22], we see that

0 < λD(θ)2 −m2 < ΛD ≤ ΛΩ for all θ ∈ (−π
2
, π

2
).

Since the function a 7→ µΩ(a) is bijective from (0,+∞) to (0,ΛΩ) by Theorem 3.3 (ii), given
θ ∈ (−π

2
, π

2
) there exists a unique a > 0 such that µΩ(a) = λD(θ)2 −m2, as desired.

Next, given θ ∈ (−π
2
, π

2
), let a be as in (3.17) and assume that µΩ(a) > µD(a). Set (a∗, µ∗) :=

T (θ, λD(θ)), that is,

a∗ := (λD(θ) +m)ϑ(θ) and µ∗ := λD(θ)2 −m2. (3.18)

From Proposition 3.2 we actually see that µ∗ = µD(a∗). Therefore, using the definition of µ∗ in
(3.18), (3.17), and the assumption in (i), we get that µD(a∗) = µ∗ = λD(θ)2 −m2 = µΩ(a) >
µD(a). Now, since the function µD is strictly increasing by Theorem 3.3 (ii), we find that

a∗ > a. (3.19)

Now, set (θ∗, λ∗) := T−1(a, µΩ(a)), that is,

θ∗ := ϑ−1

(
a√

µΩ(a) +m2 +m

)
and λ∗ :=

√
µΩ(a) +m2. (3.20)

On the one hand, as before, from Proposition 3.2 we see that λ∗ = λΩ(θ∗). On the other hand,
replacing (3.17) in (3.20) we deduce that

θ∗ = ϑ−1

(
a

λD(θ) +m

)
and λ∗ = λD(θ). (3.21)

In particular, we obtain that
λΩ(θ∗) = λD(θ). (3.22)
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In addition, using (3.19) and (3.18) in (3.21), we deduce that

ϑ(θ∗) =
a

λD(θ) +m
<

a∗

λD(θ) +m
= ϑ(θ).

From this, and since the function ϑ is strictly decreasing, we get that θ∗ > θ. Finally, using
that θ∗ > θ, that the function λΩ is strictly decreasing, and (3.22), we conclude that λΩ(θ) >
λΩ(θ∗) = λD(θ). This finishes the proof of (i).

Let us now address the proof of (ii), which will be completely analogous to the one of (i).
As before, it may be helpful to have Figure 6 in mind while reading this proof.

θ

λD

λΩ

θ∗ θ

λΩ(θ)

a

µDµΩ

a∗ a

µΩ(a∗)

Figure 6. Schematic representation of the proof of (ii).

First of all, let us check that the value θ given in (ii), that is,

θ := λ−1
Ω

(√
µD(a) +m2

)
, (3.23)

is a well defined real number in (−π
2
, π

2
) for all a > 0. Thanks to Theorem 3.3 (ii) and the

Faber-Krahn inequality for the Dirichlet Laplacian, we see that

m2 < µD(a) +m2 < ΛD +m2 ≤ ΛΩ +m2 for all a > 0.

Since the function θ 7→ λΩ(θ) is bijective from (−π
2
, π

2
) to

(
m,
√

ΛΩ +m2
)

by Proposition 3.8,

given a > 0 there exists a unique θ ∈ (−π
2
, π

2
) such that λΩ(θ) =

√
µD(a) +m2, as desired.

Next, given a > 0, let θ be as in (3.23) and assume that λΩ(θ) > λD(θ). Set (θ∗, λ∗) :=
T−1(a, µD(a)), that is,

θ∗ := ϑ−1
(

a√
µD(a)+m2+m

)
and λ∗ :=

√
µD(a) +m2. (3.24)

From Proposition 3.2 we actually see that λ∗ = λD(θ∗). Therefore, using the definition of λ∗ in

(3.24), (3.23), and the assumption in (ii), we get that λD(θ∗) = λ∗ =
√
µD(a)2 +m2 = λΩ(θ) >

λD(θ). Now, since the function λD is strictly decreasing by Proposition 3.8, we find that

θ∗ < θ. (3.25)

Now, set (a∗, µ∗) := T (θ, λΩ(θ)), that is,

a∗ := (λΩ(θ) +m)ϑ(θ) and µ∗ := λΩ(θ)2 −m2. (3.26)

On the one hand, as before, from Proposition 3.2 we see that µ∗ = µΩ(a∗). On the other hand,
applying (3.23) to (3.26) we deduce that

a∗ =
(√

µD(a) +m2 +m
)
ϑ(θ) and µ∗ = µD(a). (3.27)
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In particular, we obtain that

µΩ(a∗) = µD(a). (3.28)

In addition, thanks to (3.25) and the fact that the function ϑ is strictly decreasing, we see that
ϑ(θ) < ϑ(θ∗). Using this and (3.24) in (3.27), we deduce that

a∗ =
(√

µD(a) +m2 +m
)
ϑ(θ) <

(√
µD(a) +m2 +m

)
ϑ(θ∗) = a.

Finally, using that a∗ < a, that the function µΩ is strictly increasing, and (3.28), we conclude
that µΩ(a) > µΩ(a∗) = µD(a). This finishes the proof of (ii). �

Proof of Corollary 2.2. If Conjecture 1.3 holds true then Conjecture 1.1 holds true by Theo-
rem 2.1 (i). The reverse implication follows analogously but using now Theorem 2.1 (ii). �

4. Asymptotic regimes

This section is devoted to the proofs of Theorems 2.4 and 2.5, and of Proposition 2.6. Recall
that Theorem 2.5 refers to the optimality of the disk for the first eigenvalue of Ra in the
asymptotic regimes a ↓ 0 and a ↑ +∞, and Theorem 2.4 refers to the optimality of the disk
for the first nonnegative eigenvalue of Dθ in the asymptotic regimes θ ↑ π

2
and θ ↓ −π

2
. As

we mentioned in the introduction, the proofs in the cases a ↑ +∞ and θ ↓ −π
2

will essentially
follow by the Faber-Krahn inequality for the Dirichlet Laplacian. Instead, the case θ ↑ π

2
will

be derived from Theorem 2.1 (i) and the case a ↓ 0, the latter being the most complicated to
prove.

As an advance to help the reader, next we recall the main ideas used in the case a ↓ 0. Since
lima↓0 µΩ(a) = 0 = lima↓0 µD(a), in order to prove that if Ω is not a disk then µΩ(a) > µD(a) for
all a > 0 small enough, it suffices to show that the slope of the function µΩ when departing from
the origin is strictly bigger than the one of µD. This last claim will follow from Proposition 2.6.
More precisely, we will first give a variational characterization of the slope as

lim
a↓0

µΩ(a)

a
= SΩ := inf

u∈E(Ω)\{0}: ∂z̄u=0 in Ω

´
∂Ω
|u|2´

Ω
|u|2

. (4.1)

This is (2.5) in Proposition 2.6 (ii). Then, we will use this characterization to prove, for
simply connected domains, a sharp lower bound of the slope for which the disks are the only
minimizers; this will yield SΩ ≥ 2

√
π/|Ω|, which is (2.6) in Proposition 2.6. This last lower

bound is precisely the content of the next result, which can be rephrased as the optimal constant
for an embedding of a Hardy space into a Bergman space; see Section 5 for more details.

