1. Fractional Laplacian

- The fractional Laplacian operator is given by:
 \[(-\Delta)^s u(x) := C_{n,s} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy \]
 for a certain normalizing constant \(C_{n,s} > 0 \).

- Notice that the operator \((-\Delta)^s\) is nonlocal (it uses information about \(u \) far from \(x \)).

- Also, \(\frac{d}{dx} \) is singular at the origin (not integrable), and thus it requires certain regularity of \(u \) near \(x \) in order to evaluate \((-\Delta)^s\).

- Because of the singularity at the origin, the operator \((-\Delta)^s\) "differentiates" in some sense the function \(u \), and this is why it is called an integro-differential operator.

- When \(s \in \left(\frac{1}{2}, 1 \right) \), then \((-\Delta)^s u(x)\) has to be understood in the principal value sense:
 \[(-\Delta)^s u(x) = \lim_{\epsilon \to 0^+} \left[\frac{\epsilon}{|y|^{n+2s}} \right] \int_{|y| > \epsilon} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy \]

An alternative option is to use the symmetry of \(\frac{1}{|y|^{n+2s}} \) and symmetrize the integral:

\[(-\Delta)^s u(x) = C_{n,s} \frac{c}{2} \int_{\mathbb{R}^n} \frac{2u(x) - u(x+y) - u(x-y)}{|y|^{n+2s}} \, dy \]

- Using this expression, one can check that if \(u \in C^2(O) \) and \(\nabla u \in L^p(O) \) then
 \[|(-\Delta)^s u(x)| \leq C \int_{B_1} \frac{|\Delta u(y)|}{|y|^{n+2s}} \, dy + C \int_{|y| > 1} \frac{|\Delta u(y)|}{|y|^{n+2s}} \, dy \leq C M \|u\|_{L^p(O)} + C \|\nabla u\|_{L^p(O)} \]

Exercise: Show that if \(u \in C^{2s+\epsilon}(\mathbb{R}^n) \cap C^2(O) \), then \((-\Delta)^su \in C^{2\epsilon}(O)\), provided that \(\alpha \) and \(n+2s\alpha \) are not integers.

- In particular, \(u \in C^{2s+\epsilon}(\mathbb{R}^n) \) for some \(\epsilon > 0 \) is enough to evaluate \((-\Delta)^s u(x)\) (but not \(\nabla u \)).
11. Heuristic probabilistic motivation: from discrete to continuous long jump random walks

We will see how the fractional Laplacian arises in long jump random walks.

Let us consider the function $K: \mathbb{R}^n \to [0, \infty)$, satisfying

$$K(y) = K(-y)$$

and

$$\sum_{q \in \mathbb{Z}^n} K(q) = 1.$$

Given a small $h > 0$, we consider a random walk on the lattice $h \mathbb{Z}^n$.

After any time $t > 0$, a particle jumps from a point of $h \mathbb{Z}^n$ to any other point.

The probability with which the particle jumps from the point $h \overline{q}$ to the point $h \overline{p}$

is $K(h \overline{q} - h \overline{p}).$

(Notice that the particle may experience arbitrarily long jumps, though with a small probability.)

Consider a domain $\omega \subset \mathbb{R}^n$ and a given payoff function $g: \mathbb{R}^n \to \mathbb{R}$.

We call $u(x)$ the expected payoff the particle will get if it starts at $x \in \omega$. (The particle gets the payoff the first time it exits ω)

Notice that $u(x) = g(x)$ in $\mathbb{R}^n \setminus \overline{\omega}$.

Moreover, if $x \in \omega$, then the expected payoff equals the sum of all expected payoffs of all possible positions $x + h q$, weighted by the probability of jumping from x to $x + h q$,

$$u(x) = \sum_{q \in \mathbb{Z}^n} K(q) u(x + h q) \quad \text{if } x \in \omega$$
Recalling that \(\sum_{q \in \mathbb{Z}^n} K(q) = 1 \), we can write the previous identity as

\[\sum_{q \in \mathbb{Z}^n} K(q)(u(x)-u(x+qh)) = 0 \]

The most canonical and simple choice of Kernel is a power

\[K(y) = c|y|^{-n-2s} \quad \text{for} \quad y \neq 0 \]
\[\text{(and, say, } K(0) = 0) \]

with

\[s \in (0,1) \]

The constant \(c \) is chosen so that \(\sum_{q \in \mathbb{Z}^n} K(q) = 1 \).

With this choice of the Kernel, (6) becomes

\[\sum_{q \in \mathbb{Z}^n} \frac{u(x)-u(x+qh)}{|q|^{n+2s}} = 0 \]

Multiplying by an appropriate factor \(h^{2s} \), this is

\[h^n \sum_{q \in \mathbb{Z}^n} \frac{u(x)-u(x+qh)}{|qh|^{n+2s}} = 0 \]

which is the approximating Riemann sum of

\[\int_{\mathbb{R}^n} \frac{u(x)-u(x+y)}{|y|^{n+2s}} dy = 0 \quad \text{for } x \in \Omega. \]

Thus, in the limit \(h \to 0 \), the limiting stochastic process \(X_t \) will satisfy the following:

the expected payoff \(u(x) \) solves

\[\int_{\mathbb{R}^n} \frac{u(x+y)-u(x)}{|y|^{n+2s}} dy = 0 \quad \text{for } x \in \Omega \]

\[u(x) = g(x) \quad \text{for } x \in \partial \Omega. \]
Summarizing, the expected payoff \(u(x) \) solves the Dirichlet problem:

\[
\begin{align*}
(-\Delta)^s u & = 0 \quad \text{in } \mathbb{R}^n \\
\frac{\partial u}{\partial \nu} & = g \quad \text{on } \partial \mathbb{R}^n \cup L
\end{align*}
\]

for the fractional Laplacian,

\[
(-\Delta)^s u(x) = c_n s \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x - y|^{n+2s}} \, dy
\]

As in case of local PDEs, if we consider running costs or expected exit times we are led to Dirichlet problems of the type:

\[
\begin{align*}
(-\Delta)^s u & = f \quad \text{in } L \\
\frac{\partial u}{\partial \nu} & = 0 \quad \text{on } \partial L \cup \partial \mathbb{R}^n
\end{align*}
\]

Important: The boundary conditions are in \(\mathbb{R}^n \setminus L \) instead of \(2\mathbb{R}^n \).

