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Abstract. This paper addresses saddle-shaped solutions to the semilinear equation
LKu = f(u) in R2m, where LK is a linear elliptic integro-differential operator with a
radially symmetric kernel K, and f is of Allen-Cahn type. Saddle-shaped solutions are
doubly radial, odd with respect to the Simons cone {(x′, x′′) ∈ Rm×Rm : |x′| = |x′′|},
and vanish only in this set.

We establish the uniqueness and the asymptotic behavior of the saddle-shaped
solution. For this, we prove a Liouville type result, the one-dimensional symmetry
of positive solutions to semilinear problems in a half-space, and maximum principles
in “narrow” sets. The existence of the solution was already proved in part I of this
work.

1. Introduction

In this paper we study saddle-shaped solutions to the semilinear equation

LKu = f(u) in R2m, (1.1)

where LK is a linear integro-differential operator of the form (1.2) and f is of Allen-
Cahn type. These solutions (see Definition 1.1 below) are particularly interesting in
relation to the nonlocal version of a conjecture by De Giorgi, with the aim of finding a
counterexample in high dimensions. Moreover, this problem is related to the regularity
theory of nonlocal minimal surfaces (see Subsection 1.3).

Previous to this article and its first part [29], there are only three works devoted
to saddle-shaped solutions to the equation (1.1) with LK being the fractional Lapla-
cian. In [16, 17], Cinti proved the existence of a saddle-shaped solution as well as some
qualitative properties, such as asymptotic behavior, monotonicity properties, and in-
stability in even dimensions 2m ≤ 6. In a previous paper by the authors [28], further
properties of these solutions were proved, the main ones being uniqueness and, when

Key words and phrases. Integro-differential semilinear equation, saddle-shaped solution, odd sym-
metry, Simons cone, symmetry results.

Both authors acknowledge financial support from the Spanish Ministry of Economy and Com-
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2m ≥ 14, stability. The possible stability in dimensions 8, 10, and 12 is still an open
problem, as well as the possible minimality of this solution in dimensions 2m ≥ 8.
Concerning saddle-shaped solutions to the classical Allen-Cahn equation −∆u = f(u),
the same results are established; see [10] and the references therein. The stability of
the saddle-shaped solution to −∆u = u− u3 in dimensions n = 8, 10, and 12 has been
recently announced [35].

The present paper together with its first part [29] are the first ones in the literature
studying saddle-shaped solutions for general integro-differential equations of the form
(1.1). In the three previous papers [16, 17, 28], the extension problem for the fractional
Laplacian was a key tool. Since this technique cannot be carried out for general integro-
differential operators, some purely nonlocal techniques were developed in [29] and we
exploit them in this article.

In part I, we established an appropriate setting to study solutions to (1.1) that are
doubly radial and odd with respect to the Simons cone, a property that is satisfied
by saddle-shaped solutions (see Subsection 1.1). We found an alternative and useful
expression for the operator LK when acting on doubly radial odd functions —see (1.5).
This was used to establish maximum principles for odd functions under a convexity
assumption on the kernel K of the operator LK —see (1.8). Moreover, we proved an
energy estimate for doubly radial and odd minimizers of the energy associated to the
equation, as well as the existence of saddle-shaped solutions to (1.1).

In the current paper, we further study saddle-shaped solutions to (1.1), by proving
their uniqueness and asymptotic behavior. To establish the uniqueness (Theorem 1.2)
we use a maximum principle for the linearized operator LK−f ′(u) (Proposition 1.4). To
prove the asymptotic behavior (Theorem 1.3), we use two ingredients: a Liouville type
theorem (Theorem 1.5) and a one-dimensional symmetry result (Theorem 1.6), both for
semilinear equations of the form (1.1) under some hypotheses on f . The first of these
results is obtained by adapting the ideas of Berestycki, Hamel, and Nadirashvili [6] to
the nonlocal framework, and requires a Harnack inequality and a parabolic maximum
principle. The second one requires the sliding method and the moving planes argument,
extended to a general integro-differential setting.

In addition to the previous results, in this paper we establish further properties of
the so-called layer solution u0 (see Section 5). We also include an alternative proof of
the existence of the saddle-shaped solution using the monotone iteration method (as
an alternative to the proof in [29] where we used variational techniques).

Equation (1.1) is driven by a linear integro-differential operator LK of the form

LKw(x) =

�
Rn

(
w(x)− w(y)

)
K(x− y) dy. (1.2)

The most canonical example of such operators is the fractional Laplacian, which cor-
responds to the kernel K(z) = cn,γ|z|−n−2γ, where γ ∈ (0, 1) and cn,γ is a normalizing
positive constant —see (5.2). Note that some of the results in this paper are new even
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for the fractional Laplacian (namely Proposition 1.4 and the statement on odd solu-
tions of Theorem 1.6), while others are only proved in the literature using the extension
problem (in contrast with our proofs).

Throughout the paper, we assume that K is symmetric, i.e.,

K(z) = K(−z), (1.3)

and that LK is uniformly elliptic, that is,

λ
cn,γ
|z|n+2γ

≤ K(z) ≤ Λ
cn,γ
|z|n+2γ

, (1.4)

where λ and Λ are two positive constants. Conditions (1.3) and (1.4) are frequently
adopted since they yield Hölder regularity of solutions (see [37, 42]). The family of
linear operators satisfying these two conditions is the so-called L0(n, γ, λ,Λ) ellipticity
class. For short we will usually write L0 and we will make explicit the parameters only
when needed.

When dealing with doubly radial functions we will assume that the operator LK is
rotation invariant, that is, K is radially symmetric. This extra assumption allows us
to rewrite the operator in a suitable form when acting on doubly radial odd functions,
as explained next.

1.1. Integro-differential setting for odd functions with respect to the Simons
cone. In this subsection we present the basic definitions and terminology used along
the paper. We also recall the setting established in part I [29] to study the saddle-
shaped solution (we refer to that article for more details).

First, we present the Simons cone, a central object along this paper. It is defined in
R2m by

C :=
{
x = (x′, x′′) ∈ Rm × Rm = R2m : |x′| = |x′′|

}
.

This cone is of importance in the theory of (local and nonlocal) minimal surfaces (see
Subsection 1.3). We will use the letters O and I to denote each of the parts in which
R2m is divided by the cone C :

O :=
{
x = (x′, x′′) ∈ R2m : |x′| > |x′′|

}
and I :=

{
x = (x′, x′′) ∈ R2m : |x′| < |x′′|

}
.

Both O and I belong to a family of sets in R2m which are called of double revolu-
tion. These are sets that are invariant under orthogonal transformations in the first m
variables, as well as under orthogonal transformations in the last m variables. Related
to this concept, we say that a function w : R2m → R is doubly radial if it depends only
on the modulus of the first m variables and on the modulus of the last m ones, i.e.,
w(x) = w(|x′|, |x′′|).

We recall now the definition of (·)?, an isometry that played a significant role in
part I. It is defined by

(·)? : R2m = Rm × Rm → R2m = Rm × Rm

x = (x′, x′′) 7→ x? = (x′′, x′) .
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Note that this isometry is actually an involution that maps O into I (and vice versa)
and leaves the cone C invariant —although not all points in C are fixed points of (·)?,
for instance, x = (1, 0, . . . , 0, 1). Taking into account this transformation, we say that
a doubly radial function w is odd with respect to the Simons cone if w(x) = −w(x?).

Now we can define saddle-shaped solutions.

Definition 1.1. We say that a bounded solution u to (1.1) is a saddle-shaped solution
(or simply saddle solution) if

(1) u is doubly radial.
(2) u is odd with respect to the Simons cone.
(3) u > 0 in O = {|x′| > |x′′|}.

Note that these solutions are even with respect to the coordinate axes and that their
zero level set is the Simons cone C = {|x′| = |x′′|}.

In part I, we developed a purely nonlocal theory regarding the integro-differential
operator LK when acting on odd solutions with respect to the Simons cone. First,
recall that if K is a radially symmetric kernel we can rewrite the operator acting on a
doubly radial function w as

LKw(x) =

�
R2m

(
w(x)− w(y)

)
K(x, y) dy ,

where K is doubly radial in both variables and is defined by

K(x, y) :=

 
O(m)2

K(|Rx− y|) dR .

Here, dR denotes integration with respect to the Haar measure on O(m)2, where
O(m) is the orthogonal group of Rm. It is important to notice that, in contrast with
K = K(x− y), the kernel K is no longer translation invariant (i.e., it is a function of
x and y but not of the difference x− y).

If we consider doubly radial functions that are, in addition, odd with respect to the
Simons cone, we can use the involution (·)? to find that

LKw(x) =

�
O

(
w(x)− w(y)

)(
K(x, y)−K(x, y?)

)
dy + 2w(x)

�
O
K(x, y?) dy . (1.5)

Furthermore,

1

C
dist(x,C )−2γ ≤

�
O
K(x, y?) dy ≤ C dist(x,C )−2γ, (1.6)

with C > 0 depending only on m, γ, λ, and Λ.
Note that the expression (1.5) has an integro-differential part plus a term of order

zero with a positive coefficient. Thus, the most natural assumption to make in order
to have an elliptic operator (when acting on doubly radial odd functions) is that the
kernel of the integro-differential term is positive. That is,

K(x, y)−K(x, y?) > 0 for every x, y ∈ O . (1.7)
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One of the main results in part I established a necessary and sufficient condition on
the original kernel K for LK to have a positive kernel when acting on doubly radial
odd functions. It turns to be

K(
√
τ) is a strictly convex function of τ . (1.8)

The positivity of the kernel of LK when acting on doubly-radial odd functions was
crucial in order to obtain the existence of the saddle-shaped solution. As we will see, it
is essential as well to establish the uniqueness. Therefore, (1.8) will be a key assumption
in some of our results.

1.2. Main results. Through all the paper we will assume that f , the nonlinearity in
(1.1), is a C1 function satisfying

f is odd, f(±1) = 0, and f is strictly concave in (0, 1). (1.9)

It is easy to see that these properties yield f > 0 in (0, 1), f ′(0) > 0 and f ′(±1) < 0.
In some statements in this article, we will denote by L1

γ(Rn) the space of measurable
functions w satisfying �

Rn

|w(x)|
1 + |x|n+2γ

dx < +∞ .

This regularity will be required on a function w (in addition to Cα Hölder continuity,
with α > 2γ) to ensure that LKw is well-defined.

The first main result of this paper concerns uniqueness of saddle-shaped solution.

Theorem 1.2. Let f satisfy (1.9). Let K be a radially symmetric kernel satisfying the
convexity assumption (1.8) and such that LK ∈ L0(2m, γ, λ,Λ).

Then, for every even dimension 2m ≥ 2, there exists a unique saddle-shaped solution
u to (1.1). In addition, u satisfies |u| < 1 in R2m.

To establish the uniqueness of the saddle-shaped solution we will need two ingredi-
ents: the asymptotic behavior of saddle-shaped solutions and a maximum principle for
the linearized operator in O. Both results will be described below. The existence of
saddle-shaped solutions was already proved in part I [29] using variational techniques.
Here, we show that it can also be established using, instead, the monotone iteration
procedure. Let us remark that, in both methods, having the convexity assumption
(1.8) is crucial.

The second main result of this paper is Theorem 1.3 below, on the asymptotic be-
havior of a saddle-shaped solution at infinity. To state it, let us introduce an important
type of solutions in the study of the integro-differential Allen-Cahn equation: the layer
solutions.