Proposition 4.1. Let Ω ⊂ R2 be a simply connected bounded domain with C2 boundary. Then,

‖u‖2
L2(Ω) ≤

1

2

√
|Ω|
π
‖u‖2

L2(∂Ω) (4.2)

for all u ∈ E(Ω) such that ∂z̄u = 0 in Ω. Moreover, if u does not vanish identically, then the
equality in (4.2) holds if and only if Ω is a disk and u is a constant function.

Our proof of this bound requires the Riemann mapping theorem and a quantitative version
of a theorem for holomorphic functions in the unit disk due to Hardy and Littlewood; see Theo-
rem 5.1. Since the arguments require some technical tools from complex analysis, we postpone
the proof until Section 5. Here, assuming Proposition 4.1 proved, we establish Proposition 2.6.
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Proof of Proposition 2.6. We begin the proof of the theorem addressing (ii), that is, (4.1). As
we will see, the arguments used for its proof will also yield the first part of (i).

As a preliminary comment, note that lima↓0 µΩ(a)/a exists and is a positive real number
thanks to Lemma 3.6, since the function a 7→ µΩ(a)/a is positive, strictly decreasing in (0,+∞),
and bounded from above. The easy step to get (ii) is to prove that lima↓0 µΩ(a)/a ≤ SΩ. To
check this, simply restrict the infimum in (3.9) to the set {u ∈ E(Ω) \ {0} : ∂z̄u = 0 in Ω} and
then divide by a. This actually shows that µΩ(a)/a ≤ SΩ for all a > 0, and not only in the
limit a ↓ 0.

Next, we will prove that lima↓0 µΩ(a)/a ≥ SΩ. This step will follow by compactness. For
every a > 0, let uΩ(a) be as in Theorem 3.3 (i). By normalization, we can assume that
‖uΩ(a)‖L2(Ω) = 1 for all a > 0. This, combined with (3.12), leads to

0 ≤ 4

ˆ
Ω

|∂z̄uΩ(a)|2 + a

ˆ
∂Ω

|uΩ(a)|2 = µΩ(a) ≤ a
|∂Ω|
|Ω|

for all a > 0.

Therefore, lima↓0 ‖∂z̄uΩ(a)‖L2(Ω) = 0 and ‖uΩ(a)‖L2(∂Ω) ≤
√
|∂Ω|/|Ω| for all a > 0. In particu-

lar,

‖uΩ(a)‖E(Ω) :=

ˆ
Ω

|uΩ(a)|2 +

ˆ
Ω

|∂z̄uΩ(a)|2 +

ˆ
∂Ω

|uΩ(a)|2 ≤ C for all a ∈ (0, 1], (4.3)

for some C > 0 independent of a.
On the one hand, since E(Ω) is compactly embedded in L2(Ω) by [14, Lemma 3.1], form (4.3)

we deduce that there exist uΩ ∈ L2(Ω) and a sequence ak ↓ 0 as k ↑ +∞ such that

lim
k↑+∞

‖uΩ − uΩ(ak)‖L2(Ω) = 0 and, consequently, that

∂z̄uΩ = lim
k↑+∞

∂z̄uΩ(ak) in the sense of distributions in Ω.
(4.4)

The first statement in (4.4) yields ‖uΩ‖L2(Ω) = 1. From the second statement in (4.4) and the
fact that lima↓0 ‖∂z̄uΩ(a)‖L2(Ω) = 0, we deduce, firstly, that ∂z̄uΩ = 0 in the sense of distributions
in Ω —which entails ∂z̄uΩ ∈ L2(Ω)— and, secondly, that

lim
k↑+∞

‖∂z̄uΩ − ∂z̄uΩ(ak)‖L2(Ω) = 0.

This last conclusion, combined with the first statement in (4.4) and [5, Lemma 2.3] show that
limk↑+∞ ‖uΩ(ak)− uΩ‖H−1/2(∂Ω) = 0. In particular,

lim
k↑+∞

〈uΩ − uΩ(ak), v〉H−1/2(∂Ω),H1/2(∂Ω) = 0 for all v ∈ H1/2(∂Ω). (4.5)

On the other hand, since ‖uΩ(a)‖L2(∂Ω) ≤
√
|∂Ω|/|Ω| for all a > 0, combining weak-∗ com-

pactness (Banach–Alaoglu theorem) and Riesz-Fréchet theorem on the Hilbert space L2(∂Ω),
we deduce that there exist u∗Ω ∈ L2(∂Ω) and a subsequence of {ak}k, which for simplicity we
call again {ak}k, such that

lim
k↑+∞

〈v, u∗Ω − uΩ(ak)〉L2(∂Ω) = 0 for all v ∈ L2(∂Ω). (4.6)

Since H1/2(∂Ω) ⊂ L2(∂Ω), and in view of our convention for the pairing (A.1), (4.6) gives

lim
k↑+∞
〈u∗Ω − uΩ(ak), v〉H−1/2(∂Ω),H1/2(∂Ω) = lim

k↑+∞
〈v, u∗Ω − uΩ(ak)〉L2(∂Ω) = 0
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for all v ∈ H1/2(∂Ω). Using this and (4.5), we conclude that uΩ = u∗Ω in H−1/2(∂Ω). To be
more precise, as a functional in H−1/2(∂Ω), uΩ is equal to 〈·, u∗Ω〉L2(∂Ω) for some u∗Ω ∈ L2(∂Ω).
This is what, abusing notation, we are denoting by uΩ ∈ L2(∂Ω).