Stochastic process with jumps \(\xrightarrow{\text{operator that is nonlocal}} \) \(\xrightarrow{\text{Dirichlet problem with boundary data}} \) \(\mathbb{R}^n \setminus L \)

Remark. The name fractional Laplacian comes from the fact that the Fourier symbol of the operator is \(|\xi|^{2s} \), so that \((-\Delta)^s\) is really the fractional power of the operator \(-\Delta\) in \(\mathbb{R}^n \).

In particular, we have the property \((-\Delta)^s \circ (-\Delta)^t = (-\Delta)^{s+t}\).
The fractional Laplacian is

\[
(\Delta)^s u(x) = \frac{C_{n,s}}{2} \int_{\mathbb{R}^n} \left(2u(x) - u(x+y) - u(x-y)\right) \frac{dy}{|y|^{n+2s}} \quad \text{if } u \in C_c^\infty(\mathbb{R}^n).
\]

Let us find the Fourier symbol of \((\Delta)^s \) and check that it is \(\xi^{2s}\).

That is, we want to check that

\[
\mathcal{F}[(\Delta)^s u] (\xi) = (\xi^{2s}) \mathcal{F}[u].
\]

(where \(\mathcal{F}\) denotes Fourier transform)

Indeed, we have

\[
\mathcal{F}[(\Delta)^s u] (\xi) = \mathcal{F} \left[\frac{C_{n,s}}{2} \int_{\mathbb{R}^n} \left(2u(x) - u(x+y) - u(x-y)\right) \frac{dy}{|y|^{n+2s}} \right] =
\]

\[
= \frac{C_{n,s}}{2} \int_{\mathbb{R}^n} \mathcal{F} \left[2u(x) - u(x+y) - u(x-y) \right] \frac{dy}{|y|^{n+2s}} =
\]

\[
= \frac{C_{n,s}}{2} \int_{\mathbb{R}^n} \left(2\mathcal{F}[u] - \mathcal{F}[u(\cdot+y)] - \mathcal{F}[u(\cdot-y)] \right) \frac{dy}{|y|^{n+2s}} =
\]

\[
= \left(C_{n,s} \int_{\mathbb{R}^n} (1 - \cos(\xi \cdot y)) \frac{dy}{|y|^{n+2s}} \right) \mathcal{F}[u] (\xi).\]

We only need to check that

\[
C_{n,s} \int_{\mathbb{R}^n} (1 - \cos(\xi \cdot y)) \frac{dy}{|y|^{n+2s}} = |\xi|^{2s}
\]

But this simply follows from the fact that

\[
\int (1 - \cos(\lambda \cdot y)) \frac{dy}{|y|^{n+2s}} = \left(C_{n,s} \int_{\mathbb{R}^n} (1 - \cos(\lambda \cdot y)) \frac{dy}{|y|^{n+2s}} \right) \frac{dy}{|y|^{n+2s}} \quad \lambda.
\]

is radially symmetric, and homogeneous of degree \(2s\): (Exercise).

\[
\int (\lambda^2) = C_{n,s} \int (1 - \cos(\lambda \cdot y)) \frac{dy}{|y|^{n+2s}} = C_{n,s} \int (1 - \cos(\lambda \cdot y)) \frac{dy}{|y|^{n+2s}} \quad \lambda^2s
\]

This means that

\[
\int (\xi^2) = K |\xi|^{2s} \quad \text{for some } K > 0, \text{ but the constant } C_{n,s} > 0 \text{ is chosen so that}
\]

\[
\int (\xi) = |\xi|^{2s}. \quad \text{[Exercise: Check that } C_{n,s} \text{ as above} \text{ and } C_{n,s} \text{ as before}.]
\]
1.2. Existence of solutions

For the Laplacian, the existence (and uniqueness) for the Dirichlet problem
\[-\Delta u = f \text{ in } \mathbb{R}^n \quad u = g \text{ on } \partial \Omega \]
follows from Riesz representation theorem, once one has the appropriate ingredients.

- The energy functional associated to the problem is
 \[\int_{\mathbb{R}^n} |\nabla u|^2 - \int_{\mathbb{R}^n} fu \]
 and the (weak) solution is the minimizer of the functional among functions \(u \in H^1(\mathbb{R}^n) \) with \(u = g \text{ on } \partial \Omega \).

- To see that any \(C^2 \) weak solution solves the equation pointwise, we just integrate by parts
 \[\int_{\mathbb{R}^n} \nabla u \cdot \nabla v = \int_{\mathbb{R}^n} -\Delta u \cdot v = \int_{\mathbb{R}^n} f v \quad \forall v \in H^1(\mathbb{R}^n) \]
 \[\implies -\Delta u = f \text{ in } \mathbb{R}^n \]

- Let us next follow a similar strategy for the fractional Laplacian.

Integration by parts

Prop. Let \(u \) and \(v \) be \(C^2 \) functions, with \(u \neq 0 \) in \(\mathbb{R}^n \). Then,

\[\int_{\mathbb{R}^n} (\Delta^s u) \cdot v \, dx = \frac{\gamma(s)}{2} \int_{\mathbb{R}^n} \frac{(u(x)-u(y)) \cdot (v(x)-v(y))}{|x-y|^{n+2s}} \, dx \, dy \]

Proof:

\[\int_{\mathbb{R}^n} (\Delta^s u(x)) v(x) \, dx = \int_{\mathbb{R}^n} \left(\nabla \frac{\partial u}{\partial \nu}(x) \right) \cdot v(x) \, dx + \int_{\mathbb{R}^n} \frac{\partial u}{\partial \nu}(x) \, dS(x) \]

\[= \frac{\gamma(s)}{2} \int_{\mathbb{R}^n} \left(\frac{(u(x)-u(y))}{|x-y|^{n+2s}} \right) v(x) \, dx \]

Exercise. Show that

\[\frac{\gamma(s)}{2} \int_{\mathbb{R}^n} \frac{(u(x)-u(y)) \cdot (v(x)-v(y))}{|x-y|^{n+2s}} \, dx \, dy = \int_{\mathbb{R}^n} (\Delta^s u) \cdot v \, dx \]