We say that a solution v to LKv = f(v) in Rn is a layer solution if v is increasing in
one direction, say e ∈ Sn−1, and v(x)→ ±1 as x · e→ ±∞ (not necessarily uniform).
When n = 1, a result of Cozzi and Passalacqua (Theorem 1 in [21]) establishes the
existence and uniqueness (up to translations) of a layer solution. In addition, this
solution is odd with respect to some point. They assume the kernel to be in the
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ellipticity class L0(1, γ, λ,Λ) and the nonlinearity satisfying (1.9). In the case of the
fractional Laplacian this result was proved in [12, 11] using the extension problem.

Given K a translation invariant kernel in Rn, we define a new kernel K1 in R as

K1(τ) :=

�
Rn−1

K (θ, τ) dθ = |τ |n−1

�
Rn−1

K (τσ, τ) dσ.

Then, we denote by u0 the (unique) layer solution in R associated to LK1 that vanishes
at the origin. That is, 

LK1u0 = f(u0) in R ,
u̇0 > 0 in R ,

u0(x) = −u0(−x) in R ,
lim

x→±∞
u0(x) = ±1.

(1.10)

This solution will play an important role to establish the asymptotic behavior of saddle-
shaped solutions. Indeed, its importance lies in that the associated function

U(x) := u0

(
|x′| − |x′′|√

2

)
(1.11)

will describe the asymptotic behavior of saddle solutions at infinity. Note that (|x′| −
|x′′|)/

√
2 is the signed distance to the Simons cone (see Lemma 4.2 in [13]). Therefore,

the function U consists of “copies” of the layer solution u0 centered at each point of
the Simons cone and oriented in the normal direction to the cone.

The precise statement on the asymptotic behavior of saddle-shaped solutions at
infinity is the following.

Theorem 1.3. Let f ∈ C2(R) satisfy (1.9). Let K be a radially symmetric kernel
satisfying the convexity assumption (1.8) and such that LK ∈ L0(2m, γ, λ,Λ). Let u be
a saddle-shaped solution to (1.1) and let U be the function defined by (1.11).

Then,

‖u− U‖L∞(Rn\BR) + ‖∇u−∇U‖L∞(Rn\BR) +
∥∥D2u−D2U

∥∥
L∞(Rn\BR)

→ 0

as R→ +∞.

Let us now describe some of the main ingredients that are used to prove Theorems 1.2
and 1.3. Concerning the uniqueness of the saddle-shaped solution, besides the asymp-
totic behavior described in Theorem 1.3 we also need the following maximum principle
in O for the linearized operator LK − f ′(u).

Proposition 1.4. Let Ω ⊂ O be an open set (not necessarily bounded) and let K be
a radially symmetric kernel satisfying the convexity assumption (1.8) and such that
LK ∈ L0(2m, γ, λ,Λ). Let u be a saddle-shaped solution to (1.1), and let v ∈ L1

γ(R2m)
be a doubly radial function which is Cα in Ω and continuous up to the boundary, for
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some α > 2γ. Assume that v satisfies
LKv − f ′(u)v − c(x)v ≤ 0 in Ω ,

v ≤ 0 in O \ Ω ,
−v(x?) = v(x) in R2m,

lim sup
x∈Ω, |x|→∞

v(x) ≤ 0 ,

with c ≤ 0 in Ω.
Then, v ≤ 0 in Ω.

To establish it, the key tool is to use a maximum principle in “narrow” sets, also
proved in Section 6. Our proof of this result is much simpler than that of the analogue
maximum principle for the classical Laplacian. This is an example of how the nonlo-
cality of the operator can make some arguments easier and less technical (informally
speaking, the reason would be that LK “sees more”, or “further”, than the Laplacian).
It is also interesting to notice that the proof of Proposition 1.4 is by far simpler than the
one using the extension problem in the case of the fractional Laplacian (Proposition 1.4
in [28]). In the proof, the positivity condition (1.7) —guaranteed by the convexity of
the kernel— is crucial, together with the bounds (1.6).

Regarding the proof of Theorem 1.3, to establish the asymptotic behavior of saddle-
shaped solutions we use a compactness argument as in [13, 16, 17], together with
two important results presented next and established in Section 4. The first one,
Theorem 1.5, is a Liouville type principle for nonnegative solutions to a semilinear
equation in the whole space. This result, in contrast with the previous ones, does not
require the kernel K to be radially symmetric, but only to satisfy (1.3) and (1.4).

Theorem 1.5. Let LK ∈ L0(n, γ, λ,Λ) and let v be a bounded solution to{
LKv = f(v) in Rn ,

v ≥ 0 in Rn ,
(1.12)

with a nonlinearity f ∈ C1 satisfying

• f(0) = f(1) = 0,
• f ′(0) > 0,
• f > 0 in (0, 1), and f < 0 in (1,+∞).

Then, v ≡ 0 or v ≡ 1.

Similar classification results have been proved for the fractional Laplacian in [15, 34]
(either using the extension problem or not) with the method of moving spheres, which
uses crucially the scale invariance of the operator (−∆)γ. To the best of our knowledge,
there is no similar result available in the literature for general kernels in the ellipticity
class L0 (which are not necessarily scale invariant). Thus, we present here a proof based
on the techniques introduced by Berestycki, Hamel, and Nadirashvili [6] for the local
equation with the classical Laplacian. It relies on a maximum principle for a nonlinear
heat equation, the translation invariance of the operator, a Harnack inequality, and a
stability argument.
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The second ingredient needed to prove the asymptotic behavior of saddle-shaped
solutions is a symmetry result for equations in a half-space, stated next. Here and in
the rest of the paper we use the notation Rn

+ = {(xH , xn) ∈ Rn−1 × R : xn > 0}.

Theorem 1.6. Let LK ∈ L0(n, γ, λ,Λ) and let v be a bounded solution to one of the
following two problems: either to LKv = f(v) in Rn

+,
v > 0 in Rn

+,
v(xH , xn) = −v(xH ,−xn) in Rn,

(P1)

or to  LKv = f(v) in Rn
+,

v > 0 in Rn
+,

v = 0 in Rn \ Rn
+.

(P2)

Assume that, in Rn
+, the kernel K of the operator LK is decreasing in the direction

of xn, i.e., it satisfies

K(xH − yH , xn − yn) ≥ K(xH − yH , xn + yn) for all x, y ∈ Rn
+.

Suppose that f ∈ C1 and

• f(0) = f(1) = 0,
• f ′(0) > 0, and f ′(τ) ≤ 0 for all τ ∈ [1− δ, 1] for some δ > 0,
• f > 0 in (0, 1), and
• f is odd in the case of (P1).

Then, v depends only on xn and it is increasing in this direction.

The result for (P2) has been proved for the fractional Laplacian under some assump-
tions on f (weaker than the ones in Theorem 1.6) in [36, 24, 2, 3, 26]. Instead, no result
was available for general integro-differential operators. To the best of our knowledge,
problem (P1) on odd solutions with respect to a hyperplane has not been treated even
for the fractional Laplacian. In our case, the fact that f is of Allen-Cahn type allows us
to use rather simple arguments that work for both problems (P1) and (P2) —moving
planes and sliding methods, similarly as done in [24]. Moreover, the fact that the kernel
of the operator is | · |−n−2γ or a general K satisfying uniform ellipticity bounds does not
affect significantly the proof. Although (P2) will not be used in this paper, we include
it here for future reference since the proof for this problem is analogous to the one for
(P1).

1.3. Saddle-shaped solutions in the context of a conjecture by De Giorgi
and the theory of nonlocal minimal surfaces. To conclude this introduction, let
us make some comments on the importance of problem (1.1) and its relation with the
theory of (classical and nonlocal) minimal surfaces and a famous conjecture raised by
De Giorgi.

A main open problem (even in the local case) is to determine whether the saddle-
shaped solution is a minimizer of the energy functional associated to the equation,
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depending on the dimension 2m. This question is deeply related to the regularity
theory of local and nonlocal minimal surfaces, as explained next.

It is well-known that, for powers γ ∈ [1/2, 1], the rescaled energy functionals associ-
ated to the equation (−∆)γu = f(u) Γ-converge to the classical perimeter functional
(see [1, 31]), while in the case γ ∈ (0, 1/2), they Γ-converge to the fractional perimeter
functional (see [40]). Thus, a blow-down sequence of minimizers of the Allen-Cahn
energy converges to the characteristic function of a set whose classical or fractional
perimeter (depending on the power γ) is minimal.

In the recent years there has been an increasing interest in developing a regularity
theory for nonlocal minimal surfaces, although very few results are known for the
moment. It is beyond the scope of this article to describe all of them in detail, and
we refer the interested reader to [20, 7] and the references therein. Let us just make
some comments on the scarce available results concerning the possible minimality of
the Simons cone as a nonlocal minimal surface, since this is connected to our work on
saddle-shaped solutions. Note first that, due to all its symmetries, it is easy to check
that the Simons cone C is stationary for the fractional perimeter. If 2m = 2, a purely
geometric argument shows that it cannot be a minimizer (see [44]). Note indeed that in
[41] Savin and Valdinoci proved that all minimizing nonlocal minimal cones in R2 are
flat, and that dimension 2 is the only one where a complete classification of minimizing
nonlocal minimal cones is available. In higher dimensions, the only available results
regarding the possible minimality of C appear in [22] and in our paper [28], but they
concern stability, a weaker property than minimality.

In [22], Dávila, del Pino, and Wei found a very interesting characterization of the
stability of the Simons cone. It consists of an inequality involving two hypergeometric
constants which depend only on γ and the dimension. This inequality is checked
numerically in [22], finding that, in dimensions 2m ≤ 6 and for γ close to zero, the
Simons cone is not stable. Numerics also show that the Simons cone should be stable
in dimension 8 if γ is close to zero. These two facts for small γ fit with the general
belief that, in the fractional setting, the Simons cone should be stable (and even a
minimizer) in dimensions 2m ≥ 8 (as in the local case), probably for all γ ∈ (0, 1/2),
though this is still an open problem.

In contrast with the numeric computations in [22], our arguments in [28] establishing
the stability of C in dimensions 2m ≥ 14 are the first analytical proof of a stability
result for the Simons cone in any dimension (in the nonlocal setting). Our approach,
which is completely different from theirs, relies on establishing the stability of the
saddle-shaped solution and using that this property is preserved along a blow-down
limit. This shows that the saddle-shaped solution does not only have its interest in the
context of the Allen-Cahn equation, but it can also provide strategies to prove stability
and minimality results in the theory of nonlocal minimal surfaces.

In addition to all this, saddle-shaped solutions are natural objects to build a coun-
terexample to a famous conjecture raised by De Giorgi, asking whether bounded mono-
tone solutions to −∆u = u − u3 in Rn are one-dimensional if n ≤ 8. This conjecture
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is still nowadays not completely closed (see [27] and references therein), but a coun-
terexample in dimensions n ≥ 9 was given in [23] by using the gluing method. An
alternative approach to the one of [23] to construct a counterexample to the conjecture
was given by Jerison and Monneau in [33]. They showed that a counterexample in Rn+1

can be constructed with a rather natural procedure if there exists a global minimizer
of −∆u = f(u) in Rn which is bounded and even with respect to each coordinate but
is not one-dimensional. The saddle-shaped solution is of special interest in search of
this counterexample, since it is even with respect to all the coordinate axis and it is
canonically associated to the Simons cone, which in turn is the simplest nonplanar
minimizing minimal surface. Therefore, by proving that the saddle solution to the
classical Allen-Cahn equation is a minimizer in some dimension 2m, one would obtain
automatically a counterexample to the conjecture in R2m+1.