Summing up, from the previous arguments we have seen that ‖uΩ‖L2(Ω) = 1, that ∂z̄uΩ =
0 in Ω, that uΩ ∈ L2(∂Ω) —these three facts yield uΩ ∈ E(Ω) \ {0}—, and that uΩ =
limk↑+∞ uΩ(ak) weakly in L2(∂Ω) —recall (4.6). In particular,

lim inf
k↑+∞

‖uΩ(ak)‖L2(∂Ω) = lim inf
k↑+∞

sup
w∈L2(∂Ω): ‖w‖L2(∂Ω)=1

ˆ
∂Ω

uΩ(ak)w

≥ lim inf
k↑+∞

ˆ
∂Ω

uΩ(ak)
uΩ

‖uΩ‖L2(∂Ω)

= ‖uΩ‖L2(∂Ω);

this is nothing but the weakly lower semicontinuity of ‖ · ‖L2(∂Ω). With all these ingredients in
hand, the fact that lima↓0 µΩ(a)/a ≥ SΩ follows easily. Indeed,

lim
a↓0

µΩ(a)

a
= lim

k↑+∞

µΩ(ak)

ak
= lim

k↑+∞

( 4

ak

ˆ
Ω

|∂z̄uΩ(ak)|2 +

ˆ
∂Ω

|uΩ(ak)|2
)

≥ lim inf
k↑+∞

‖uΩ(ak)‖2
L2(∂Ω) ≥ ‖uΩ‖2

L2(∂Ω) =
‖uΩ‖2

L2(∂Ω)

‖uΩ‖2
L2(Ω)

≥ SΩ,

as desired, completing the proof of (4.1). Actually, looking at this chain of inequalities (which,
as we have proved, are all equalities), we deduce that the infimum in the definition of SΩ

—see (2.3)— is attained by uΩ, which proves the first part of (i).
We next show that the minimizer uΩ ∈ E(Ω) that we have found actually belongs to H1(Ω).

For this, we will use crucially that uΩ is the limit of functions uΩ(ak) ∈ Dom(Rak). On the
one hand, we have seen that there exists a sequence ak ↓ 0 as k ↑ +∞ and uΩ(ak) as in
Theorem 3.3 (i) such that uΩ(ak) → uΩ and ∂z̄uΩ(ak) → 0 strongly in L2(Ω) as k ↑ +∞. On
the other hand, since uΩ(ak) ∈ Dom(Rak), by [14, Lemma 3.4] there holds

‖uΩ(ak)‖2
H1(Ω) ≤ CΩ

(
‖uΩ(ak)‖2

L2(Ω) + ‖∂z̄uΩ(ak)‖2
L2(Ω) +

1

a2
k

‖∆uΩ(ak)‖2
L2(Ω)

)
= CΩ

((
1 +

µΩ(ak)
2

a2
k

)
‖uΩ(ak)‖2

L2(Ω) + ‖∂z̄uΩ(ak)‖2
L2(Ω)

)
for some constant CΩ > 0 depending only on Ω, where in the last equality we have used that
−∆uΩ(ak) = µΩ(ak)uΩ(ak) in L2(Ω). This estimate, together with (4.1) and the aforemen-
tioned convergence of uΩ(ak) to uΩ, leads to the boundedness of ‖uΩ(ak)‖H1(Ω) uniformly in k.
Combining the compact embedding of H1(Ω) in L2(Ω) and the weak-∗ compactness of H1(Ω),
we deduce that there exists u? ∈ H1(Ω) and a subsequence of {ak}k, which we call again {ak}k,
such that uΩ(ak)→ u? in L2(Ω) as k ↑ +∞. Since we already had that uΩ(ak)→ uΩ in L2(Ω),
this yields that uΩ = u? ∈ H1(Ω), as desired.

To conclude the proof of (i), it only remains to show (2.4), which is nothing but the Euler-
Lagrange equation for any minimizer u of (2.3). Given v ∈ E(Ω) with ∂z̄v = 0 in Ω, set

f(t) :=

´
∂Ω
|u+ tv|2´

Ω
|u+ tv|2

=

´
∂Ω
|u|2 + 2tRe

( ´
∂Ω
u v
)

+ t2
´
∂Ω
|v|2´

Ω
|u|2 + 2tRe

( ´
Ω
u v
)

+ t2
´

Ω
|v|2
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for all t ∈ R with |t| small enough. If u is a minimizer of (2.3), we deduce that f(0) ≤ f(t) for
all |t| small enough and, thus,

0 =
d

dt
f(0) = 2

Re
( ´

∂Ω
u v
) ´

Ω
|u|2 −

´
∂Ω
|u|2 Re

( ´
Ω
u v
)( ´

Ω
|u|2
)2 ,

which yields

Re
(ˆ

∂Ω

u v
)

= SΩ Re
(ˆ

Ω

u v
)

for all v ∈ E(Ω) with ∂z̄v = 0 in Ω. (4.7)

This proves (2.4) at the level or real parts. To get the equality also for the imaginary parts,
given v ∈ E(Ω) with ∂z̄v = 0 in Ω, simply apply (4.7) to the function −iv.

Finally, note that (2.6), that is, SΩ ≥ 2
√
π/|Ω|, is a consequence of (4.1) and Proposition 4.1.

Thus, it only remains to prove that the equality in (2.6) holds if and only if Ω is a disk. On the
one hand, if Ω is a disk of radius r > 0 then, using (2.6), lima↓0 µΩ(a)/a = SΩ, and comparing
the quotient in the definition of SΩ —see (2.3)— with its the value for constant functions, we
deduce that

2

√
π

|Ω|
≤ lim

a↓0

µΩ(a)

a
= SΩ ≤

´
∂Ω
|1|2´

Ω
|1|2

=
|∂Ω|
|Ω|

=
2

r
= 2

√
π

|Ω|
,

which gives the equality in (2.6). On the other hand, if the equality in (2.6) holds, by points (i)
and (ii) already proved, we deduce that

2

√
π

|Ω|
= lim

a↓0

µΩ(a)

a
= SΩ =

´
∂Ω
|uΩ|2´

Ω
|uΩ|2

for some uΩ ∈ E(Ω) \ {0} such ∂z̄uΩ = 0 in Ω.

From this and Proposition 4.1 we conclude that Ω must be a disk (and also that uΩ must be
constant), as desired. �

At this point, we are ready to prove Theorems 2.4 and 2.5. Namely, we show the asymptotic
optimality of the disk, both for the first eigenvalue of the ∂-Robin Laplacian and for the first
nonnegative eigenvalue of the quantum dot Dirac operator.

Proof of Theorem 2.5. Let Ω ⊂ R2 be a bounded domain with C2 boundary, assume that Ω
is not a disk, and let D ⊂ R2 be a disk with the same area as Ω. Then, ΛΩ > ΛD by [13,
Theorem 1.2]. This, together with Theorem 3.3 (ii), leads to

lim
a→+∞

µΩ(a) = ΛΩ > ΛD = lim
a→+∞

µD(a).

Therefore, µΩ(a) > µD(a) for all a > 0 big enough, as desired.
Next, assume in addition that Ω is simply connected. Since Ω is not a disk, Proposition 2.6

yields

lim
a↓0

µΩ(a)

a
> 2

√
π

|Ω|
= 2

√
π

|D|
= lim

a↓0

µD(a)

a
.

From this, it follows that µΩ(a) > µD(a) for all a > 0 small enough, as desired. �

Proof of Theorem 2.4. Let Ω ⊂ R2 be a bounded domain with C2 boundary, assume that Ω is
not a disk, and let D ⊂ R2 be a disk with the same area as Ω. Then, as in the previous proof,
ΛΩ > ΛD, which together with Proposition 3.8 leads to

lim
θ→−π

2
+
λΩ(θ) =

√
ΛΩ +m2 >

√
ΛD +m2 = lim

θ→−π
2

+
λD(θ).
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Therefore, there exists θ0 ∈ (−π
2
, π

2
) such that λΩ(θ) > λD(θ) for all θ ∈ (−π

2
, θ0), as desired.