- Notice that in Fourier side this is
 \[\int_{\mathbb{R}^n} \mathcal{F}(u \Delta^s v) = \int_{\mathbb{R}^n} (\mathcal{F}u \mathcal{F}(\Delta^s v)) = \int_{\mathbb{R}^n} |\xi|^s \mathcal{F}u \mathcal{F}v \]
Weak solutions

- We say that \(u \) is a weak solution of
 \[
 \begin{cases}
 \Delta u = f \text{ in } \Omega \\
 u = g \text{ on } \partial \Omega
 \end{cases}
 \]

- The space of functions \(u \in L^2(\mathbb{R}^n) \) for which
 \[
 [u^2]_{H^1(\mathbb{R}^n)} := \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u(x) - u(y))^2}{|x-y|^{n+2}} \, dx \, dy < \infty
 \]

 is called \(H^1(\mathbb{R}^n) \). The scalar product is
 \[
 (u, v)_{H^1(\mathbb{R}^n)} = \iint_{\mathbb{R}^n} u v + \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u(x) - u(y))(v(x) - v(y))}{|x-y|^{n+2}} \, dx \, dy
 \]

 - The norm is
 \[
 \|u\|_{H^1(\mathbb{R}^n)} = \sqrt{(u, u)_{H^1(\mathbb{R}^n)}}
 \]

- The space \(H^1(\mathbb{R}^n) \) is a Hilbert space.

Definition. We say that \(u \in H^1(\mathbb{R}^n) \) is a weak solution to
 \[
 \begin{cases}
 \Delta u = f \text{ in } \Omega \\
 u = g \text{ on } \partial \Omega
 \end{cases}
 \]

 if \(u = g \) on \(\partial \Omega \) and
 \[
 \frac{\partial^2}{2} \iint_{\mathbb{R}^n} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x-y|^{n+2}} \, dx \, dy = \iint_{\mathbb{R}^n} f \varphi \, dx
 \]

 for all \(\varphi \in C_c^\infty(\Omega) \) with \(\varphi \geq 0 \) in \(\mathbb{R}^n \).

- Notice that if \(u \in C^2 \) then we have
 \[
 \frac{\partial^2}{2} \iint_{\mathbb{R}^n} \frac{(u(x) - u(y))(\varphi(x) - \varphi(y))}{|x-y|^{n+2}} \, dx \, dy = \iint_{\mathbb{R}^n} \Delta u \varphi = \iint_{\mathbb{R}^n} f \varphi
 \]

 for all \(\varphi \in C_c^\infty(\mathbb{R}^n) \).

 and thus \(\Delta u = \varphi \) in \(\Omega \).
Notice also that, since \(\Omega = 0 \) in \(\mathbb{R}^n \), we have
\[
\frac{1}{2} \int_{\mathbb{R}^n} \frac{(u(x) - u(2))(u(x) - u(2))}{|x-2|^2} \, dx = \frac{1}{2} \int_{(\mathbb{R}^n \setminus \{0\}) \setminus (\mathbb{R}^n \setminus 2 \mathbb{R}^n)} \frac{(u(x) - u(2))(u(x) - u(2))}{|x-2|^2} \, dx.
\]

Thus, we don't really need \(\mathcal{E}(\mathbb{R}^n) \), but only
\[
\int_{(\mathbb{R}^n \setminus 2 \mathbb{R}^n) \setminus (\mathbb{R}^n \setminus 2 \mathbb{R}^n)} \frac{(u(x) - u(2))^2}{|x-2|^2} \, dx < \infty.
\]

This is important when \(g \) is not regular outside \(\Omega \), or it does not vanish at \(\infty \).

In this case, the right definition is:

Definition. We say that \(u \) is a weak solution of
\[
\begin{cases}
\Delta u = f & \text{in } \mathbb{R}^n \\
\mu = g & \text{in } \mathbb{R}^n \setminus \Omega
\end{cases}
\]

if
\[
\int_{(\mathbb{R}^n \setminus 2 \mathbb{R}^n) \setminus (\mathbb{R}^n \setminus 2 \mathbb{R}^n)} \frac{(u(x) - u(2))^2}{|x-2|^2} \, dx < \infty
\]

and
\[
\frac{1}{2} \int_{(\mathbb{R}^n \setminus 2 \mathbb{R}^n) \setminus (\mathbb{R}^n \setminus 2 \mathbb{R}^n)} \frac{(u(x) - u(2))(u(x) - u(2))}{|x-2|^2} \, dx = \int_{\Omega} f \, dx.
\]

for all \(\mathcal{E}(\mathbb{R}^n) \) with \(\mu = 0 \) in \(\mathbb{R}^n \).

Note that when \(g \) satisfies
\[
\int_{\mathbb{R}^n} \frac{(g(x) - g(2))^2}{|x-2|^2} \, dx < \infty
\]

then the two definitions are the same.

However, it is important to allow \(g \) to be non-regular outside \(\Omega \).
The energy functional

- The energy functional associated to the problem is

\[
E(u) = \frac{c_n s}{4} \iint_\mathbb{R}^n \frac{(u(x) - u(z))^2}{|x-z|^m} \, dx \, dz - \int_{\mathbb{R}^n} f \, u \, dx
\]

for functions \(u \) satisfying \(u = g \) in \(\mathbb{R}^n \).

- When \(g \) satisfies \(\iint_{\mathbb{R}^n} \frac{g(x) - g(y)}{|x-y|^m} \, dx \, dy < \infty \), then we could take

\[
E(u) = \frac{c_n s}{4} \iint_\mathbb{R}^n \frac{(u(x) - u(z))^2}{|x-z|^m} \, dx \, dz - \int_{\mathbb{R}^n} f \, u \, dx
\]

(since the only difference between the two functionals would be a constant \(\iint_{\mathbb{R}^n} \frac{(g(x) - g(y))^2}{|x-y|^m} \, dx \, dy \) among \(u \) in \(\mathbb{R}^n \).