For a more complete account on the available results concerning the conjecture by
De Giorgi in the nonlocal setting, as well as to related conjectures on minimizers and
stable solutions (in which the saddle-shaped solution is expected to have a role as a
counterexample), we refer the interested reader to [39] and the references therein.

1.4. Plan of the article. The paper is organized as follows. In Section 2 we present
some preliminary results that will be used in the rest of the article. Section 3 contains
the proof of the uniqueness of a saddle-shaped solution, as well as the alternative
proof of existence —via the monotone iteration method. In Section 4 we establish the
Liouville type and symmetry results, Theorems 1.5 and 1.6. Section 5 is devoted to
the layer solution u0 of problem (1.1), and to the proof of the asymptotic behavior
of saddle-shaped solutions, Theorem 1.3. Finally, Section 6 concerns the proof of a
maximum principle in O for the linearized operator LK − f ′(u) (Proposition 1.4).

2. Preliminaries

In this section we collect some preliminary results that will be used in the rest of this
paper. First, we summarize the regularity results needed in the forthcoming sections.
Then, we state a remark on stability that will be used later in this paper, and finally
we recall the basic maximum principles for doubly radial odd functions proved in [29].

2.1. Regularity theory for nonlocal operators in the class L0. In this subsection
we present the regularity results that will be used in the paper. For further details, see
[37, 42, 21] and the references therein.

We first give a result on the interior regularity for linear equations.

Proposition 2.1 ([37, 42]). Let LK ∈ L0(n, γ, λ,Λ) and let w ∈ L∞(Rn) be a weak
solution to LKw = h in B1. Then,

‖w‖C2γ(B1/2) ≤ C
(
‖h‖L∞(B1) + ‖w‖L∞(Rn)

)
. (2.1)
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Moreover, let α > 0 and assume additionally that w ∈ Cα(Rn). Then, if α+ 2γ is not
an integer,

‖w‖Cα+2γ(B1/2) ≤ C
(
‖h‖Cα(B1) + ‖w‖Cα(Rn)

)
, (2.2)

where C is a constant that depends only on n, γ, λ, and Λ.

Throughout the paper we consider u to be a saddle solution to (1.1) that satisfies
|u| ≤ 1 in Rn. Hence, by applying (2.1) we find that for any x0 ∈ Rn,

‖u‖C2γ(B1/2(x0)) ≤ C
(
‖f(u)‖L∞(B1(x0)) + ‖u‖L∞(Rn)

)
≤ C

(
1 + ‖f‖L∞([−1,1])

)
.

Note that the estimate is independent of the point x0, and thus since the equation is
satisfied in the whole Rn,

‖u‖C2γ(Rn) ≤ C
(

1 + ‖f‖L∞([−1,1])

)
.

Then, we use estimate (2.2) repeatedly and the same kind of arguments yield that, if
f ∈ Ck([−1, 1]), then u ∈ Cα(Rn) for all α < k+ 2γ. Moreover, the following estimate
holds:

‖u‖Cα(Rn) ≤ C ,

for some constant C depending only on n, γ, λ, Λ, k, and ‖f‖Ck([−1,1]).
Let us now state a result on the boundary regularity of solutions to a Dirichlet

problem for an operator LK ∈ L0.

Proposition 2.2 ([21, 37]). Let LK ∈ L0(n, γ, λ,Λ) and let w ∈ L∞(Rn) be a weak
solution to {

LKw = h in Ω ,
w = ϕ in Rn \ Ω ,

with h ∈ L∞(Ω) and ϕ ∈ C2γ+η(Rn \ Ω) for some η ∈ (0, 2− 2γ). Assume that Ω is a
bounded C1,1 domain.

Then, there exists an α0 ∈ (0, γ), depending only on n, γ, λ, Λ, and η, such that

‖w‖Cα0 (Ω) ≤ C
(
‖h‖L∞(Ω) + ‖ϕ‖C2γ+η(Rn\Ω)

)
,

where C is a constant that depends only on n, γ, λ, Λ, η, and Ω.

Note that this result can be combined with the interior estimate (2.2) to prove that
weak solutions are indeed classical solutions.

2.2. A remark on stability. Recall that we say that a bounded solution w to LKw =
f(w) in Ω ⊂ Rn is stable in Ω if the second variation of the energy at w is nonnegative.
That is, if

1

2

�
Rn

�
Rn
|ξ(x)− ξ(y)|2K(x− y) dx dy −

�
Ω

f ′(w)ξ2 dx ≥ 0

for every ξ ∈ C∞c (Ω).
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The following fact regarding stability will be used in Sections 4 and 5. Let w ≤ 1 be
a positive solution to LKw = f(w) in a set Ω ⊂ Rn, with f satisfying (1.9). Then w is
stable in Ω.

The proof of this fact is standard and rather simple, and it is a consequence of
the fact that w is a positive supersolution of the linearized operator LK − f ′(w). We
present it here for completeness (a more detailed discussion can be found in [32]). On
the one hand, since f is strictly concave in (0, 1) and f(0) = 0, then f ′(w)w < f(w)
in Ω (recall that w is positive there). On the other hand, it is easy to check that the
following pointwise inequality holds for all functions ϕ and ξ, with ϕ > 0:(

ϕ(x)− ϕ(y)
)(ξ2(x)

ϕ(x)
− ξ2(y)

ϕ(y)

)
≤ |ξ(x)− ξ(y)|2 . (2.3)

Using these two facts and the symmetry of K, for every ξ ∈ C∞c (Ω) we have
�

Ω

f ′(w)ξ2 dx ≤
�

Ω

ξ2

w
f(w) dx =

�
Ω

ξ2

w
LKw dx

=
1

2

�
R2m

�
R2m

(
w(x)− w(y)

)(ξ2(x)

w(x)
− ξ2(y)

w(y)

)
K(x− y) dx dy

≤ 1

2

�
R2m

�
R2m

|ξ(x)− ξ(y)|2K(x− y) dx dy .

Thus, w is stable in Ω.

2.3. Maximum principles for doubly radial odd functions. In this last subsec-
tion, we state the basic maximum principles for doubly radial odd functions. Note that
in the following result we only need assumptions on the functions at one side of the
Simons cone thanks to their symmetry. This was proved in part I and follows readily
from the expression (1.5) by using the key inequality (1.7) for the kernel K.

Proposition 2.3 (Maximum principle for odd functions with respect to C [29]).
Let Ω ⊂ O be an open set and let LK be an integro-differential operator with a
radially symmetric kernel K satisfying the positivity condition (1.7) and such that
LK ∈ L0(2m, γ, λ,Λ). Let w ∈ Cα(Ω) ∩ C(Ω) ∩ L∞(R2m), with α > 2γ, be a doubly
radial function which is odd with respect to the Simons cone.

(i) (Weak maximum principle) Assume that{
LKw + c(x)w ≥ 0 in Ω ,

w ≥ 0 in O \ Ω ,

with c ≥ 0, and that either

Ω is bounded or lim inf
x∈O, |x|→+∞

w(x) ≥ 0 .

Then, w ≥ 0 in Ω.
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(ii) (Strong maximum principle) Assume that LKw + c(x)w ≥ 0 in Ω, with c any
continuous function, and that w ≥ 0 in O. Then, either w ≡ 0 in O or w > 0
in Ω.

Remark 2.4. Following the proof of this result in part I, it is easy to see that the interior
regularity assumptions on w in the previous statement can be weakened. Indeed, we
are assuming that w ∈ Cα(Ω) with α > 2γ in order to guarantee that LKw is finite
everywhere in Ω. Instead of this, we can simply assume that w is Hölder continuous
in Ω (with Hölder exponent arbitrarily small), as long as LKw = +∞ at the points of
Ω where w is not regular enough for LKw to be finite. In such case, LKw+ c(x)w ≥ 0
holds as well and we can proceed with the argument as done in part I.

Proposition 2.3 with these weaker assumptions on w will used later in the proof of
Theorem 1.2 (see Remark 3.3 below): we will apply it to a function w being no more
regular than Cα0 at some points in the interior of Ω, where α0 is given by Proposi-
tion 2.2.

3. Existence and uniqueness of the saddle-shaped solution: monotone
iteration method

In this section we prove the existence and uniqueness result of Theorem 1.2. The
proof of the existence is based on the maximum principle and the first ingredient that
we need is a version of the monotone iteration procedure for doubly radial functions
which are odd with respect to the Simons cone C . In order to prove the uniqueness
we will use the asymptotic behavior result of Theorem 1.3 together with the maximum
principle for the linearized operator LK − f ′(u), given in Proposition 1.4; both results
will be proved in the subsequent sections.

We next present the monotone iteration method for doubly radial odd functions. In
this result and along the section, we will call odd sub/supersolutions to problem (3.2)
the functions that are doubly radial, odd with respect to the Simons cone, and satisfy
the corresponding problem in (3.1).

Proposition 3.1. Let γ ∈ (0, 1) and let K be a radially symmetric kernel satisfying
the convexity assumption (1.8) and such that LK ∈ L0. Assume that v ≤ v are two
bounded functions which are doubly radial, odd with respect to the Simons cone, and
belonging to C2γ+ε(BR) for some ε > 0. Furthermore, assume that v ∈ Cε(BR) and
that v and v satisfy respectively{

LKv ≤ f(v) in BR ∩ O ,
v ≤ ϕ in O \BR ,

and

{
LKv ≥ f(v) in BR ∩ O ,

v ≥ ϕ in O \BR ,
(3.1)

with f a C1 odd function and ϕ ∈ C2γ+ε(Rn) a bounded doubly radial odd function.
Then, there exists a classical solution v to the problem{

LKv = f(v) in BR ,
v = ϕ in R2m \BR ,

(3.2)
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such that v ∈ C2γ+ε̃(BR)∩C ε̃(BR) for some ε̃ > 0, it is doubly radial, odd with respect
to the Simons cone, and v ≤ v ≤ v in O.

In the previous statement we required C2γ+ε regularity on v and v in order to LK
be finite when applied to them. In view of Remark 2.4, we can relax this assumption,
since we do not need the operator to be finite in the whole set BR when applied to a
subsolution (respectively supersolution), it can take the value −∞ (respectively +∞)
at some points. Note, however, that we cannot drop the assumption v ∈ Cε(BR) if we
want v to have the desired regularity.

Proof of Proposition 3.1. The proof follows the classical monotone iteration method
for elliptic equations (see for instance [25]). We just give here a sketch of the proof.
First, let M ≥ 0 be such that −M ≤ v ≤ v ≤M and set

b := max

{
0,− min

[−M,M ]
f ′
}
≥ 0 .

Then one defines

L̃Kw := LKw + bw and g(τ) := f(τ) + bτ .

Therefore, our problem is equivalent to find a solution to{
L̃Kv = g(v) in BR ,

v = ϕ in R2m \BR ,

such that v is doubly radial, odd with respect to the Simons cone and v ≤ v ≤ v in
O. Here the main point is that g is also odd but satisfies g′(τ) ≥ 0 for τ ∈ [−M,M ].

Moreover, since b ≥ 0, L̃K satisfies the maximum principle for odd functions in O (as
in Proposition 2.3).

We define v0 = v and, for k ≥ 1, let vk be the solution to the linear problem{
L̃Kvk = g(vk−1) in BR ,

vk = ϕ in R2m \BR .

It is easy to see by induction and the regularity results from Proposition 2.1 that
vk ∈ L∞(Rn) ∩ C2γ+2ε̃(BR) ∩ C2ε̃(BR) for some ε̃ > 0. Moreover, given Ω ⊂ BR a
compact set, then ‖vk‖C2γ+2ε̃(Ω) is uniformly bounded in k.