From now on, assume in addition that Ω is simply connected. Then, by Theorem 2.5, there
exists a1 > 0 depending on Ω such that µΩ(a) > µD(a) for all a ∈ (0, a1). Now, combining
Proposition 3.8 with Theorem 3.3 (ii), identifying y := λD(θ)2 −m2 we see that

lim
θ→π

2
−
µ−1

Ω (λD(θ)2 −m2) = lim
y↓0

µ−1
Ω (y) = 0.

This means that there exists θ1 ∈ (−π
2
, π

2
) (depending on Ω) such that µ−1

Ω (λD(θ)2−m2) ∈ (0, a1)
for all θ ∈ (θ1,

π
2
). Combining the fact that µΩ(a) > µD(a) for all a ∈ (0, a1) with Theorem 2.1 (i)

—in view of (2.1)—, we conclude that λΩ(θ) > λD(θ) for all θ ∈ (θ1,
π
2
), as desired. �

5. Embedding of a Hardy space into a Bergman space

In this section we will establish Proposition 4.1, which was a crucial tool to establish our main
results in the previous section. We will begin the section recalling the quantitative version of a
theorem of Hardy and Littlewood, next we will give a result relating the norm in a Hardy space
with a certain boundary L2-norm, and we will conclude by giving the proof of Proposition 4.1.

In 1932, Hardy and Littlewood proved in [18, Theorem 31] the inclusion of Hardy spaces into
Bergman spaces in the unit disk, but their proof did not give the sharp constant of the injection
map. Based on the ideas of Carleman in [10] for his proof of the isoperimetric inequality using
complex analytic methods, in 2003 Vukotić gave, in [29], a rather elementary proof of the
Hardy-Littlewood result which, moreover, yields the exact value of the norm of the injection
map from Hardy spaces into Bergman spaces, as well as the extremal functions. This result
will be the starting point of our developments in this section. In order to state it in detail, let
us first recall some terminology and basic facts on these spaces.

For D := {z ∈ C : |z| < 1}, one says that f : D → C belongs to the Hardy space Hp(D),
for p > 0, if f is holomorphic in D and

sup
0<r<1

Mp(r, f) < +∞, where Mp(r, f) :=
( 1

2π

ˆ 2π

0

|f(reiφ)|p dφ
)1/p

.

As observed by Hardy in 1915 (see [16, Theorem 1.5]), if p > 0 and f is holomorphic in D then
the map r 7→Mp(r, f) is nondecreasing, hence sup0<r<1Mp(r, f) = limr→1− Mp(r, f). Moreover,
if such limit is finite, it is known that f(eiφ) exists for almost every φ ∈ [0, 2π) and

lim
r→1−

ˆ 2π

0

|f(reiφ)− f(eiφ)|p dφ = 0 as well as lim
r→1−

f(reiφ) = f(eiφ) for a.e. φ; (5.1)

see [16, Theorems 2.2 and 2.6]. Then, as described in [16, page 23 in Section 2.3 for p ≥ 1 or,
more generally, page 35 in Section 3.2 for p > 0], one defines the norm

‖f‖Hp(D) := lim
r→1−

Mp(r, f) =
( 1

2π

ˆ 2π

0

|f(eiφ)|p dφ
)1/p

for f ∈ Hp(D). (5.2)

Finally, recall that the Bergman space Ap(D), for p > 0, is defined as the set of all functions
f holomorphic in D such that

‖f‖Ap(D) :=
( 1

π

ˆ
D
|f |p
)1/p

< +∞.
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After all these considerations, we are ready to state the quantitative version of the theorem
of Hardy and Littlewood given by Vukotić. We must mention that a more general version of
this result was previously shown by Burbea in [9].7

Theorem 5.1. ([29, Theorem in page 534]) For arbitrary p > 0, every function f in Hp(D)
belongs to A2p(D) and satisfies ‖f‖A2p(D) ≤ ‖f‖Hp(D), with equality if and only if f has the form

f(z) = c1

( 1

1− c2z

)2/p

for all z ∈ D,

for some c1, c2 ∈ C with |c2| < 1.

We will only use Theorem 5.1 for p = 2. As can be seen from [29], this is a very simple case:
its proof essentially follows from Taylor series expansions, orthogonality (that is, Parseval’s
identity), and the Cauchy-Schwarz inequality applied to the coefficients. We also mention that
the general case p > 0 in Theorem 5.1 follows from the case p = 2 by taking, for f ∈ Hp(D),
an analytic branch of fp/2 after factoring out the zeroes of f through a Blaschke product.

Now, given a simply connected bounded domain Ω ⊂ R2 with C2 boundary, the first step of
our developments will be to bring Theorem 5.1 for p = 2 to the context of functions u ∈ E(Ω)
such that ∂z̄u = 0 in Ω; recall (2.2) for the definition of E(Ω). This will be done using a
conformal mapping from D to Ω. However, since the boundary trace of a function in E(Ω)
is defined in a Sobolev sense but the H2(D)-norm is defined in terms of the integral means
M2 —recall (5.2)—, as a preliminary step we find convenient to give a detailed proof of the
fact that any holomorphic function u ∈ E(Ω) gives rise, through the conformal mapping, to a
function f ∈ H2(D), whose norm ‖f‖H2(D) agrees with the norm ‖u‖L2(∂Ω). This is the purpose
of the next result.

Lemma 5.2. Let Ω ⊂ R2 be a simply connected bounded domain with C2 boundary, and let
F : D → Ω be a C1(D) conformal map with F (D) = Ω and F (∂D) = ∂Ω. Then, for every
u ∈ E(Ω) such that ∂z̄u = 0 in Ω, the function f := u(F )(∂zF )1/2 belongs to H2(D) and

√
2π‖f‖H2(D) = ‖u‖L2(∂Ω). (5.3)

Proof. First of all, let us mention that since Ω ⊂ R2 ≡ C is a simply connected bounded
domain with C2 boundary, by the Riemann mapping theorem [1, Theorem 1 in Section 6.1.1]
there always exists such a conformal map F ∈ C1(D).