Proposition. If \(u \) minimizes the energy functional \(E(u) \), then it is a weak solution of \((A) u = f \) in \(\mathbb{R} \)

\[u = g \text{ in } \mathbb{R} \]

Proof. If \(u \) is a minimizer then for all \(\varphi \in \mathcal{D}(\mathbb{R}) \) such that \(\varphi \equiv 0 \) in \(\mathbb{R} \), we have

\[
E(u + \epsilon \varphi) \geq E(u), \quad \forall \epsilon > 0.
\]

Thus,

\[
\frac{d}{d\epsilon} \bigg|_{\epsilon = 0} E(u + \epsilon \varphi) = 0
\]

But

\[
(u(x) + \epsilon \varphi(x) - u(x) - \epsilon \varphi(x))^2 = (u(x) - u(x))^2 + 2\epsilon (u(x)-u(x))(\varphi(x)-\varphi(x)) + \epsilon^2 (\varphi(x)-\varphi(x))^2
\]

and thus

\[
0 = \frac{d}{d\epsilon} \bigg|_{\epsilon = 0} E(u + \epsilon \varphi) = \frac{c_n s}{2} \iint_{\mathbb{R}^n} \frac{(u(x) - u(z))(\varphi(x) - \varphi(z))}{|x-z|^m} \, dx \, dz - \int_{\mathbb{R}^n} f \, u \, dx
\]

This means that \(u \) is a weak solution.
Fractional Sobolev inequality and Poincaré inequality in Ω

Theorem. For all $u \in H^s(\mathbb{R}^n)$ we have ($n > 2s$)

$$
\|u\|_{L^2(\mathbb{R}^n)} \leq C \int_{\mathbb{R}^n} \frac{(u(x) - u(z))^2}{|x - z|^{n+2s}} \, dx \, dz
$$

$$
f = \frac{2n}{n-2s}
$$

Proof. (Next page)

Corollary. Let $\Omega \subset \mathbb{R}^n$ be a bounded domain. Then, for any $u \in H^s(\mathbb{R}^n)$ with $u \equiv 0$ in $\mathbb{R}^n \setminus \Omega$

we have

$$
\int_{\Omega} u^2 \leq C \int_{\mathbb{R}^n} \frac{(u(x) - u(z))^2}{|x - z|^{n+2s}} \, dx \, dz
$$

Proof.

$$
\|u\|_{L^2(\Omega)} \leq C \|u\|_{L^{2n/(n-2s)}(\mathbb{R}^n)} \leq C \|u\|_{L^{2n/(n+2s)}(\mathbb{R}^n)} \leq C \|u\|_{H^s(\mathbb{R}^n)}
$$

(Hölder) \hspace{1cm} (a \equiv 0, b \equiv 2s)

Existence of solutions

- We will prove existence of solutions only in case $g \equiv 0$ in $\mathbb{R}^n \setminus \Omega$.
- Notice, that when g is regular enough, then we can extend it to a nice function in \mathbb{R}^n, and thus $\overline{u} = u - g$ solves

$$
\begin{cases}
-\Delta^s \overline{u} = \mathcal{F} - (-\Delta^s g) = \mathcal{F} \quad &\text{in } \Omega \\
\overline{u} = 0 & \text{in } \mathbb{R}^n \setminus \Omega
\end{cases}
$$

- This allows us to reduce to the case $g \equiv 0$ (when g is regular enough).
Proof. Since

\[|u(x)| \leq |u(x)| - |u(x)| + |u(x)| \]

then

\[|u(x)| \leq \int_{B_r(x)} |u(x)| - |u(x)| + |u(x)| \, dx. \]

By Hölder inequality,

\[\int_{B_r(x)} |u(x)| - |u(x)| + |u(x)| \, dx \leq \left(\int_{B_r(x)} (u(x)| - |u(x)| + |u(x)|)^2 \, dx \right)^{\frac{1}{2}} \leq \left(\int_{B_r(x)} \frac{(u(x)| - |u(x)| + |u(x)|)^2}{1 + x^2 \lambda^2} \, dx \right)^{\frac{1}{2}} \leq r^{\frac{n}{2}} \left(\int_{R^n} \frac{c^n}{1 + x^2 \lambda^2} \, dx \right)^{\frac{1}{2}}. \]

Again, by Hölder inequality,

\[\int_{B_r(x)} |u(x)| - |u(x)| + |u(x)| \, dx \leq \left(\int_{B_r(x)} (u(x)| - |u(x)| + |u(x)|)^2 \, dx \right)^{\frac{1}{2}} \leq r^{\frac{n}{2}} \left(\int_{R^n} \frac{c^n}{1 + x^2 \lambda^2} \, dx \right)^{\frac{1}{2}}. \]

Thus,

\[|u(x)| \leq r^{\frac{n}{2}} \left(\int_{R^n} \frac{c^n}{1 + x^2 \lambda^2} \, dx \right)^{\frac{1}{2}} + r^{\frac{n}{2}} \left(\int_{R^n} u(x)^2 \, dx \right)^{\frac{1}{2}}. \]

Minimizing the RHS with respect to \(r > 0 \), we get

\[|u(x)| \leq C \left(\int_{R^n} \frac{|u(x)|}{1 + x^2 \lambda^2} \, dx \right)^{\frac{1}{2}} \left(\int_{R^n} u(x)^2 \, dx \right)^{\frac{1}{2}}. \]

\(\star \) Taking \(q = \frac{2n}{n-2s} \), and raising both sides to power \(q \), we get

\[|u(x)|^q \leq C \left(\int_{R^n} \frac{|u(x)|}{1 + x^2 \lambda^2} \, dx \right)^{\frac{2n}{n-2s}} \left(\int_{R^n} u(x)^{2s} \, dx \right)^{\frac{2s}{n}}. \]

\(\star \) Integrating over \(x \), we get the desired result.
Theorem. Given $f \in L^1(\mathbb{R})$, there exists a unique weak solution $u \in H^1(\mathbb{R}^n)$ of
\[\begin{cases} \Delta u + f &= 0 \\ u &= 0 \text{ on } \partial \Omega \end{cases} \]

Proof. Define
\[X := \{ u \in H^1(\mathbb{R}^n) : u \equiv 0 \text{ on } \partial \mathbb{R}^n \} \subseteq H^1(\mathbb{R}^n) \]

Thanks to the Poincaré inequality, X is a Hilbert space with the scalar product
\[(u, v)_X = \frac{1}{2} \iint_{\mathbb{R}^n \times \mathbb{R}^n} \frac{(u(x) - u(y))(v(x) - v(y))}{|x - y|^{n+2}} \, dx \, dy. \]

- Notice that the weak formulation is then
\[(u, v)_X = \int_{\Omega} f(x) v(x) \, dx \quad \forall v \in X. \]

- The existence and uniqueness of weak solutions follows then from
 \textit{Riesz representation theorem}.