Then, using the maximum principle it is not difficult to show by induction that

v = v0 ≤ v1 ≤ . . . ≤ vk ≤ vk+1 ≤ . . . v in O ,
and that each function vk is doubly radial and odd with respect to C . Finally, by the
Arzelà-Ascoli theorem and the compact embedding of Hölder spaces we see that, up
to a subsequence, vk converges to the desired solution v ∈ C2γ+ε̃(BR) ∩ C ε̃(BR). �

In order to construct a positive subsolution to (3.2) with zero exterior data, we also
need a characterization and some properties of the first odd eigenfunction and eigen-
value for the operator LK , which are presented next. This eigenfunction is obtained
though a minimization of the Rayleigh quotient in the appropriate space, defined next.
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Given a set Ω ⊂ R2m and a translation invariant and positive kernel K, we define
the space

HK
0 (Ω) :=

{
w ∈ L2(Ω) : w = 0 a.e. in R2m \ Ω and [w]2HK(R2m) < +∞

}
,

where

[w]2HK(R2m) :=
1

2

�
R2m

�
R2m

|w(x)− w(y)|2K(x− y) dx dy . (3.3)

Recall also that when K satisfies the ellipticity assumption (1.4), then HK
0 (Ω) =

Hγ
0(Ω), which is the space associated to the kernel of the fractional Laplacian, K(y) =

cn,γ|y|−n−2γ. We also define, for Ω doubly radial and symmetric with respect to C , the
space

H̃K
0, odd(Ω) :=

{
w ∈ HK

0 (Ω) : w is doubly radial a.e. and odd with respect to C
}
.

Recall that when K is radially symmetric and w is doubly radial, we can replace the
kernel K(x − y) in the definition (3.3) by the kernel K(x, y). This is readily deduced
after a change of variables and taking the mean among all R ∈ O(m)2 (see the details
in Section 3 of [29]).

Lemma 3.2. Let Ω ⊂ R2m be a bounded set of double revolution and let K be a
radially symmetric kernel satisfying the positivity condition (1.7) and such that LK ∈
L0(2m, γ, λ,Λ). Let us define

λ1, odd(Ω, LK) := inf
w∈H̃K0, odd(Ω)

1

2

�
R2m

�
R2m

|w(x)− w(y)|2K(x, y) dx dy
�

Ω

w(x)2 dx
.

Then, such infimum is attained at a function φ1 ∈ H̃K
0, odd(Ω) ∩ L∞(Ω) which solves{

LKφ1 = λ1, odd(Ω, LK)φ1 in Ω ,
φ1 = 0 in R2m \ Ω ,

and satisfies that φ1 > 0 in Ω∩O. We call this function φ1 the first odd eigenfunction
of LK in Ω, and λ1, odd(Ω, LK), the first odd eigenvalue.

Moreover, in the case Ω = BR, there exists a constant C depending only on n, γ,
and Λ, such that

λ1, odd(BR, LK) ≤ CR−2γ .

Proof. The first two statements are deduced exactly as in Proposition 9 of [43], using
the same arguments as in Lemma 3.4 of [29] to guarantee that φ1 is nonnegative in
O. The fact that φ1 > 0 in Ω ∩ O follows from the strong maximum principle (see
Proposition 2.3).
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We show the third statement. Let w̃(x) := w(Rx) for every w ∈ H̃K
0, odd(BR). Then,

min
w∈H̃K0, odd(BR)

1

2

�
R2m

�
R2m

|w(x)− w(y)|2K(x, y) dx dy
�
BR

w(x)2 dx

≤ min
w̃∈H̃K0, odd(B1)

cn,γΛ

2

�
R2m

�
R2m

|w̃(x/R)− w̃(y/R)|2|x− y|−n−2γ dx dy
�
BR

w̃(x/R)2 dx

= R−2γ min
w̃∈H̃s0, odd(B1)

cn,γΛ

2

�
R2m

�
R2m

|w̃(x)− w̃(y)|2|x− y|−n−2γ dx dy
�
B1

w̃(x)2 dx

= λ1, odd(B1, (−∆)γ)ΛR−2γ .

�

Remark 3.3. Note that, by the regularity results for LK stated in Section 2, we have
that φ1 ∈ Cα0(Ω) ∩ Cα0+2γ(Ω) for some 0 < α0 < γ, and the regularity up to the
boundary is optimal. Due to this and the fact that φ1 > 0 in Ω ∩ O while φ1 = 0 in
R2m \ Ω, it is easy to check by using (1.5) that −∞ < LKφ1 < 0 in O \ Ω and that
LKφ1 = −∞ on ∂Ω ∩ O.

With these ingredients, we can proceed with the proof of Theorem 1.2.

Proof of Theorem 1.2. We divide it into two parts.
i) Existence: The strategy is to build a suitable solution uR of{

LKuR = f(uR) in BR ,
uR = 0 in R2m \BR ,

(3.4)

and then let R→ +∞ to get a saddle-shaped solution.
Let φR0

1 be the first odd eigenfunction of LK in BR0 ⊂ R2m, given by Lemma 3.2,
and let λR0

1 := λ1, odd(BR0 , LK). We claim that for R0 big enough and ε > 0 small

enough, uR := εφR0
1 is an odd subsolution of (3.4) for every R ≥ R0. To see this, note

first that, without loss of generality, we can assume that
∥∥φR0

1

∥∥
L∞(BR)

= 1. Now, since

f is strictly concave in (0, 1) and f(0) = 0, we have that f ′(τ)τ < f(τ) for all τ > 0.
Thus, using that εφR0

1 > 0 in BR0 ∩ O, it follows that for every x ∈ BR0 ∩ O,

f(εφR0
1 (x))

εφR0
1 (x)

> f ′(εφR0
1 (x)) ≥ f ′(0)/2

if ε is small enough, independently of x (recall that we assumed |φ1| ≤ 1). Therefore,
since f ′(0) > 0, taking R0 big enough so that λR0

1 < f ′(0)/2 (this can be achieved
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thanks to the last statement of Lemma 3.2), we have that for every x ∈ BR0 ∩ O,
f(εφR0

1 (x)) > λR0
1 εφR0

1 (x). Thus,

LKuR = λR0
1 εφR0

1 < f(εφR0
1 ) = f(uR) in BR0 ∩ O .

In addition, if x ∈ (BR \BR0) ∩ O, by Remark 3.3 we have that

LKuR < 0 = f(0) = f(uR) in (BR \BR0) ∩ O .

Note that in ∂BR0 we have LKuR = −∞. Hence, the claim is proved.
Now, if we define uR := χO∩BR − χI∩BR , a simple computation shows that it is an

odd supersolution to (3.4). Therefore, using the monotone iteration procedure given
in Proposition 3.1 (taking into account Remarks 2.4 and 3.3 when using the maximum
principle), we obtain a solution uR to (3.4) such that it is doubly radial, odd with
respect to the Simons cone, and εφR0

1 = uR ≤ uR ≤ uR in O. Note that, since uR > 0
in O ∩BR0 , the same holds for uR.

Using a standard compactness argument, we let R → +∞ to obtain a sequence
uRj converging on compacts in C2γ+η(R2m) norm, for some η > 0, to a solution u ∈
C2γ+η(R2m) of LKu = f(u) in R2m. Note that u is doubly radial, odd with respect to
the Simons cone and 0 ≤ u ≤ 1 in O. Let us show that 0 < u < 1 in O, which will
yield that u is a saddle-shaped solution. By the usual strong maximum principle it
follows readily that u < 1 in O. Moreover, since uR ≥ εφR0

1 > 0 in O∩BR0 for R > R0,
this holds also the limit, that is, u ≥ εφR0

1 > 0 in O ∩ BR0 . Therefore, by applying
the strong maximum principle for odd functions (see Proposition 2.3) we obtain that
0 < u < 1 in O.

ii) Uniqueness: Let u1 and u2 be two saddle-shaped solutions. Define v := u1−u2,
which is a doubly radial function that is odd with respect to C . Then,

LKv = f(u1)− f(u2) ≤ f ′(u2)(u1 − u2) = f ′(u2)v in O ,

since f is concave in (0, 1). Moreover, by the asymptotic result (see Theorem 1.3), we
have

lim sup
x∈O, |x|→∞

v(x) = 0 .

Then, by the maximum principle in O for the linearized operator LK − f ′(u2) (see
Proposition 1.4), it follows that v ≤ 0 in O, which means u1 ≤ u2 in O. Repeating the
argument with −v = u2 − u1 we deduce u1 ≥ u2 in O. Therefore, u1 = u2 in R2m. �

Remark 3.4. Since the saddle-shaped solution u is positive in O, it follows that u is
stable in this set, as explained in Section 2. This fact will be used in Section 5.

4. Symmetry and Liouville type results

This section is devoted to prove the Liouville type result of Theorem 1.5 and the
one-dimensional symmetry result of Theorem 1.6. Both of them will be needed in the
following section to establish the asymptotic behavior of the saddle-shaped solution.
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4.1. A Liouville type result for positive solutions in the whole space. In the
proof of Theorem 1.5 we will need two main ingredients, that we present next. The
first one is a Harnack inequality for solutions to the semilinear problem (1.12). This
inequality follows readily from the results of Cozzi in [18], although the precise result
that we need is not stated there. For the reader’s convenience and for future reference,
we present the result here and indicate how to deduce it from the results in [18].

Proposition 4.1. Let LK ∈ L0(n, γ, λ,Λ) and let w be a solution to (1.12) with f a
Lipschitz nonlinearity such that f(0) = 0. Then, for every x0 ∈ Rn and every R > 0,
it holds

sup
BR(x0)

w ≤ C inf
BR(x0)

w,

with C > 0 depending only on n, γ, λ,Λ, and R.

Proof. Following the notation of [18], since f is Lipschitz and f(0) = 0, we have

|f(u)| ≤ d1 + d2|u|q−1 in Rn ,

with d1 = 0, d2 = ‖f‖Lip and q = 2. With this choice of the parameters, we only need

to repeat the proof of Proposition 8.5 in [18] (with p = 2 and Ω = Rn) in order to obtain
that u belongs to the fractional De Giorgi class DGγ,2(Rn, 0, H,−∞, 2γ/n, 2γ,+∞) for
some constant H > 0 (see [18] for the precise definition of these classes). Therefore,
the Harnack inequality follows from Theorem 6.9 in [18]. �

The second ingredient that we need in the proof of Theorem 1.5 is the following
parabolic maximum principle in the unbounded set Rn × (0,+∞).

Proposition 4.2. Let LK ∈ L0(n, γ, λ,Λ) and let v be a bounded function, Cα with
α > 2γ in space and C1 in time, such that{

∂tv + LKv + c(x) v ≤ 0 in Rn × (0,+∞) ,
v(x, 0) ≤ 0 in Rn ,

with c(x) a continuous and bounded function. Then,

v(x, t) ≤ 0 in Rn × [0,+∞).

This result can be deduced from the usual parabolic maximum principle in a bounded
(in space and time) set with a rather simple argument. Since we have not found a
specific reference where such result is stated, let us present its proof with full detail for
the sake of clarity. First of all, we present the usual parabolic maximum principle in a
bounded set in Rn × (0,+∞). The proof for cylindrical sets Ω × (0, T ) can be found
for instance in [4]. Although the argument for general bounded sets is essentially the
same, we include here a short proof for the sake of completeness.