In order to prove that f := u(F )(∂zF )1/2 ∈ H2(D), from [16, Corollary in page 169; Section
10.1], it suffices to show that u belongs to the (Smirnov) class of functions E2(Ω) defined in
[16, page 168; Section 10.1]. More precisely, it is enough to prove that u is holomorphic in
Ω (which holds by assumption) and that there exists a sequence of rectifiable Jordan curves
Γ1,Γ2, . . . in Ω, tending to the boundary in the sense that Γn eventually surrounds each compact
subdomain of Ω, such that

sup
n

ˆ
Γn

|u|2 < +∞. (5.4)

In order to prove this, let us first build the sequence Γn. Let γ = (γ1, γ2) : R/|∂Ω|Z→ ∂Ω ⊂
R2 be an arc-length parametrization of ∂Ω with positive orientation. For every s ∈ R/|∂Ω|Z,
it holds that τ(γ(s)) = γ′(s), ν(γ(s)) = (γ′2(s),−γ′1(s)), and d

ds

(
ν(γ(s))

)
= κ(γ(s))γ′(s), where

7We thank J. Ortega-Cerdà for pointing out this reference, as well as for helpful discussions regarding Hardy
and Bergman spaces.
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κ(z) is the so-called signed curvature of ∂Ω at the point z ∈ ∂Ω. Given an integer n ≥ 1, let
γn : R/|∂Ω|Z→ ∂Ω ⊂ R2 be defined by

γn(s) := γ(s)− 1
n
ν(γ(s)) for s ∈ R/|∂Ω|Z. (5.5)

Since Ω has a C2 boundary, the curves Γn := γn(R/|∂Ω|Z) are in Ω for all n big enough, and
they tend to the boundary as n ↑ +∞ in the sense described above. Moreover,

γ′n(s) =
(
1− 1

n
κ(γ(s))

)
γ′(s) for s ∈ R/|∂Ω|Z. (5.6)

Next we will show that (5.4) holds for the sequence of curves {Γn}n≥n0 if n0 is large enough.
Since u ∈ E(Ω) is such that ∂z̄u = 0 in Ω, by [14, Remark 2.6] (see also [3, Theorem 21]) it
holds that

u(z) =
1

2πi

ˆ
∂Ω

u(ζ)

ζ − z
dζ =

1

2π

ˆ
∂Ω

u(ζ)ν(ζ)

ζ − z
|dζ| = T (uν)(z) (5.7)

for all z ∈ Ω, where |dζ| denotes integration with respect to arc-length —thus, the second
equality in (5.7) follows from the fact that dζ = iν(ζ)|dζ|— and, for f : ∂Ω→ C, we denoted

T f(z) :=

ˆ
∂Ω

k(z − ζ)f(ζ) |dζ| with k(z) := − 1

2πz
.

Note that the operator T is as in [19, (3.2.2)] and k satisfies [19, (3.2.1)]. Therefore, [19,
Proposition 3.20] yields

‖N (T (uν))‖L2(∂Ω) ≤ C‖uν‖L2(∂Ω) = C‖u‖L2(∂Ω) (5.8)

for some C > 0 depending only on Ω. Here, and following [19, (2.1.6)], we denoted by N the
nontangential maximal operator defined, for w : Ω→ C, by

Nw(ζ) := sup{|w(z)| : z ∈ Ω, |ζ − z| < 2 dist(z, ∂Ω)}.
With the estimate (5.8) in hand, (5.4) follows easily, as we will see next. From (5.5) and (5.6),
we see thatˆ

Γn

|u|2 =

ˆ |∂Ω|

0

|u(γn(s))|2|γ′n(s)| ds =

ˆ |∂Ω|

0

∣∣u(γ(s)− 1
n
ν(γ(s))

)∣∣2∣∣(1− 1
n
κ(γ(s))

)∣∣|γ′(s)| ds
Since Ω has C2 boundary, for all n large enough it holds that | 1

n
κ(γ(s))| ≤ 1 for all s. Moreover,

setting z(s) := γ(s) − 1
n
ν(γ(s)), it is clear that, for all n large enough (uniformly in s thanks

to the C2 regularity), z(s) ∈ Ω and |γ(s)− z(s)| = dist(z(s), ∂Ω), and thus

|γ(s)− z(s)| < 2 dist(z(s), ∂Ω) for all s.

This last observation together with (5.7) yields∣∣u(γ(s)− 1
n
ν(γ(s))

)∣∣ = |u(z(s))| = |T (uν)(z(s))| ≤ N (T (uν))(γ(s)) for all s,

whenever n is large enough. Then, combining all these estimates with (5.8), we conclude thatˆ
Γn

|u|2 ≤ 2

ˆ |∂Ω|

0

(
N (T (uν))(γ(s))

)2|γ′(s)| ds = 2‖N (T (uν))‖2
L2(∂Ω) ≤ C‖u‖2

L2(∂Ω)

for all n large enough, where C > 0 depends only on Ω. This proves (5.4) which, as we
mentioned, yields that f := u(F )(∂zF )1/2 ∈ H2(D).

It only remains to prove (5.3), that is,
√

2π‖f‖H2(D) = ‖u‖L2(∂Ω). From (5.1) and (5.2) we
know that

‖f‖H2(D) =
( 1

2π

ˆ 2π

0

lim
r→1−

|f(reiφ)|2 dφ
)1/2

.
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Recall that f(reiφ) = u(F (reiφ))(∂zF (reiφ))1/2. On the one hand, since F ∈ C1(D), we have
that limr→1− ∂zF (reiφ) = ∂zF (eiφ) for all φ. On the other hand, from the comments in [16,
page 45 in Section 3.5], F preserves angles at almost every boundary point, which means that
F (reiφ) approaches F (eiφ) nontangentially as r → 1− for a.e. φ. Therefore, using (5.7) and [19,
Theorem 3.32] we deduce that the limit

unt(F (eiφ)) := lim
r→1−

u(F (reiφ)) = lim
r→1−

T (uν)(F (reiφ)) exists for a.e. φ. (5.9)

Moreover, the fact that u ∈ L2(∂Ω) combined with (5.7) and [14, Lemma 2.7] shows that
u ∈ H1/2(Ω). Then, since ∆u = 4∂z∂z̄u = 0 in Ω, (5.9) and [7, Theorem 3.6 (ii)] give that
unt(F (eiφ)) = u(F (eiφ)) for a.e. φ, where, by abuse of notation, we are denoting by u(F (eiφ)) the
Dirichlet trace of u —in the sense described below (2.2)— evaluated at the point F (eiφ) ∈ ∂Ω.
All in all, we have shown that

lim
r→1−

f(reiφ) = u(F (eiφ))(∂zF (eiφ))1/2 for a.e. φ.

Therefore, using that φ 7→ ζ := F (eiφ) ∈ ∂Ω is a parametrization of ∂Ω and that ∂z̄F = 0 in D
—hence the change of variables φ 7→ ζ leads to |∂zF (eiφ)| dφ 7→ |dζ|—, we conclude that

2π‖f‖2
H2(D) =

ˆ 2π

0

lim
r→1−

|f(reiφ)|2 dφ =

ˆ 2π

0

|u(F (eiφ))|2|∂zF (eiφ)| dφ = ‖u‖2
L2(∂Ω),

which is (5.3). �

As a consequence of Theorem 5.1 for p = 2 and Lemma 5.2, we can finally establish the sharp
inequality of Proposition 4.1.