\underline{Remark. (Viscosity solutions)}

We showed how to prove existence of weak solutions.

On the other hand, one could prove existence of \underline{viscosity solutions} by Perron's method.

When $f \in C^0(\mathbb{R})$, then solutions (weak or viscosity) are pointwise or classical solutions,
and thus they are the same.
1.3. Maximum Principle

- Recall that

\[
(-\Delta)^2 u(x) = C_N \int_{\mathbb{R}^n} (u(x) - u(x+y)) \frac{dy}{|y|^{n+2}} = C_N \int_{\mathbb{R}^n} \frac{2(u(x) - u(x+y))}{|y|^{n+2}} \frac{dy}{|y|^{n+2}}
\]

- It follows from this definition the following:

Proposition (Maximum Principle). Assume that \(u \in C^2 \) satisfies \((-\Delta)^2 u = 0 \) in \(\Omega \subset \mathbb{R}^n \).

Then, \(u \) cannot attain a global maximum inside \(\Omega \) unless \(u \) is constant in all of \(\mathbb{R}^n \).

In other words,

\[
\max_{\mathbb{R}^n} u = \max_{\Omega} u
\]

Proof: Assume \(x_0 \in \Omega \) and \(u(x_0) \geq u(z) \) for all \(z \in \mathbb{R}^n \) (\(x_0 \) is a global maximum).

Then,

\[
(-\Delta)^2 u(x_0) = C_N \int_{\mathbb{R}^n} (u(x_0) - u(x+\eta)) \frac{dy}{|y|^{n+2}} \geq 0,
\]

with equality if and only if \(u(x_0) = u(z) \) a.e. in \(\mathbb{R}^n \).

Thus, if \((-\Delta)^2 u(x_0) = 0 \) and \(u \) has a global maximum at \(x_0 \), then \(u \equiv c \) in \(\mathbb{R}^n \).

- More generally, we have the following:

Proposition. Assume that \(u \in C^2 \) satisfies

\[
(-\Delta)^2 u \leq 0 \text{ in } \Omega
\]

\[
\text{in } \mathbb{R}^n \setminus \Omega.
\]

Then, \(u \leq 0 \) in \(\Omega \).

Proof: If \(u \) attains positive values in \(\Omega \), then it has a maximum in \(\Omega \).

By the same argument as before, we get \(u \equiv c \). Since \(u \leq 0 \) in \(\mathbb{R}^n \), then the constant must be negative.
Let us next prove the same maximum principle but for weak solutions:

Proposition. Let \(\Omega \) be any bounded domain, and let \(u \) be the weak solution of

\[
\begin{align*}
\Delta u &= f \text{ in } \Omega, \\
\frac{1}{|x|_\infty^2} \int_{|x|_\infty^{2}} dx &= g \text{ in } \mathbb{R}^n.
\end{align*}
\]

Then, \(f \geq 0 \) in \(\Omega \) \(\Rightarrow \) \(u \geq 0 \) in \(\Omega \).

Proof. Recall that \(u \) is a weak solution if \(u \in \mathbb{R}^n \), and

\[
\int_{\Omega} \int_{\Omega} \frac{(u(x)-u(y))(f(x)-f(y))}{|x-y|_{\infty}^2} \, dx \, dy = \int_{\Omega} f \cdot \phi \, dx
\]

for all \(\phi \in C^1(\Omega) \) with \(\phi \geq 0 \) in \(\mathbb{R}^n \).

Write \(u = u^+ - u^- \), where \(u^+ = \max\{u, 0\} \), \(u^- = \max\{-u, 0\} \).

Take \(\phi = u^- \), and assume \(u^- \) is not identically zero. (Notice \(\phi \geq 0 \) in \(\mathbb{R}^n \).)

Then, since \(f \geq 0 \), we have

\[
\int_{\Omega} f \cdot \phi \geq 0.
\]

On the other hand,

\[
\int_{\Omega} \int_{\Omega} \frac{(u(x)-u(y))(f(x)-f(y))}{|x-y|_{\infty}^2} \, dx \, dy = \int_{\Omega} \int_{\Omega} \frac{(u(x)-u(y))(u^+(x)-u^+(y))}{|x-y|_{\infty}^2} \, dx \, dy + \\
+2 \int_{\Omega} \int_{\Omega} \frac{(u(x)-u(x))(u^- (x))}{|x-y|_{\infty}^2} \, dx \, dy
\]

Moreover, notice that \((u^+(x)-u^+(y))(u^+(x)-u^+(y)) \leq 0 \), and thus

\[
\int_{\Omega} \int_{\Omega} \frac{(u(x)-u(y))(u^+(x)-u^+(y))}{|x-y|_{\infty}^2} \, dx \, dy \leq -\int_{\Omega} (u^+(x)-u^+(y))^2 \, dx \frac{1}{|x-y|_{\infty}^2} \leq 0
\]

Note that the strict inequality is because we are assuming \(u^- \neq 0 \).

Since \(g \geq 0 \), then

\[
\int_{\Omega} \int_{\Omega} \frac{(u(x)-g(y))(u^+(x)-u^+(y))}{|x-y|_{\infty}^2} \, dx \, dy = -\int_{\Omega} \int_{\Omega} \frac{|u^-|^2 + g(x)u^- (x)}{|x-y|_{\infty}^2} \, dx \, dy \leq 0
\]
Putting the previous inequalities together, we have shown that

$$\iint_{\mathbb{R}^2} (u(\mathbf{x}) - u(\mathbf{y})) (\Phi(\mathbf{x}) - \Phi(\mathbf{y})) \, dx \, dy < 0$$

and this contradicts $$\int_\Omega \Phi > 0.$$
- As a consequence of the previous result, we find:

Corollary (Comparison principle) If \(u_2 \in C^2 \) and \(u_1 \in C^2 \) satisfy

\[
\begin{align*}
(-\Delta)^2 u_1 &= f_1 \text{ in } \mathbb{R}^n, \\
\Delta u_1 &= g_1 \text{ in } \mathbb{R}^n, \\
\end{align*}
\]

Then

\[
\begin{align*}
\frac{f_1}{f_1} &\geq \frac{f_2}{f_2} \\
\text{and} \\
g_1 \geq g_2
\end{align*}
\]

\[\implies u_1 \geq u_2\]

Proof. Use the previous proposition with \(u = u_2, -u_1 \).