Lemma 4.3. Let Ω ⊂ BR×(0, T ) ⊂ Rn×(0,+∞) be a bounded open set. Let LK be an
integro-differential operator of the form (1.2) with a symmetric kernel satisfying (1.4),
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and let v be a bounded function, Cα with α > 2γ in space and C1 in time, satisfying
∂tv + LKv ≤ 0 in Ω ⊂ BR × (0, T ) ,

v(x, 0) ≤ 0 in Ω ∩ {t = 0} ⊂ BR ,
v ≤ 0 in (Rn × (0, T )) \ Ω .

Then, v ≤ 0 in Rn × [0, T ].

Proof. By contradiction, for every small ε > 0 assume that

M := sup
Rn×(0,T−ε)

v > 0.

By the sign of the initial condition and since v ≤ 0 in (Rn × (0, T )) \ Ω, v attains this
positive value M at a point (x0, t0) ∈ Ω with t0 ≤ T − ε. If t0 ∈ (0, T − ε), then (x0, t0)
is an interior global maximum (in Rn × (0, T − ε)) and it must satisfy vt(x0, t0) = 0
and LKv(x0, t0) > 0, which contradicts the equation. If t0 = T − ε, then vt(x0, t0) ≥ 0
and LKv(x0, t0) > 0, which is also a contradiction with the equation. Thus, v ≤ 0 in
Rn × [0, T − ε) and since this holds for ε > 0 arbitrarily small, we deduce v ≤ 0 in
Rn × [0, T ), and by continuity, in Rn × [0, T ]. �

To establish Proposition 4.2 from Lemma 4.3, we need to introduce an auxiliary
function enjoying certain properties (see Lemma 4.5 below). Before presenting it, we
need the following result.

Lemma 4.4. There is no bounded solution to LKv = 1 in Rn for any LK ∈ L0.

Proof. Assume by contradiction that such solution exists. Then, by interior regularity
(see Section 2) v ∈ C1(Rn) and |∇v| ≤ C in Rn. For every i = 1, . . . , n, we differentiate
the equation with respect to xi to obtain{

LKvxi = 0 in Rn ,
|vxi | ≤ C in Rn .

By the Liouville theorem for the operator LK (it is proved exactly as in [38], see also
[42]), vxi is constant. Hence, ∇v is constant, and thus v is affine. But since v is
bounded, v must be constant, and we arrive at a contradiction with LKv = 1. �

With this result we can introduce the auxiliary function that we will use to prove
the parabolic maximum principle of Proposition 4.2.

Lemma 4.5. Let LK ∈ L0(n, γ, λ,Λ). Then, for every R > 0 there exists a constant
MR > 0 and a continuous function ψR ≥ 0 solution to{

LKψR = −1/MR in BR ,
ψR = 1 in Rn \BR ,

(4.1)

satisfying

ψR → 0 pointwise and MR → +∞ as R→ +∞ .
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Proof. First, consider φR the solution to{
LKφR = 1 in BR ,

φR = 0 in Rn \BR .

Note that the existence of a weak solution to the previous problem is given by the Riesz
representation theorem. Moreover, by standard regularity results (see Section 2.1), φR
is in fact a classical solution and by the maximum principle, φR > 0 in BR.

Define MR := supBR φR. Since MR is increasing (to check this, use the maximum
principle to compare φR and φR′ with R > R′), it must have a limit M ∈ R ∪ {+∞}.
Assume by contradiction that M < +∞ and consider the new function ϕR := φR/MR,
which satisfies  LKϕR = 1/MR in BR ,

ϕR = 0 in Rn \BR ,
ϕR ≤ 1 .

(4.2)

By a standard compactness argument, we deduce that as R→ +∞, ϕR converges (up
to a subsequence) to a function ϕ that solves LKϕ = 1/M in Rn and satisfies |ϕ| ≤ 1.
This contradicts Lemma 4.4 and therefore, MR → +∞ as R→ +∞.

Define now ψR := 1 − φR/MR = 1 − ϕR, which solves trivially (4.1). Thus, it
only remains to show that ψR → 0 as R → +∞. We will see that ϕR → 1 as
R → +∞. Recall that ϕR solves problem (4.2), and by the previous arguments, by
letting R → +∞ we have that a subsequence of ϕR converges uniformly in compact
sets to a bounded function ϕ ≥ 0 that solves LKϕ = 0 in Rn. By the Liouville theorem,
ϕ must be constant, and since its L∞ norm is 1 and ϕ ≥ 0, we conclude ϕ ≡ 1. �

With these ingredients, we establish now the parabolic maximum principle in Rn ×
(0,+∞).

Proof of Proposition 4.2. First of all, note that with the change of function ṽ(x, t) =
e−α tv(x, t) we can reduce the initial problem in the statement of Proposition 4.2 to ∂tṽ + LK ṽ ≤ 0 in Ω ⊂ Rn × (0,+∞) ,

ṽ ≤ 0 in (Rn × (0,+∞)) \ Ω ,
ṽ(x, 0) ≤ 0 in Rn ,

if we take α > ‖c‖L∞ and Ω := {(x, t) ∈ Rn × (0,+∞) : v(x, t) > 0}.
Now, consider the function

wR(x, t) := ‖ṽ‖L∞(Rn×(0,+∞))

(
ψR +

t

MR

)
,

where ψR and MR are defined in Lemma 4.5. Then, it is easy to check that wR satisfies
∂twR + LKwR = 0 in BR × (0, T ) ,

wR(x, 0) ≥ 0 in BR ,
wR(x, t) ≥ ‖ṽ‖L∞(Rn×(0,+∞)) in (Rn \BR)× (0, T ) ,
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for every T > 0 and R > 0. Since wR ≥ 0 ≥ ṽ in (Rn × (0,+∞)) \Ω, by the maximum
principle in (BR × (0, T )) ∩ Ω (see Lemma 4.3) we can easily deduce that wR ≥ ṽ in
BR × (0, T ).

Finally, given an arbitrary point (x0, t0) ∈ Ω, take R0 > 0 and T > 0 such that
(x0, t0) ∈ BR0 × (0, T ). Thus,

ṽ(x0, t0) ≤ wR(x0, t0) = ‖ṽ‖L∞(Rn×(0,+∞))

(
ψR(x0) +

t0
MR

)
, for every R ≥ R0.

Letting R → +∞ and using that ψR(x0) → 0 and MR → +∞ (see Lemma 4.5), we
conclude ṽ(x0, t0) ≤ 0, and therefore v(x0, t0) = eα t0 ṽ(x0, t0) ≤ 0. �

By using the Harnack inequality and the parabolic maximum principle we can now es-
tablish Theorem 1.5. The proof follows the ideas of Berestycki, Hamel, and Nadirashvili
from Theorem 2.2 in [6] but adapted to the whole space and with an integro-differential
operator.

Proof of Theorem 1.5. Assume v 6≡ 0. Then, by the strong maximum principle v > 0.
Our goal is to show that v ≡ 1, and this will be accomplished in two steps.

Step 1: We show that m := infRn v > 0.
By contradiction, we assume m = 0. Then, there exists a sequence {xk}k∈N such

that v(xk)→ 0 as k → +∞.
On the one hand, by the Harnack inequality of Proposition 4.1, given any R > 0 we

have

sup
BR(xk)

v ≤ CR inf
BR(xk)

v ≤ CR v(xk)→ 0 as k → +∞. (4.3)

Moreover, since f(0) = 0 and f ′(0) > 0, it is easy to show that f(t) ≥ f ′(0)t/2 if t is
small enough. Therefore, from this and (4.3) we deduce that there exists M(R) ∈ N
such that

LKv −
f ′(0)

2
v ≥ 0 in BR(xM(R)) . (4.4)

On the other hand, let us define

λx0R = inf
ϕ∈C1

c (BR(x0))
ϕ6≡0

1

2

�
Rn

�
Rn
|ϕ(x)− ϕ(y)|2K(x− y) dx dy

�
Rn
ϕ(x)2 dx

,

which decreases to zero uniformly in x0 as R→ +∞ from being LK ∈ L0 (see the proof
of Lemma 3.2 and also Proposition 9 of [43]). Therefore, there exists R0 > 0 such that
λxR < f ′(0)/2 for all x ∈ Rn and R ≥ R0. In particular, by choosing x = xM(R0) there
exists w ∈ C1

c (BR0(xM(R0))) such that w 6≡ 0 and

1

2

�
Rn

�
Rn
|w(x)− w(y)|2K(x− y) dx dy <

f ′(0)

2

�
Rn
w2 dx. (4.5)
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Finally, to get the contradiction, multiply (4.4) by w2/v ≥ 0 and integrate in Rn.
After symmetrizing the integral involving LK we get

0 ≤
�
Rn

w2

v
LKv dx− f ′(0)

2

�
Rn
w2 dx

=
1

2

�
Rn

�
Rn

(
v(x)− v(y)

)(w2(x)

v(x)
− w2(y)

v(y)

)
K(x− y) dx dy − f ′(0)

2

�
Rn
w2 dx

≤ 1

2

�
Rn

�
Rn
|w(x)− w(y)|2K(x− y) dx dy − f ′(0)

2

�
Rn
w2 dx,

which contradicts (4.5). Here we have used that the kernel is positive and symmetric
and the inequality (2.3). Therefore, infRn v > 0.

Step 2: We show that v ≡ 1.
Choose 0 < ξ0 < min{1,m}, which is well defined by Step 1, and let ξ(t) be the

solution of the ODE {
ξ̇(t) = f(ξ(t)) in (0,+∞) ,
ξ(0) = ξ0 .

Since f > 0 in (0, 1) and f(1) = 0 we have that ξ̇(t) > 0 for all t ≥ 0, and lim
t→+∞

ξ(t) = 1.

Now, note that both v(x) and ξ(t) solve the parabolic equation

∂tw + LKw = f(w) in Rn × (0,+∞) ,

and satisfy

v(x) ≥ m ≥ ξ0 = ξ(0).

Thus, by the parabolic maximum principle (Proposition 4.2) applied to v − ξ, taking
c(x) = −

(
f(v)−f(ξ)

)
/(v−ξ), we deduce that v(x) ≥ ξ(t) for all x ∈ Rn and t ∈ (0,∞).

By letting t→ +∞ we obtain

v(x) ≥ 1 in Rn .

In a similar way, taking ξ̃0 > ‖v‖L∞ ≥ 1, using f < 0 in (1,+∞), f(1) = 0 and the
parabolic maximum principle, we obtain the upper bound v ≤ 1. �

4.2. A one-dimensional symmetry result for positive solutions in a half-
space. In this subsection we establish Theorem 1.6. To do it, we proceed in three
steps. First, we show that the solution is monotone in the xn direction by using a
moving planes argument (see Proposition 4.6 below). Once this is shown, we can de-
duce that the solution v has uniform limits as xn± →∞. Finally, by using the sliding
method (see Proposition 4.12 below), we deduce the one-dimensional symmetry of the
solution.

We proceed now with the details of the arguments. As we have said, the first step
is to show that the solution is monotone. We establish the following result.

Proposition 4.6. Let v be a bounded solution to one of the problems (P1) or (P2),
with LK ∈ L0 such that the kernel K is nonincreasing in the direction of xn in Rn

+,
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that is,

K(xH − yH , xn − yn) ≥ K(xH − yH , xn + yn) for all x, y ∈ Rn
+.

Let f be a Lipschitz nonlinearity such that f > 0 in (0, ‖v‖L∞(Rn+)).

Then,
∂v

∂xn
> 0 in Rn

+.