Proof of Proposition 4.1. Given u ∈ E(Ω) with ∂z̄u = 0 in Ω, let F and f := u(F )(∂zF )1/2 ∈
H2(D) be as in Lemma 5.2. By Theorem 5.1 for p = 2, f ∈ A4(D) and ‖f‖A4(D) ≤ ‖f‖H2(D).
Thus, by Lemma 5.2, we have

‖f‖A4(D) ≤ ‖f‖H2(D) =
1√
2π
‖u‖L2(∂Ω). (5.10)

Now, since ∂z̄F = 0 in D, by the change of variables formula in complex notation we have thatˆ
Ω

|u|2 =

ˆ
F (D)

|u|2 =

ˆ
D
|u(F )|2|∂zF |2 =

ˆ
D
|u(F )(∂zF )1/2|2|∂zF | =

ˆ
D
|f |2|∂zF |.

Therefore, using the Cauchy-Schwarz inequality, the definition of ‖ · ‖A4(D), (5.10), and the fact
that ‖∂zF‖2

L2(D) = |Ω|, we get

‖u‖2
L2(Ω) ≤ ‖f‖2

L4(D)‖∂zF‖L2(D) =
√
π‖f‖2

A4(D)‖∂zF‖L2(D)

≤ 1

2
√
π
‖u‖L2(∂Ω)‖∂zF‖L2(D) =

1

2

√
|Ω|
π
‖u‖2

L2(∂Ω),

which proves (4.2).
Moreover, from this chain of inequalities we see that the equality in (4.2) holds if and only

if there is equality both in the Cauchy-Schwarz inequality and (5.10). If u does not vanish
identically, the first one yields |∂zF | = c|f 2| in D for some c > 0 and, in view of Theorem 5.1,
the second one leads to

f(z) =
c1

1− c2z
for all z ∈ D, (5.11)
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for some c1, c2 ∈ C with c1 6= 0 and |c2| < 1. Note that the equality |∂zF | = c|f 2| means that
∂zF = ceihf 2 in D for some h : D→ R. Using (5.11), this in turn implies that

eih(z) =
∂zF (z)

cf(z)2
=

(1− c2z)2

cc2
1

∂zF (z) for all z ∈ D.

Since the right-hand side is a holomorphic function in D but the left-hand side takes values in
∂D (which has empty interior), the open mapping theorem for holomorphic functions forces h
to be a constant function. Therefore, we deduce that

∂zF (z) =
c3

(1− c2z)2
for all z ∈ D and some c2, c3 ∈ C with c3 6= 0 and |c2| < 1. (5.12)

To conclude, we distinguish two cases. Assume first that c2 = 0 in (5.12). Then, using that
∂z̄F = 0, we deduce that F (z) = c3z + c4 for some c3, c4 ∈ C with c3 6= 0. This shows that
Ω = F (D) is a disk. Moreover, since h is constant, we have ∂zF = c′f 2 = c′u(F )2∂zF with
c′ := ceih ∈ C, which forces u(F )2 and u to be constant functions in D and Ω, respectively.

Assume now that c2 6= 0. Then (5.12) gives

∂zF (z) =
c3

(1− c2z)2
=
c3

c2

∂z

( 1

1− c2z

)
,

which, using that ∂z̄F = 0, means that

F (z) =
c4

1− c2z
+ c5 for all z ∈ D,

for some c2, c4, c5 ∈ C with c4 6= 0 and |c2| < 1. It is well known that such transformations
F carry disks onto disks or half-planes (see, for example, [1, Theorem 14 in Section 3.3]).
Since Ω is bounded, we conclude that Ω = F (D) is a disk. Now, as before, the equalities
∂zF = c′f 2 = c′u(F )2∂zF force u to be a constant function in Ω.

In conclusion, we have seen that if u does not vanish identically and the equality in (4.2)
holds then Ω is a disk and u is a constant function. Conversely, if Ω is a disk of radius r > 0
and u is constant in Ω, we get

‖u‖2
L2(Ω) = |u|2|Ω| = |u|2πr2 =

1

2

√
πr2

π
|u|22πr =

1

2

√
|Ω|
π
|u|2|∂Ω| = 1

2

√
|Ω|
π
‖u‖2

L2(∂Ω),

as desired. �

6. Quantum dots with negative mass

This section is mainly devoted to the proof of Theorem 2.7. Namely, assuming that m < 0,
we will give a characterization of the smallest θ ∈ (−π

2
, π

2
) for which |m| is an eigenvalue of Dθ.

More precisely, we will show that

min
{
θ ∈ (−π

2
, π

2
) : (2.7) has a nonzero solution

}
= ϑ−1

(
2|m|
SΩ

)
;

this is (2.8) in Theorem 2.7. As we see, this characterization turns out to be related with
the constant SΩ, defined in (2.3). Then, the optimality of the disk among simply connected
domains will follow from Proposition 2.6. Finally, by unitary equivalence we can rewrite the
result for θ ∈ (π

2
, 3π

2
) and m > 0 as stated in Corollary 2.8.
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Proof of Theorem 2.7. Let us address the proof of (2.8). As a first step, we will show that

inf
{
θ ∈ (−π

2
, π

2
) : (2.7) has a nonzero solution

}
≥ ϑ−1

(
2|m|
SΩ

)
. (6.1)

Assume that, for a given θ ∈ (−π
2
, π

2
), we have a nonzero solution to the eigenvalue prob-

lem (2.7). Writing the equation Dθϕ = |m|ϕ and the boundary condition of ϕ ∈ Dom(Dθ) in
terms of its components ϕ = (u, v)ᵀ we get

−i∂zv = |m|u in L2(Ω),

∂z̄u = 0 in L2(Ω),

v = iϑ(θ)νu in H1/2(∂Ω).

(6.2)

If we multiply the first equation by u, integrate by parts, use that ∂z̄u = 0 in Ω by the second
equation, and apply the boundary condition from the third equation, we end up with

|m|
ˆ

Ω

|u|2 = −i
ˆ

Ω

∂zv u = i

ˆ
Ω

v ∂z̄u−
i

2

ˆ
∂Ω

νvu =
ϑ(θ)

2

ˆ
∂Ω

|u|2. (6.3)

Note that, since m < 0 and ϕ is assumed to be a nonzero solution, we must have
´
∂Ω
|u|2 > 0.

Otherwise, (6.3) would imply that u = 0 in Ω, and then the first and third equation in (6.2)
would imply that ∂zv = 0 in Ω and v = 0 on ∂Ω respectively, which would lead to v = 0 in Ω
and, thus, ϕ = 0 in Ω, reaching a contradiction. Therefore, from (6.3), the second equation
in (6.2), and the definition of SΩ (2.3), we deduce that

ϑ(θ) = 2|m|
´

Ω
|u|2´

∂Ω
|u|2
≤ 2|m| sup

w∈E(Ω)\{0}: ∂z̄w=0 in Ω

´
Ω
|w|2´

∂Ω
|w|2

=
2|m|
SΩ

≤ |m|
√
|Ω|
π
.