1.4 (Fundamental solution in \(\mathbb{R}^n \))

- Recall that for the Laplace operator \(-\Delta \), its inverse operator is given by the Riesz potential.

 Indeed, a solution of \(-\Delta u = f(x) \text{ in } \mathbb{R}^n\) with \(f \) decaying at infinity is given by

 \[
u(x) = c \int_{\mathbb{R}^n} \frac{f(z)}{|x-z|^{n-2}} \, dz \quad \text{(when } n \geq 3)\]

 In other words,

 \[(-\Delta)^{-1} f := c \int_{\mathbb{R}^n} \frac{f(z)}{|x-z|^{n-2}} \, dz \quad \text{(Riesz potential).} \]

- The function \(\frac{1}{|y|^{n-2}} \) is the fundamental solution of the Laplace operator.
For the fractional Laplacian, we have

\[(-\Delta)^s f(x) = c \int_{\mathbb{R}^n} \frac{f(z)}{|x-z|^{n-2s}} \, dz \quad \text{for } n > 2s \]

It is called the Riesz potential of order \(2s\).

The function \(\frac{1}{|x|^{n-2s}} \) is the fundamental solution of the fractional Laplacian \((-\Delta)^s\).

- Classical embedding theorems for Riesz potentials yield the following:

\[\quad \| \frac{1}{|x|^{2s+\alpha}} \|_{L^p(\mathbb{R}^n)} \leq C \left(t^{-s} \left(1 + t^{n-2s} \right) \right) \]

provided that \(\alpha \in (0,1) \) and \(2s+\alpha \) is not an integer.

- Essentially, this means that \((-\Delta)^s\) regularizes up to \(2s\) derivatives.

(The proof of \(\circ\) is very similar to that of the Laplacian, we will not prove it.)

Remark: (Hölder spaces)

When \(\beta \) is not an integer, we will denote \(C^\beta \) the Hölder space of order \(\beta \).

That is,

\[C^\beta := C^{\beta,0} \text{ if } \beta \in (0,1) \]

\[C^\beta := C^{\beta,1} \text{ if } \beta \in (1,2) \]

\[C^\beta := C^{\beta,\gamma} \text{ if } \beta \in (m,m+1) \]

We used this notation in \(\circ\).
1.5. Poisson Kernel and mean value property for s-harmonic functions

- For the Laplace operator, we have the explicit Poisson kernel for a ball:

\[\Delta u = 0 \text{ in } B_r \quad \Rightarrow \quad u(x) = c \int_{\partial B_r} \frac{g(\xi) (|x-\xi|^2)}{|x-\xi|^{n+2}} dS \quad \text{for } x \in B_r. \]

- This, in turn, yields to the mean value property

\[\Delta u = 0 \text{ in } B_r \quad \Rightarrow \quad u(x) = \frac{1}{|B_r|} \int_{\partial B_r} u \quad \text{for any } x \in B_r \text{ and } r > 0 \text{ such that } B(x) \subset B_r. \]

- Moreover, integrating in r one gets

\[u(x) = \frac{1}{R^n} \int_{\partial B_1} u \quad \text{whenever } B(x) \subset B_1. \]

- Another application of the Poisson Kernel is that harmonic functions are \(C^\infty \).

- Let us next see what happens for the fractional Laplacian.

Poisson Kernel for \((-\Delta)^s\) in a ball

Theorem (Poisson Kernel in a ball):

\[(-\Delta)^s u = 0 \text{ in } B_r \quad \Rightarrow \quad u(x) = c \int_{\mathbb{R}^n \setminus B_r} \frac{2(\xi) (|x-\xi|^2)^s}{(|x|^2-1)^2 \cdot |x-\xi|^{n+2s}} d\xi \]

- We will not prove the result, it requires really long computations.

- Let us use this result to show some properties of s-harmonic functions.
[Corollary] Assume \((\Delta)^s u = 0\) in \(B_1\). Then, \(u\) is \(C^s\) inside \(B_1\).

Proof. We have the representation
\[
 m(x) = c \int \frac{u(z) \cdot (x-u(z))^s}{(|x-z|^2)^{n/4}} \, dz.
\]
The dependence on \(x\) in the right-hand side is only on the term \(\frac{\sigma}{|x-z|^n}\).
This term is \(C^s\) for \(x\) inside \(B_1\) (since \(|x| > 1\)).

Thus, we can just differentiate under the integral sign as many times as desired, to get that \(u \in C^s(B_\delta)\) (but not up to the boundary).

Exercise. Assume \((\Delta)^s u = 0\) in \(B_1\). Then,
\[
 |D^k u(0)| \leq C^{k-k_1} ||u||_{L^1(\mathbb{R}^n)}.
\]
In particular, \(u\) is analytic.

Proof. \[
 |D^k u(0)| = \left| c \int \frac{\sigma(z) \cdot D^k \left(\frac{1}{|x-z|^1}\right)(0)}{(|x-z|^2)^{n/4}} \, dz \right| \leq C ||u||_{L^1(\mathbb{R}^n)} \int \frac{C \cdot k_1}{(|x-z|^2)^{n/4}} \, dz \leq C^{k-k_1} ||u||_{L^1(\mathbb{R}^n)}.
\]

[Corollary] Assume \((\Delta)^s u = 0\) in \(\Omega \subset \mathbb{R}^n\). Then, \(u\) is \(C^s\) inside \(\Omega\).

Proof. Let \(\delta(x) \subset \Omega\). Rescaling and translating, the corollary we get \(u \in C^s(\delta(x))\).

Since this can be done for any ball \(B(x) \subset \Omega\), \(u\) is \(C^s\) inside \(\Omega\).