To prove this monotonicity result, we use a moving planes argument, and for this
reason we need a maximum principle in “narrow” sets for odd functions with respect
to a hyperplane (see Proposition 4.10). Recall that for a set Ω ⊂ Rn, we define the
quantity R(Ω) as the smallest positive R for which

|BR(x) \ Ω|
|BR(x)|

≥ 1

2
for every x ∈ Ω. (4.6)

If no such radius exists, we define R(Ω) = +∞. We say that a set Ω is “narrow” if
R(Ω) is small depending on certain quantities.

An important result needed to establish the maximum principle in “narrow” sets
is the following ABP-type estimate. It is proved in [36] for the fractional Laplacian,
following the arguments in [8] (see also [9]). The proof for a general operator LK
does not differ significantly from the one for the fractional Laplacian. Nevertheless, we
include it here for the sake of completeness.

Theorem 4.7. Let Ω ⊂ Rn with R(Ω) < +∞. Let LK ∈ L0(n, γ, λ,Λ) and let
v ∈ L1

γ(Rn) ∩ Cα(Ω), with α > 2γ, such that supΩ v < +∞ and satisfying{
LKv − c(x)v ≤ h in Ω ,

v ≤ 0 in Rn \ Ω ,

with c(x) ≤ 0 in Ω and h ∈ L∞(Ω).
Then,

sup
Ω
v ≤ CR(Ω)2γ ‖h‖L∞(Ω) ,

where C is a constant depending on n, γ, and Λ.

The only ingredient needed to show Theorem 4.7 is the following weak Harnack
inequality proved in [19].

Proposition 4.8 (see Corollary 4.4 of [19]). Let Ω ⊂ Rn and LK ∈ (n, γ, λ,Λ). Let
w ∈ L1

γ(Rn) ∩ Cα(Ω), with α > 2γ, such that w ≥ 0 in Rn. Assume that w satisfies
weakly LKw ≥ h in Ω, for some h ∈ L∞(Ω). Then, there exists an exponent ε > 0 and
a constant C > 1, both depending on n, γ and Λ, such that( 

BR/2(x0)

wε dx

)1/ε

≤ C

(
inf

BR(x0)
w +R2γ ‖h‖L∞(Ω)

)
for every x0 ∈ Ω and 0 < R < dist(x0, ∂Ω).
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With the previous weak Harnack inequality we can now establish the ABP estimate.

Proof of Theorem 4.7. First, note that it is enough to show it for v > 0 in Ω satisfying{
LKv ≤ h in Ω ,

v ≤ 0 in Rn \ Ω .

Indeed, if we consider Ω0 = {x ∈ Ω : v > 0}, then since c ≤ 0 we have LKv ≤
LKv − c(x)v ≤ h in Ω0.

Define M := supΩ v. Then, for every δ > 0 there exists a point xδ ∈ Ω such that
v(xδ) ≥ M − δ. Consider now the function w := M − v+. Note that 0 ≤ w ≤ M ,
w(xδ) ≤ δ, and w ≡ M in Rn \ Ω. If we extend h to be 0 outside Ω, we can easily
verify that LKw ≥ −h in BR(xδ).

Now, by choosing R = 2R(Ω), and using the weak Harnack inequality of Proposi-
tion 4.8, we get

M

(
1

2

)1/ε

≤
(
M ε |BR/2(xδ) \ Ω|

|BR/2(xδ)|

)1/ε

=

(
1

|BR/2(xδ)|

�
BR/2(xδ)\Ω

wε dx

)1/ε

≤

( 
BR/2(xδ)

wε dx

)1/ε

≤ C

(
inf

BR(xδ)
w +R2γ ‖h‖L∞(Ω)

)
≤ C

(
δ +R2γ ‖h‖L∞(Ω)

)
.

The conclusion follows from letting δ → 0. �

As a consequence of this result, one can deduce easily a general maximum principle
in “narrow” sets.

Corollary 4.9. Let Ω ⊂ Rn with R(Ω) < +∞. Let LK ∈ L0(n, γ, λ,Λ) and let
v ∈ L1

γ(Rn) ∩ Cα(Ω), with α > 2γ, such that supΩ v < +∞ and satisfying{
LKv + c(x)v ≤ 0 in Ω ,

v ≤ 0 in Rn \ Ω ,

with c(x) bounded by below.
Then, there exists a number R > 0 such that v ≤ 0 in Ω whenever R(Ω) < R.

Proof. We write c = c+ − c−, and therefore LKv − (−c+)v ≤ c−v+. By Theorem 4.7
we get

sup
Ω
v ≤ CR(Ω)2γ

∥∥c−v+
∥∥
L∞(Ω)

≤ CR(Ω)2γ
∥∥c−∥∥

L∞(Ω)
sup

Ω
v .

Hence, if CR(Ω)2γ ‖c−‖L∞(Ω) < 1, we deduce that v ≤ 0 in Ω. �

The previous maximum principle in “narrow” sets is not suitable enough to apply
the moving planes method, and we need to adapt it to the setting of odd functions
with respect to a hyperplane (see Proposition 4.10 below, which will be deduced from
Corollary 4.9). The reason why we need it is the following. In the moving the argument,
we would want to use a maximum principle in a “narrow” band and applied to an
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odd function with respect to a hyperplane. However, odd functions cannot have a
constant sign in the exterior of a band, and in the hypotheses of Corollary 4.9 there
is a prescribed constant sign of a function outside the set Ω. Thus, we need another
version of a maximum principle in “narrow” sets that applies to odd functions and only
requires a constant sign of the function at one side of a hyperplane (in the spirit of
the maximum principles of Proposition 2.3). This is accomplished with the following
result.

Proposition 4.10. Let H be a half-space in Rn, and denote by x# the reflection of
any point x with respect to the hyperplane ∂H. Let LK ∈ L0 with a positive kernel K
satisfying

K(x− y) ≥ K(x− y#), for all x, y ∈ H. (4.7)

Assume that v ∈ L1
γ(Rn) ∩ Cβ(Ω), with β > 2γ, satisfies LKv ≥ c(x) v in Ω ⊂ H,

v ≥ 0 in H \ Ω,
v(x) = −v(x#) in Rn,

with c(x) bounded below.
Then, there exist a number R such that v ≥ 0 in H whenever R(Ω) ≤ R.

Proof. Let us begin by defining Ω− = {x ∈ Ω : v < 0}. We shall prove that Ω− is
empty. Assume by contradiction that it is not empty. Then, we split v = v1 +v2, where

v1(x) =

{
v(x) in Ω−,

0 in Rn \ Ω−,
and v2(x) =

{
0 in Ω−,

v(x) in Rn \ Ω−.

We first show that LKv2 ≤ 0 in Ω−. To see this, take x ∈ Ω− and thus

LKv2(x) =

�
Rn\Ω−

−v2(y)K(x− y) dy = −
�
Rn\Ω−

v(y)K(x− y) dy.

Now, we split Rn \ Ω− into

A1 = Ω#
−, and A2 = (H \ Ω−) ∪ (H \ Ω−)# ,

and we compute the previous integral in these two sets separately using that v is odd.
On the one hand, since v ≤ 0 in Ω− and K ≥ 0 in Rn, we have

−
�
A1

v(y)K(x− y) dy = −
�

Ω−

v(y#)K(x− y#) dy =

�
Ω−

v(y)K(x− y#) dy ≤ 0.

On the other hand, by the kernel inequality (4.7)

−
�
A2

v(y)K(x− y) dy = −
�
H\Ω−

v(y)K(x− y) dy −
�
H\Ω−

v(y#)K(x− y#) dy

= −
�
H\Ω−

v(y)
(
K(x− y)−K(x− y#)

)
dy ≤ 0.

Thus, we get LKv2 ≤ 0 in Ω−.
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Finally, since LKv2 ≤ 0 in Ω−, it holds

LKv1 = LKv − LKv2 ≥ LKv ≥ c(x) v = c(x) v1 in Ω−.

Therefore v1 solves {
LKv1 ≥ c(x) v1 in Ω−,

v1 = 0 in Rn \ Ω−,

and we can apply the usual maximum principle for “narrow” sets (Corollary 4.9) to
v1 in Ω−. We deduce that v1 ≥ 0 in all Rn whenever R(Ω) ≤ R. This contradicts
the definition of v1 since we assumed that Ω− was not empty. Thus, Ω− = ∅ and this
yields v ≥ 0 in Ω. �

Remark 4.11. A maximum principle such as Proposition 4.10 was already proved for
the fractional Laplacian in [14], but with the additional hypothesis that either Ω is
bounded or lim infx∈Ω, |x|→∞ v(x) ≥ 0. In the proof of Theorem 3.1 in [36], Quaas and
Xia use a suitable argument (the truncation used in the previous proof, previously used
by Felmer and Wang in [30]) to avoid the requirement of such additional hypotheses
on Ω or v.

With the maximum principle in “narrow” sets for odd functions with respect to a
hyperplane we can use the moving plane argument. Now we establish Proposition 4.6.

Proof of Proposition 4.6. The proof is based on the moving planes method, and is
exactly the same as the analogue proof of Theorem 3.1 in [36], where Quaas and Xia
establish an equivalent result for the fractional Laplacian. For this reason, we give
here just a sketch. As usual, for λ > 0 we define wλ(x) = v(xH , 2λ − xn) − v(xH , xn)
(recall that xH ∈ Rn−1) and since the nonlinearity is Lipschitz, wλ solves, in both cases
—(P1) or (P2)—, the following problem: LKwλ = cλ(x)wλ in Σλ ⊂ Hλ,

wλ ≥ 0 in Hλ \ Σλ,
wλ(xH , 2λ− xn) = −wλ(xH , xn) in Rn,

where Σλ := {x = (xH , xn) : 0 < xn < λ} and Hλ := {x = (xH , xn) : xn < λ} and
cλ is a bounded function. Note that wλ is odd with respect to ∂Hλ. Then, using the
maximum principle in “narrow” sets for odd functions (Proposition 4.10) we deduce
that, if λ is small enough, wλ > 0 in Σλ.

To conclude the proof, we define

λ∗ := sup{λ : wη > 0 in Σλ for all η < λ}.
Note that λ∗ is well defined (but may be infinite) by the previous argument. To
conclude the proof, one has to show that λ∗ =∞. This can be done by proving that,
if λ∗ is finite, then there exists a small δ0 > 0 such that for every δ ∈ (0, δ0] we have

wλ∗+δ(x) > 0 in Σλ∗−ε \ Σε

for some small ε. This can be established using a compactness argument exactly as in
Lemma 3.1 of [36] and thus we omit the details. In the argument a Harnack inequality is
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needed, one can use for instance Proposition 4.1. Finally, by the maximum principle in
“narrow” sets we deduce that wλ∗+δ(x) > 0 in Σλ∗+δ if δ is small enough, contradicting
the definition of λ∗. �

Now, we present the other important ingredient needed in the proof of Theorem 1.6.
It is the following symmetry result.

Proposition 4.12. Let LK ∈ L0 and let v be a bounded solution to one of the following
problems: {

LKv = f(v) in Rn ,
lim

xn→±∞
v(xH , xn) = ±1 uniformly. (P3)


LKv = f(v) in Rn

+ = {xn > 0} ,
v = 0 in Rn \ Rn

+ = {xn ≤ 0} ,
lim

xn→+∞
v(xH , xn) = 1 uniformly.

(P4)

Assume that there exists a δ > 0 such that

f ′ ≤ 0 in [−1,−1 + δ] ∪ [1− δ, 1],

for problem (P3) and

f ′ ≤ 0 in [1− δ, 1]

for problem (P4).
Then, v depends only on xn and is increasing in that direction.