From this, and using also that ϑ−1 is strictly decreasing in (0,+∞), we arrive to (6.1).
The next step will be to prove that the infimum on the left-hand side of (6.1) is attained

and that the inequality is actually an equality, which is precisely what (2.8) states. For this
purpose, set

θΩ := ϑ−1
(2|m|
SΩ

)
, (6.4)

and recall from Proposition 2.6 (i) that

SΩ =

´
∂Ω
|uΩ|2´

Ω
|uΩ|2

for some uΩ ∈ H1(Ω) \ {0} with ∂z̄uΩ = 0 in Ω, (6.5)

and that ˆ
∂Ω

uΩw = SΩ

ˆ
Ω

uΩ w for any w ∈ E(Ω) \ {0} with ∂z̄w = 0 in Ω. (6.6)

We will see that uΩ yields a nonzero solution to (6.2) for θΩ and a suitably chosen function vΩ.
Since (6.2) and (2.7) are equivalent formulations of the same problem, this means that we will
have a nonzero solution to (2.7) for θ = θΩ. Once this is shown, (2.8) follows from (6.1).

For θΩ and uΩ as in (6.4) and (6.5), let vΩ be the unique solution in H1(Ω) to the Dirichlet
problem {

∆vΩ = 0 in Ω,

vΩ = iϑ(θΩ)νuΩ in H1/2(∂Ω).
(6.7)
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Since ∂z̄uΩ = 0 in Ω and vΩ = iϑ(θΩ)νuΩ in H1/2(∂Ω), to get (6.2) we only need to show that

− i∂zvΩ = |m|uΩ in L2(Ω). (6.8)

In order to prove this, recall that the Bergman space

A2(Ω) := {f ∈ L2(Ω) : ∂z̄f = 0 in Ω}

is a closed subspace of L2(Ω) (see [11, Proposition 1.13]) and, thus, the orthogonal projections
P : L2(Ω) → A2(Ω) ⊂ L2(Ω) and P⊥ := Id − P : L2(Ω) → L2(Ω) are well-defined bounded
self-adjoint operators in L2(Ω). In particular, given h ∈ C∞c (Ω) ⊂ E(Ω), by [14, Lemma 2.10]
we have that h = Ph+ P⊥h and

∂z̄(Ph) = 0 in Ω with Ph ∈ L2(∂Ω),

ˆ
Ω

wP⊥h = 0 for all w ∈ A2(Ω). (6.9)

With these ingredients in hand, the proof of (6.8) follows easily. Indeed, by integration by
parts, we see thatˆ

Ω

(−i∂zvΩ)h = −i
ˆ

Ω

∂zvΩPh− i
ˆ

Ω

∂zvΩP⊥h

= i

ˆ
Ω

vΩ∂z̄(Ph)− i

2

ˆ
∂Ω

νvΩPh− i
ˆ

Ω

∂zvΩP⊥h.

(6.10)

The first term in the right-hand side of (6.10) vanishes by the first equality in (6.9), while the
last term in the right-hand side of (6.10) vanishes by the last equality in (6.9) and the fact that
∂zvΩ ∈ A2(Ω), since vΩ ∈ H1(Ω) and ∂z̄(∂zvΩ) = 1

4
∆vΩ = 0 in Ω by (6.7). Therefore, applying

this, the boundary condition of (6.7), (6.6), the definition of θΩ in (6.4), and the last equality
in (6.9) to (6.10) leads toˆ

Ω

(−i∂zvΩ)h =
ϑ(θΩ)

2

ˆ
∂Ω

uΩPh =
ϑ(θΩ)

2
SΩ

ˆ
Ω

uΩPh

= |m|
ˆ

Ω

uΩPh = |m|
ˆ

Ω

uΩ(Ph+ P⊥h) =

ˆ
Ω

(|m|uΩ)h.

Since this holds for all h ∈ C∞c (Ω), (6.8) follows by a density argument, and the proof of (2.8)
is complete.

The proof of (2.9) follows easily from (2.8), (6.5), Proposition 4.1, and the fact that ϑ−1 is a
strictly decreasing function. �

As mentioned in the introduction, using the unitary equivalence between the operators Dθ(m)
and −Dπ−θ(−m) (see Appendix A.2), Theorem 2.7 leads to a shape optimization result for
Dθ(m) when m > 0 and θ ∈ (π

2
, 3π

2
).

Proof of Corollary 2.8. Assume that ϕ is a nonzero solution to (2.10), that is, to{
ϕ ∈ Dom

(
Dθ(m)

)
,

Dθ(m)ϕ = −mϕ in L2(Ω)2.

Then, setting ψ := σ3ϕ —recall that ψ ∈ Dom
(
Dπ−θ(−m)

)
by (A.2)—, from (A.3) we see that

Dπ−θ(−m)ψ = −σ3Dθ(m)σ3ψ = −σ3Dθ(m)ϕ = mσ3ϕ = mψ = |m|ψ.
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Thus, we get a nonzero solution to the eigenvalue problem{
ψ ∈ Dom

(
Dθ∗(−m)

)
,

Dθ∗(−m)ψ = |m|ψ in L2(Ω)2
(6.11)

with θ∗ := π − θ ∈ (−π
2
, π

2
). That a nonzero solution to (6.11) leads to a nonzero solution to

(2.10) follows analogously. With these observations in hand, the proof of the theorem follows
directly from Theorem 2.7 applied to the eigenvalue problem (6.11), taking into account the
relation θ = π − θ∗. �

Appendix A.

A.1. Notation. In this section we recall some basic notation used within the paper. Through-
out the work, Ω denotes a bounded domain in R2 with C2 boundary. Regarding integration, we
consider the natural measures depending on the situation: the Lebesgue measure on Ω and the
surface (arc-length) measure on ∂Ω. However, the reader should be aware that in Section 4 we
also make use of the line integral on Ω in the complex sense. For the sake of simplicity, when
computing integrals, we omit the measure of integration if it is clear from the context.

We denote by L2(Ω) the Hilbert space of functions u : Ω → C endowed with the scalar
product and the associated norm

〈u, v〉L2(Ω) :=

ˆ
Ω

u v and ‖u‖L2(Ω) :=
√
〈u, u〉L2(Ω),

respectively. We denote by H1(Ω) the Sobolev space of functions in L2(Ω) with first weak
partial derivatives in L2(Ω).