Remark. By rescaling the Poisson kernel in \(B_1\), we find the Poisson Kernel in \(B_\delta\):
\[
 (\Delta)^s u = 0 \text{ in } B_\delta, \quad u = g \text{ in } \mathbb{R}^n \setminus B_\delta \quad \Rightarrow \quad m(x) = c \int \frac{g(z) \cdot (r^2-|x-z|^2)^s}{(r^2-|x-z|^2)^{n/4}} \, dz.
\]
Mean value property for \(s\)-harmonic functions

- Using the Poisson kernel in \(B_r\), we find that

\[
(A)^s u = 0 \quad \text{in} \quad B_r \quad \Rightarrow \quad u(0) = c \int_{\mathbb{R}^n \setminus B_r} \frac{u(x)}{(|x-r|^2)^{n/2}} \, dx.
\]

- In particular, this yields the following:

\[
\text{Proposition (Mean value property)}: \quad \text{If} \quad (A)^s u = 0 \quad \text{in} \quad \Omega, \quad \text{then for every} \quad \xi \in \partial \Omega \\
\quad \text{we have} \\
\quad u(0) = c \int_{\mathbb{R}^n \setminus B_r} \frac{r^{2s} \cdot u(x)}{(|x-r|^2)^{n/2} \cdot |x|^n} \, dx.
\]

- This is the analogous of \(u(x) = f(x)\) for harmonic functions.

\[
\text{Corollary.} \\
\quad \text{There exists a function} \quad u_\Omega(x) \quad \text{such that,} \\
\quad (A)^s u = 0 \quad \text{in} \quad B_1 \quad \Rightarrow \quad u(0) = \int_{\mathbb{R}^n} u(x) u_\Omega(x) \, dx.
\]

Moreover, the function \(u_\Omega(x)\) satisfies

\[
\frac{C}{1+|x|^{n+2s}} \leq u_\Omega(x) \leq \frac{C}{1+|x|^{n+2s}}
\]

\[\text{Proof.} \]

\[
u(0) = \int_0^1 n \, r^{n-1} u(0) \, dr = c \int \int_{\mathbb{R}^n \setminus B_r} \frac{r^{2s+n-2s} u(x)}{(|x-r|^2)^{n/2} |x|^n} \, dx \, dr = \cdots = \int u(x) u_\Omega(x) \, dx.
\]

Exercise
\[
\mu(t) = \frac{g_0}{\pi} \int_{R^3 \setminus B_r} \frac{r^{2s}}{(y^2 + r^2)^{n/2}} \, dy
\]

Multiply by \(r^n \) (just in case), and integrate in \(r \):

\[
\frac{\mu(t)}{r^{n+1}} = \mu(0) \int_0^1 r^n \, dr = c_n \int_0^1 \frac{r^{2n+2s} \mu(y)}{(y^2 + r^2)^{n/2}} \, dy = \infty
\]

\[
= c_n \int_0^1 \frac{dy}{(y^2 + r^2)^{n/2}} \int_0^r \frac{r^{2n+2s} \mu(y)}{y^{2n+1}} \, dy + c_n \int_0^1 \frac{dy}{y^{2n+1}} \int_0^r \frac{r^{2n+2s} \mu(y)}{(y^2 + r^2)^{n/2}} \, dy
\]

\((I_1) \)

\((I_2) \)

\[
(I_1) = \int_0^1 \frac{\mu(y)}{y^{2n}} \, dy \int_0^r \frac{r^{2s+n} \mu(y)}{(y^2 + r^2)^{n/2}} \, dr = \int_0^1 \frac{\mu(y)}{y^{2n+1}} \, dy \int_0^r \frac{r^{2s+n} \mu(y)}{(y^2 + r^2)^{n/2}} \, dr
\]

\[
(I_2) = \int_0^1 \frac{\mu(y)}{y^{2n+1}} \, dy \int_0^r \frac{r^{2s+n} \mu(y)}{(y^2 + r^2)^{n/2}} \, dr = \int_0^1 \frac{\mu(y)}{y^{2n+1}} \, dy \int_0^r \frac{r^{2s+n} \mu(y)}{(y^2 + r^2)^{n/2}} \, dr
\]

\[
y = n - 1
\]

\[
\frac{\mu(0)}{n} = c_n \int_{R^3 \setminus B_r} \left(\int_0^1 \frac{t^{2s+n-1}}{(1-t)^{n+1}} \, dt \right) \mu(y) \, dy + c_n \int_{B_r} \left(\int_0^1 \frac{t^{2s+n-1}}{(1-t)^{n+1}} \, dt \right) \mu(y) \, dy
\]

\[
\approx \int_{R^3 \setminus B_r} \frac{\mu(y)}{a + |x|^{2s+n}} \, dy
\]

\[
\mu(y) = \begin{cases}
1 & \text{if } |y| \leq 1 \\
\frac{1}{|y|^{2s+n}} & \text{if } |y| > 1
\end{cases}
\]
Corollary (Harnack inequality) If \(u > 0 \) in \(\mathbb{R}^n \) and \((\Delta)^s u = 0 \) in \(B_1 \) then

\[
\sup_{B_r} u \leq C \inf_{B_r} u.
\]

Moreover, both quantities \(\sup_{B_r} u \) and \(\inf_{B_r} u \) are comparable to

\[
\int_{\mathbb{R}^n} \frac{u(x)}{1 + |x|^{2s}} \, dx.
\]

Proof. By the previous Corollary, we know that

\[
C^{-1} \int_{\mathbb{R}^n} \frac{u(x)}{1 + |x|^{2s}} \, dx \leq u(0) \leq C \int_{\mathbb{R}^n} \frac{u(x)}{1 + |x|^{2s}} \, dx.
\]

Notice that for the lower bound we used that \(u > 0 \) in \(\mathbb{R}^n \).

Now, for every \(x \in B_{\frac{1}{2}} \), we have that \(B_{\frac{1}{2}}(x) \subset B_1 \) and thus \((\Delta)^s u = 0 \) in \(B_{\frac{1}{2}}(x) \).

This means that

\[
\sup_{B_{\frac{1}{2}}(x)} u \leq C \int_{\mathbb{R}^n} \frac{u(x)}{1 + |x|^{2s}} \, dx = C \int_{\frac{1}{2} + |x|^{2s}} \frac{u(x)}{1 + |x|^{2s}} \, dx.
\]

Since \(2 + |x|^{2s} \) is comparable to \(2 + |x|^{2s} \), then

\[
C^{-1} \int_{\mathbb{R}^n} \frac{u(x)}{1 + |x|^{2s}} \, dx \leq u(x) \leq C \int_{\mathbb{R}^n} \frac{u(x)}{1 + |x|^{2s}} \, dx.
\]

Since the upper and lower bounds do not depend on \(x \), both \(\inf \) and \(\sup \) are comparable to \(\int \frac{u(x)}{1 + |x|^{2s}} \, dx \), as claimed.