Proof. It is based on the sliding method, exactly as in the proof of Theorem 1 in [5].
The idea is, as usual, to define vτ (x) := v(x + ντ) for every ν ∈ Rn with |ν| = 1 and
νn > 0, and the aim is to show that vτ (x) − v(x) ≥ 0 for all τ ≥ 0. Despite the fact
that LK is a nonlocal operator, the proof is exactly the same as the one in [5] —it only
relies on the maximum principle, the translation invariance of the operator and the
Liouville type result of Theorem 1.5. Therefore, we do not include here the details. �

Finally, we can proceed with the proof of Theorem 1.6.

Proof of Theorem 1.6. Note that by Proposition 4.12 we only need to prove that

lim
xn→+∞

v(xH , xn) = 1

uniformly. Therefore we divide the proof in two steps: first, we prove that the limit
exists and is 1, and then we prove that it is uniform.

Step 1: Given xH ∈ Rn−1, then lim
xn→+∞

v(xH , xn) = 1.

By Proposition 4.6 we know that v is strictly increasing in the direction xn. Since v is
also bounded by hypothesis, we know that, given xH ∈ Rn−1, the one variable function
v(xH , ·) has a limit as xn → +∞, which we call v(xH). Note that, since v(xH , 0) = 0
and vxn > 0, it follows that v(xH) > 0.

Let xkn be any increasing sequence tending to infinity. Define vk(xH , xn) := v(xH , xn+
xkn). By the regularity theory of the operator LK (see Section 2) and a standard
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compactness argument, we see that, up to a subsequence, vk converge uniformly on
compact sets to a function v∞ which is a classical solution to{

LKv∞ = f(v∞) in Rn,
v∞ ≥ 0 in Rn.

(4.8)

By Theorem 1.5, either v∞ ≡ 0 or v∞ ≡ 1. But, by construction,

v∞(xH , 0) = lim
k→+∞

vk(xH , 0) = lim
k→+∞

v(xH , x
k
n) = v(xH) > 0,

and therefore the only possibility is

lim
xn→∞

v(xH , xn) = 1 for all xH ∈ Rn−1.

Step 2: The limit is uniform in xH .
Let us proceed by contradiction. Suppose that the limit is not uniform. This means

that given any ε > 0 small enough, there exists a sequence of points (xkH , x
k
n) with

xkn → +∞ such that v(xkH , x
k
n) = 1− ε. Similarly as before, the sequence of functions

ṽk(xH , xn) = v(xH +xkH , xn +xkn) converge uniformly on compact sets to a function ṽ∞
that also solves (4.8). By Theorem 1.5, either ṽ∞ ≡ 0 or ṽ∞ ≡ 1. But, by construction

ṽ∞(0, 0) = lim
k→+∞

ṽk(0, 0) = lim
k→+∞

v(xkH , x
k
n) = 1− ε,

which is a contradiction for ε > 0 small enough. Thus, the limit is uniform.
Finally, by applying Proposition 4.12, we get that v depends only on xn and is

increasing in that direction. �

5. Asymptotic behavior of a saddle-shaped solution

In this section, we show Theorem 1.3, concerning the asymptotic behavior of the
saddle-shaped solution.

In order to establish the result, it is important to study one-dimensional layer so-
lutions in Rn. Actually, in relation with the available results concerning a conjecture
by De Giorgi, in low dimensions all layer solutions are one-dimensional (see Subsec-
tion 1.3).

One-dimensional layer solutions in Rn are in correspondence with the ones in R. This
comes for free when dealing with the local case, since if v is a solution to −v̈ = f(v)
in R, then w(x) = v(x · e) solves −∆w = f(w) in Rn for every unitary vector e ∈ Rn.
The same fact also happens for the fractional Laplacian, that is, if v is a solution to
(−∆)γv = f(v) in R, then w(x) = v(x · e) solves the same equation in Rn. We can
easily see this relation via the local extension problem.

Nevertheless, for a general operator LK this is not true anymore and we need a way
to relate a solution to a one-dimensional problem with a one-dimensional solution to a
n-dimensional problem. This is given in the next result. Some of its points appear in
[21] with a different notation but we state and prove them here for completeness.
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Proposition 5.1. Let LK ∈ L0(n, γ, λ,Λ) be a symmetric and translation invariant
integro-differential operator of the form (1.2) with kernel K : Rn \ {0} → (0,+∞).
Define the one dimensional kernel K1 : R \ {0} → (0,+∞) by

K1(τ) :=

�
Rn−1

K (θ, τ) dθ = |τ |n−1

�
Rn−1

K (τσ, τ) dσ. (5.1)

(i) Let v : R → R and consider w : Rn → R defined by w(x) = v(xn). Then,
LKw(x) = LK1v(xn). If we assume moreover that K is radially symmetric,
then the same happens with w(x) = v(x · e) for every unitary vector e ∈ Sn−1.
That is, LKw(x) = LK1v(x · e).

(ii) If K is nonincreasing/decreasing in the xn-direction in {xn > 0}, then K1(τ)
is nonincreasing/decreasing in (0,+∞).

(iii) LK1 ∈ L0(1, γ, λ,Λ), and moreover, if LK is the fractional Laplacian in dimen-
sion n, then LK1 is the fractional Laplacian in dimension 1.

Proof. We start proving point (i). We write y = (yH , yn), with yH ∈ Rn−1.

LKw(x) =

�
Rn

(
w(x)− w(y)

)
K(x− y) dy

=

�
Rn

(
v(xn)− v(yn)

)
K (xH − yH , xn − yn) dyH dyn.

Now we make the change of variables θ = xH − yH . That is,

LKw(x) =

�
R

(
v(xn)− v(yn)

) �
Rn−1

K (θ, xn − yn) dθ dyn

=

�
R

(
v(xn)− v(yn)

)
K1(xn − yn) dyn = LK1v(xn).

This shows the first equality in (5.1). The alternative expression of the kernelK1, that is
useful in some cases, can be obtained from the change of variables θ = τσ. Furthermore,
in the case of K radially symmetric, the result is valid for u(x) = v(x · e) for every
unitary vector e ∈ Sn−1 after a change of variables in the previous computations.

The proof of point (ii) follows directly from the first expression of the unidimensional
kernel K1. That is,

K1(τ2)−K1(τ1) =

�
Rn−1

(
K(θ, τ2)−K(θ, τ1)

)
dθ ≥ 0 for any τ2 > τ1 > 0.
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We establish now point (iii). To do it, we bound the kernel K1 using the ellipticity
condition on K:

K1(τ) = |τ |n−1

�
Rn−1

K (τ(σ, 1)) dσ ≥ |τ |n−1

�
Rn
cn,γ

λ

|τ |n+2γ(|σ|2 + 1)
n+2s

2

dσ

= cn,γ
λ

|τ |1+2γ

�
Rn−1

dσ

(|σ|2 + 1)
n+2γ

2

= cn,γ
λ

|τ |1+2γ

2π
n−1
2

Γ(n−1
2

)

� ∞
0

rn−2

(r2 + 1)
n+2γ

2

dr

= cn,γ
λ

|t|1+2γ

π
n−1
2 Γ(1

2
+ γ)

Γ(n
2

+ γ)
= cn,γ

λ

|t|1+2γ

c1,γ

cn,γ
= c1,γ

λ

|t|1+2γ
,

where we have used the explicit value of the normalizing constant for the fractional
Laplacian,

cn,γ = γ
22γΓ(n

2
+ γ)

πn/2Γ(1− γ)
, (5.2)

and the definition of the Beta and Gamma functions. The upper bound for K1 is
obtained in the same way. Note that the previous computation is an equality with
λ = 1 in the case of the fractional Laplacian. �

In the proof of Theorem 1.3 we will use some properties of the layer solution u0,
defined in (1.10). First, in [21] it is proved that there exists a constant C such that

|u0(x)− sign(x)| ≤ C|x|−2γ and |u̇0(x)| ≤ C|x|−1−2γ for large |x|. (5.3)

In our arguments we need also to show that the second derivative of the layer goes to
zero at infinity. This is the first statement of the following lemma.

Lemma 5.2. Let K1 : R \ {0} → (0,+∞) be a symmetric kernel satisfying (1.4) and
assume that it is decreasing in (0,+∞). Let u0 be the layer solution associated to the
kernel K1, that is, u0 solving (1.10). Then,

(i) ü0(x)→ 0 as x→ ±∞.
(ii) ü0(x) < 0 in (0,+∞).

We prove here the first statement of this lemma, and we postpone the proof of the
second one until the next section, since we need to use a maximum principle for the
linearized operator LK1 − f ′(u0).

Proof of point (i) of Lemma 5.2. By contradiction, suppose that there exists an un-
bounded sequence {xj} satisfying |ü0(xj)| > ε for some ε > 0. Note that by the
symmetry of u0 we may assume that xj → +∞. Now define wj(x) := ü0(x + xj). By
differentiating twice the equation of the layer solution, we see that ü0 solves

LK1ü0 = f ′′(u0)u̇2
0 + f ′(u0)ü0 in R.

Hence, as xj → +∞ a standard compactness argument combined with the asymptotic
behavior given by (5.3) yields that wj converges on compact sets to a function w that
solves

LK1w = f ′(1)w in R.
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In addition, since |ü0(xj)| > ε we have |w(0)| ≥ ε.
At this point we use Lemma 4.3 of [21] to deduce that, since f ′(1) < 1, then w → 0 as
|x| → +∞. Therefore, if w is not identically zero, it has either a positive maximum or a
negative minimum, but this contradicts the maximum principle (recall that f ′(1) < 1).
We conclude that w ≡ 0 in R, but this is a contradiction with |w(0)| ≥ ε. �

Now we have all the ingredients to establish the asymptotic behavior of the saddle-
solution. The proof follows exactly the same compactness arguments used to prove the
analogous result in the local case (see [13]) and for the fractional Laplacian using the
extension problem (see [16, 17]). Thus we will omit some details. The main ingredients
too establish this results are the translation invariance of the operator, the Liouville
type and symmetry results of Theorems 1.5 and 1.6 and a stability argument (recall
the comments in Section 2).

Proof of Theorem 1.3. By contradiction, assume that the result does not hold. Then,
there exists an ε > 0 and an unbounded sequence {xk}, such that

|u(xk)− U(xk)|+ |∇u(xk)−∇U(xk)|+ |D2u(xk)−D2U(xk)| > ε. (5.4)

By the symmetry of u, we may assume without loss of generality that xk ∈ O, and by
continuity we can further assume xk /∈ C .

Let dk := dist(xk,C ). We distinguish two cases:
Case 1: {dk} is an unbounded sequence. In this situation, we may assume that

dk ≥ 2k. Define
wk(x) := u(x+ xk),

which satisfies 0 < wk < 1 in Bk and

LKwk = f(wk) in Bk.

Letting k → +∞, by standard estimates for the operators of the class L0 (see Section 2)
and the Arzelà-Ascoli theorem, we have that, up to a subsequence, wk converges on
compact sets to a function w which is a pointwise solution to{

LKw = f(w) in Rn ,
w ≥ 0 in Rn .

Then, by Theorem 1.5, either w ≡ 0 or w ≡ 1. First, note that w cannot be zero.
Indeed, since wk are stable with respect to perturbations supported in Bk (see the
comments in Section 2 and Remark 3.4), w is stable in Rn, which means that the
linearized operator LK − f ′(w) is a positive operator. Nevertheless, if w ≡ 0, then
the linearized operator LK − f ′(w) = LK − f ′(0) is negative for sufficiently large balls,
since f ′(0) > 0 and the first eigenvalue of LK is of order R−2γ in balls of radius R (as
in Lemma 3.2, see Proposition 9 of [43]). Therefore w ≡ 1.