Similarly, L2(∂Ω) denotes the Hilbert space of functions u : ∂Ω→ C endowed with the scalar
product and the associated norm

〈u, v〉L2(∂Ω) :=

ˆ
∂Ω

u v and ‖u‖L2(∂Ω) :=
√
〈u, u〉L2(∂Ω),

respectively. We denote by H1/2(∂Ω) the fractional Sobolev space of functions u ∈ L2(∂Ω) such
that

‖u‖H1/2(∂Ω) :=
( ˆ

∂Ω

|u|2 +

ˆ
∂Ω

ˆ
∂Ω

|u(x)− u(y)|2

|x− y|2
|dy||dx|

)1/2

< +∞.

Here, |dx| and |dy| denote integration with respect to arc-length8 on ∂Ω.
The continuous dual of H1/2(∂Ω) is denoted by H−1/2(∂Ω). The action of u ∈ H−1/2(∂Ω) on

v ∈ H1/2(∂Ω) is denoted by 〈u, v〉H−1/2(∂Ω),H1/2(∂Ω), and the norm in H−1/2(∂Ω) is

‖u‖H−1/2(∂Ω) := sup
‖u‖

H1/2(∂Ω)
≤1

〈u, v〉H−1/2(∂Ω),H1/2(∂Ω).

Recall that

〈u, v〉H−1/2(∂Ω),H1/2(∂Ω) = 〈v, u〉L2(∂Ω) (A.1)

whenever u ∈ L2(∂Ω) ⊂ H−1/2(∂Ω) and v ∈ H1/2(∂Ω) ⊂ L2(∂Ω); see for example [8, Remark 3
in Section 5.2]. The reason why the functions u and v do not appear in the same order in both
sides of (A.1) is that we defined 〈·, ·〉L2(∂Ω) to be linear with respect to the first entry.

8We use the same notation as in [16] in order to distinguish the integration with respect to arc-length (denoted
by |dz| for z ∈ ∂Ω) and the line integral in complex variables (denoted by dz for z ∈ ∂Ω and used in Section 4).
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Finally, we denote X2 := X × X for X any of the spaces defined above, with the natural
scalar products and norms.

A.2. Invariances of the Dirac operator. Here we give a detailed explanation of the unitary
equivalences that we have used in this work. For this, recall that Dθ(m) is defined by

Dom
(
Dθ(m)

)
:=
{
ϕ ∈ H1(Ω)2 : ϕ = (cos θ σ · τ + sin θ σ3)ϕ in H1/2(∂Ω)2

}
,

Dθ(m)ϕ := (−iσ · ∇+mσ3)ϕ for all ϕ ∈ Dom
(
Dθ(m)

)
.

•Charge conjugation. Assume that ϕ ∈ Dom
(
Dθ(m)

)
and consider the charge conjugation

ψ := σ1ϕ ∈ H1(Ω)2.

From the boundary condition that ϕ satisfies (and the fact that σ1σ2 = σ2σ1), we see that

ψ = σ1ϕ = σ1(cos θ σ · τ + sin θ σ3)ϕ = σ1(cos θ σ1τ1 + cos θ σ2τ2 + sin θ σ3)ϕ

= (cos θ σ1τ1 + cos θ σ2τ2 − sin θ σ3)σ1ϕ = (cos(−θ)σ · τ + sin(−θ)σ3)ψ,

which shows that ψ ∈ Dom
(
D−θ(m)

)
. In addition, since σ2 = −σ2,

D−θ(m)ψ = (−iσ1∂1 − iσ2∂2 +mσ3)σ1ϕ = σ1(−iσ1∂1 + iσ2∂2 −mσ3)ϕ

= σ1(iσ1∂1 − iσ2∂2 −mσ3)ϕ = σ1(iσ1∂1 + iσ2∂2 −mσ3)ϕ

= −σ1(−iσ · ∇+mσ3)ϕ = −σ1Dθ(m)ϕ.

Since these arguments are reversible, we deduce that ϕ is an eigenfunction of Dθ(m) with
eigenvalue λ ∈ R if and only if ψ is an eigenfunction of D−θ(m) with eigenvalue −λ.

Note that this invariance is precisely illustrated by the odd symmetry with respect to 0 and
π in Figure 1 and Figure 4.

• Chiral transformation. Assume that ϕ ∈ Dom
(
Dθ(m)

)
and consider

ψ := σ3ϕ ∈ H1(Ω)2.

From the boundary condition that ϕ satisfies (and the fact that σ3σ = −σσ3), we see that

ψ = σ3ϕ = σ3(cos θ σ · τ + sin θ σ3)ϕ = (− cos θ σ · τ + sin θ σ3)σ3ϕ

= (− cos θ σ · τ + sin θ σ3)ψ = (cos(π − θ)σ · τ + sin(π − θ)σ3)ψ.
(A.2)

In addition, we have

σ3(−iσ · ∇+mσ3)σ3 = −(−iσ · ∇ −mσ3).

These two simple facts show that

σ3Dθ(m)σ3 = −Dπ−θ(−m) for all θ,m ∈ R, (A.3)

which means that Dθ(m) is unitarily equivalent to −Dπ−θ(−m) —this unitary equivalence
was already considered in [20, Lemma 3.2]. Therefore, the spectral study of Dθ(m) for θ ∈
(−π

2
, 3π

2
)\{π

2
} reduces to the one of Dθ(m) and Dθ(−m) for θ ∈ (−π

2
, π

2
), since −π

2
< π− θ < π

2

whenever π
2
< θ < 3π

2
. In particular, ϕ is an eigenfunction of Dθ(m) with eigenvalue λ ∈ R if

and only if ψ is an eigenfunction of Dπ−θ(m) with eigenvalue −λ.
Note that this invariance is precisely illustrated by comparing Figure 1 and Figure 4.
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die kreisförmige die tiefsten Grundton gibt, Sitzungsber.-Bayer. Akad. Wiss., Math.-Phys. Munich.
(1923), 169–172.

[18] G. H. Hardy, J. E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (1932), 403–
439.

[19] S. Hofmann, M. Mitrea, M. Taylor, Singular Integrals and Elliptic Boundary Problems on Regular
Semmes-Kenig-Toro Domains, International Mathematics Research Notices, 14, (2010), 2567–2865.

[20] M. Holzmann, A note on the three dimensional Dirac operator with zigzag type boundary conditions,
Complex Analysis and Operator Theory, 15, 47 (2021), 1–15.

[21] T. Kato, Perturbation Theory for Linear Operators, Springer, (1995).
[22] E. Krahn, Uber eine von Rayleigh formulierte Minmaleigenschaft des Kreises, Math. Ann. 94 (1925),

97–100.
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Centre de Recerca Matemàtica, Edifici C, Campus Bellaterra, 08193 Bellaterra, Spain

Email address: jduran@crm.cat

A. Mas 1,2
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1 Departament de Matemàtiques i Informàtica, Universitat de Barcelona, Gran Via de les
Corts Catalanes 585, 08007, Barcelona, Spain
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