On the other hand, since dk → +∞ and U(xk) = u0(dk), we get by the properties
of the layer solution that U(xk) → 1, ∇U(xk) → 0 and D2U(xk) → 0 —see (5.3) and
Lemma 5.2. From this and condition (5.4) we get

|u(xk)− 1|+ |∇u(xk)|+ |D2u(xk)| > ε/2,
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for k big enough. This yields that

|wk(0)− 1|+ |∇wk(0)|+ |D2wk(0)| > ε/2,

and this contradicts w ≡ 1.
Case 2: {dk} is a bounded sequence. In this situation, at least for a subsequence,

we have that dk → d. Now, for each xk we define x0
k as its projection on C . Therefore,

we have that ν0
k := (xk − x0

k)/dk is the unit normal to C . Through a subsequence,
ν0
k → ν with |ν| = 1.
We define

wk(x) := u(x+ x0
k),

which solves

LKwk = f(wk) in Rn.

Similarly as before, by letting k → +∞, up to a subsequence wk converges on compact
sets to a function w which is a pointwise solution to LKw = f(w) in H := {x · ν > 0} ,

w ≥ 0 in H ,
w is odd with respect to H.

For the details about the fact that O + x0
k → H, see [13].

As in the previous case, by stability w cannot be zero, and thus w > 0 in H (by the
strong maximum principle for odd functions with respect to a hyperplane, see [14]).
Hence, by Theorem 1.6, w only depends on x · ν and is increasing. Finally, by the
uniqueness of the layer solution, w(x) = u0(x · ν) and

u(xk) = wk(xk − x0
k) = w(xk − x0

k) + o(1)

= u0((xk − x0
k) · ν) + o(1) = u0((xk − x0

k) · ν0
k) + o(1)

= u0(dk|ν0
k |2) + o(1) = u0(dk) + o(1) = U(xk) + o(1),

contradicting (5.4). The same is done for ∇u and D2u. �

Remark 5.3. The previous result yields that, for ε > 0 the saddle-shaped solution
satisfies u ≥ δ in the set Oε := {(x′, x′′) ∈ Rm×Rm : |x′′|+ε < |x′|}, for some positive
constant δ. That is, thanks to the asymptotic result, and since U(x) ≥ u0(ε/

√
2) for

x ∈ Oε, there exists a radius R > 0 such that u(x) ≥ U(x)/2 ≥ u0(ε/
√

2)/2 if
x ∈ Oε \BR. Moreover, since u is positive in the compact set Oε ∩BR it has a positive
minimum in this set, say m > 0. Therefore, if we choose δ = min{m,u0(ε/

√
2)/2} we

obtain the desired result.

6. Maximum principles for the linearized operator

In this section we show that the linearized operator LK−f ′(u) satisfies the maximum
principle in O. This, combined with the asymptotic result of Theorem 1.3, yields the
uniqueness of the saddle-shaped solution.



SEMILINEAR INTEGRO-DIFFERENTIAL EQUATIONS II 33

In order to prove the maximum principle of Proposition 1.4, we need a maximum
principle in “narrow” sets, stated next.

Proposition 6.1. Let ε > 0 and let

Nε ⊂ {(x′, x′′) ∈ Rm × Rm : |x′′| < |x′| < |x′′|+ ε} ⊂ O
be an open set (not necessarily bounded). Let K be a radially symmetric kernel satis-
fying the positivity condition (1.7) and such that LK ∈ L0. Let v ∈ C(Nε) ∩ Cα(Nε) ∩
L1
γ(R2m), for some α > 2γ, be a doubly radial function satisfying

LKv + c(x)v ≤ 0 in Nε ,
v ≤ 0 in O \ Nε ,

−v(x?) = v(x) in R2m,
lim sup

x∈Nε, |x|→∞
v(x) ≤ 0 ,

(6.1)

with c a function bounded by below.
Under these assumptions there exists ε > 0 depending only on λ,m, γ and ‖c−‖L∞

such that, if ε < ε, then v ≤ 0 in Nε.

Proof. Assume, by contradiction, that

M := sup
Nε

v > 0 .

Under the assumptions (6.1), M must be attained at an interior point x0 ∈ Nε. Then,

0 ≥ LKv(x0) + c(x0)v(x0) ≥ LKv(x0)− ‖c−‖L∞(Nε)M . (6.2)

Now, we compute LKv(x0). Since v is doubly radial and odd with respect to the Simons
cone, we can use the expression (1.5) to write

LKv(x0) =

�
O

(
M − v(y)

)(
K(x0, y)−K(x0, y

?)
)

dy + 2M

�
O
K(x0, y

?) dy

≥ 2M

�
O
K(x0, y

?) dy,

where the inequality follows from being M the supremum of v in O and the kernel
inequality (1.7). Combining this last inequality with (6.2), we obtain

0 ≥ LKv(x0) + c(x0)v(x0) ≥M

(
2

�
O
K(x0, y

?) dy − ‖c−‖L∞(Nε)

)
.

Finally, if we use the lower bound of (1.6) and the fact that dist(x0,C ) ≤ ε/
√

2, we
get

0 ≥M

(
2

�
O
K(x0, y

?) dy − ‖c−‖L∞(Nε)

)
≥M

(
1

C
dist(x0,C )−2γ − ‖c−‖L∞(Nε)

)
≥M

(
1

C
ε−2γ − ‖c−‖L∞(Nε)

)
.
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Therefore, for ε small enough, we arrive at a contradiction that follows from assuming
that the supremum is positive. �

Remark 6.2. Using same arguments as in the proof of Proposition 4.10, the previous
result can be extended to general doubly radial “narrow” sets (that is, assuming that
the set Nε in the statement of Proposition 6.1 satisfies (4.6), instead of just being
contained in an ε-neighborhood of the cone). Indeed, we only need to replace the
symmetry with respect to a hyperplane by the symmetry with respect to the Simons
cone and use the kernel inequality (1.7) —note that in this case, the assumption at
infinity in (6.1) is not needed. Nevertheless, we preferred to present the result for sets
that are contained in an ε-neighborhood of the Simons cone, since we are only going
to use the maximum principle in such sets. In addition, the crucial fact that the sets
are contained in {(x′, x′′) ∈ Rm × Rm : |x′′| < |x′| < |x′′| + ε} makes the argument
rather simple.

Once this maximum principle in “narrow” sets is available, we can proceed with the
proof of Proposition 1.4.

Proof of Proposition 1.4. For the sake of simplicity, we will denote

Lw := LKw − f ′(u)w − cw .
A crucial point in this proof is that u is a positive supersolution of the operator L .
Indeed, since f is strictly concave in (0, 1) and f(0) = 0, then f ′(τ)τ < f(τ) for all
τ > 0, and thus

L u = LKu− f ′(u)u− cu ≥ f(u)− f ′(u)u > 0 in Ω ⊂ O , (6.3)

where in the first inequality we have used that u > 0 in O and that c ≤ 0.
By contradiction, assume that there exists x0 ∈ Ω such that v(x0) > 0. We will show

next that, if we assume this, we deduce v ≤ 0 in Ω, arriving at a contradiction.
Let ε > 0 be such that the maximum principle of Proposition 6.1 is valid and define

the following sets:

Ωε := Ω ∩ {|x′| > |x′′|+ ε} and Nε := Ω ∩ {|x′′| < |x′| < |x′′|+ ε} .
Define also, for τ ≥ 0,

w := v − τu.
First, we claim that w ≤ 0 in Ω if τ is big enough. To see this, note first that by the

asymptotic behavior of the saddle-shaped solution, we have

u ≥ δ > 0 in Ωε , (6.4)

for some δ > 0 (see Remark 5.3). Therefore, w < 0 in Ωε if τ is big enough. Moreover,
since v ≤ 0 in O \ Ω, we have

w ≤ 0 in O \ Nε .
Furthermore, it also holds

lim sup
x∈Nε, |x|→∞

w(x) ≤ 0
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and, by (6.3),

Lw = L v − τL u ≤ 0 in Nε .

Thus, since w is odd with respect to C , we can apply Proposition 6.1 in Nε to deduce
that

w ≤ 0 in Ω ,

if τ is big enough.
Now, define

τ0 := inf {τ > 0 : v − τu ≤ 0 in Ω} .

By the previous claim, τ0 is well defined. Moreover, it is easy to see that τ0 > 0.
Indeed, it is obvious v − τ0u ≤ 0 in Ω and thus, since v(x0) > 0, we have −τ0u(x0) <
v(x0)− τ0u(x0) ≤ 0. Using that u(x0) > 0, it follows that τ0 > 0.

We claim that v − τ0u 6≡ 0. Indeed, if v − τ0u ≡ 0 then v = τ0u and thus, by using
(6.3), the equation for v, and the fact that τ0 > 0, we get

0 ≥ L v(x0) = τ0L u(x0) > 0 ,

which is a contradiction.
Then, since v − τ0u 6≡ 0, the strong maximum principle for odd functions (see

Proposition 2.3) yields

v − τ0u < 0 in Ω .

Therefore, by continuity, the assumption on v at infinity and (6.4), there exists 0 <
η < τ0 such that

w̃ := v − (τ0 − η)u < 0 in Ωε .

Note that here we used crucially (6.4), and this is the reason for which we needed to
introduce the sets Ωε and Nε. Using again the maximum principle in “narrow” sets
with w̃ in Nε, we deduce that

v − (τ0 − η)u ≤ 0 in Ω ,

and this contradicts the definition of τ0. Hence, v ≤ 0 in Ω and, as we said, this
contradicts our initial assumption on the existence of a point x0 where v(x0) > 0. �

Note that if in the previous result we assume that ∂Ω ∩ C is empty, then Ω is at a
positive distance to the cone and the lower bound on u in (6.4) holds in Ω. In this case
no maximum principle in “narrow” sets is required in the previous argument. Instead,
if we want to consider sets with ∂Ω ∩ C 6= ∅, we need to introduce the set Ωε to have
the uniform lower bound (6.4) and be able to carry out the proof.

The same argument used in the previous proof can be used to establish the remaining
statement of Lemma 5.2.
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Proof of point (ii) of Lemma 5.2. Let v = ü0. First we show that v ≤ 0 in (0,+∞).
To see this, note that since f is concave and by point (i) of Lemma 5.2, we have that

LK1v − f ′(u0)v ≤ 0 in (0,+∞) .
v(x) = −v(−x) for every x ∈ R ,

lim sup
x→+∞

v(x) = 0 .

Now, we follow the proof of Proposition 1.4 but with the previous problem, replacing
u by u0 and using that

LK1u0 − f ′(u0)u0 > 0 in (0,+∞) .

All the arguments are the same, using the maximum principle of Proposition 4.10 in
the set (0, ε), and yield that v ≤ 0 in (0,+∞).

The fact that ü0 = v < 0 in (0,+∞) can be readily deduced from the strong
maximum principle for odd functions in R, as follows. Suppose by contradiction that
there exists a point x0 ∈ (0,+∞) such that v(x0) = 0. Then,

0 ≥ LK1v(x0) = −
� +∞

−∞
v(y)K1(x0 − y) dy

= −
� +∞

−∞
v(y)

(
K1(x0 − y)−K1(x0 + y)

)
dy > 0 ,

arriving at a contradiction. Here we have used that v 6≡ 0 and the fact that K1 is
decreasing in (0,+∞), which yields K1(x − y) ≥ K1(x + y) for every x > 0 and
y > 0. �
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1. G. Alberti, G. Bouchitté, and P. Seppecher, Phase transition with the line-tension effect, Arch.
Rational Mech. Anal. 144 (1998), 1–46.
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