Remark. Classical Harnack fails!

Remark 2. All functions are \(s \)-harmonic up to a small error!
1.6. Extension problem for the fractional Laplacian

1. Let \(u: \mathbb{R}^n \to \mathbb{R} \) be a \(C^2 \)-bounded function, and let us consider the operator \(Lu \) defined as follows:

2. Let \(w(x,y) \) be the harmonic extension of \(u(x) \) in \(\mathbb{R}^{n+1}_+ \), that is, the solution of

\[
\begin{align*}
\Delta_y w &= 0 \quad \text{in} \quad \{ y > 0 \} \\
W(x,0) &= u(x) \quad \text{on} \quad \{ y = 0 \}
\end{align*}
\]

(The function \(w \) has an explicit expression in terms of the Poisson kernel of a half-space.)

3. Then, the operator \(Lu \) is defined as

\[Lu = -2w(x,0) \]

4. This is the Dirichlet-to-Neumann operator.

Given a function \(u: \mathbb{R}^n \to \mathbb{R} \), \(Lu \) is a new \(\frac{1}{2} \) superharmonic function in \(\mathbb{R}^n \).

5. Notice that \(Lu \) is one derivative less regular than \(u \). Also, \(Lu \) is nonlocal, in the sense that depends on the values of \(u \) in all of \(\mathbb{R}^n \). Moreover, \(Lu \) has maximum principle.

6. It turns out that

\[Lu = (-\Delta)^{\frac{1}{2}} u \]

Indeed, let us see what is \(L(u) \): Define \(v = Lu = -2w(x,0) \), where \(w \) is the harmonic extension of \(u \). Then, the harmonic extension of \(v \) is just \(-2w\)!

Thus, \(Lv = -2(2w) = -3w \)

But since \(\Delta_y w = \Delta w + \Delta_x w = 0 \), then \(Lv = 3w = -\Delta w(x,0) = -\Delta u(x) \).

Thus, \(L(u) = -\Delta u \), so that \(Lu = (-\Delta)^{\frac{1}{2}} u \).
For the fractional Laplacian \((\Delta)^s\) with \(s \in (0,1)\), we have an analogous extension problem.

- Given \(u: \mathbb{R}^n \to \mathbb{R}\), smooth and bounded, we consider the extension \(\tilde{u}(x, y)\) given by

\[
\begin{align*}
\text{div}(y^{1-2s} \nabla \tilde{u}(x, y)) &= 0 \quad \text{in} \quad \mathbb{R}^{m+2} \\
\tilde{u}(x, 0) &= u(x) \quad \text{on} \quad \mathbb{R}^n
\end{align*}
\]

- This is a degenerate weighted PDE when \(s < \frac{1}{2}\), singular when \(s > \frac{1}{2}\), and Laplace equation when \(s = \frac{1}{2}\).

- The extension \(\tilde{u}(x, y)\) has an explicit representation in terms of the Poisson Kernel

\[
P_s(x, y) = C_{n,s} \frac{y^{2s}}{(1|x-y|^2)^{\frac{n+2s}{2}}}
\]

given by

\[
\tilde{u}(x, y) = \int_{\mathbb{R}^n} P_s(x, y, \xi) u(\xi) d\xi
\]

- The relation with the fractional Laplacian is given by

\[
-\lim_{y \to 0} \int_{\mathbb{R}^n} y^{1-2s} \partial_{x} \tilde{u}(x, y) = \mathcal{C}_{n,s} (-\Delta)^s u(x)
\]

- This can be checked either by using the explicit expression of the Poisson kernel, or by Fourier transform.

Notice

\[
\begin{bmatrix}
\Delta_{x,y} \tilde{u} + \frac{1-2s}{y} \partial_y \tilde{u} = 0 \quad \text{in} \quad \mathbb{R}^{m+2} \\
\end{bmatrix}
\]

(equivalent to \(\text{div}(y^{1-2s} \nabla \tilde{u}) = 0 \quad \text{in} \quad \mathbb{R}^n\))
Some explicit solutions in 1-D

Proposition. The function \((x_4)_s^4 \begin{cases} x^s & \text{for } x > 0 \\ 0 & \text{for } x \leq 0 \end{cases} \) satisfies \((-\Delta)^s (x_4)_s^4 = 0 \) in \(\{x > 0\} \).

Proof. The function \(r^s \cos \left(\frac{\theta}{2} \right) \) (in polar coordinates) is a solution to
\[
\nabla \cdot (r^{s+2} \nabla \tilde{u}) = 0 \text{ in } \{y > 0\} \\
\tilde{u} = (x_4)_s^4 \text{ on } \{y = 0\}
\]

Thus, \((-\Delta)^s (x_4)_s^4 = -\lim_{\mu \to 0} r^s \left(\sin \theta \right)^{s+2} \tilde{u}(\mu \cdot r) \)

\[
= -\lim_{\mu \to 0} r^s \left(\sin \theta \right)^{s+2} \tilde{u}(\mu \cdot r) \\
= -\lim_{\mu \to 0} r^s \left(\sin \theta \right)^{s+2} \tilde{u}(\mu \cdot r) \\
= -\lim_{\mu \to 0} r^s \left(\sin \theta \right)^{s+2} \tilde{u}(\mu \cdot r) \\
= -\lim_{\mu \to 0} r^s \left(\sin \theta \right)^{s+2} \tilde{u}(\mu \cdot r)
\]

Exercise

An explicit solution in \((-1,1)\) is given by the following:

Proposition. The function \(u_6(x) = C_6 (1-x^2)_s^5 \) satisfies
\((-\Delta)^s u_6 = 1 \) in \((-1,1)\)
\(u_6 = 0 \) in \(\mathbb{R} \setminus (-1,1) \)

This is one of the few explicit solutions for \((-\Delta)^s\) in bounded domains.

(The proof consists of long computations, so we will not do it.)
1.7 Regularity estimates

- We have seen several qualitative and quantitative properties of (Δ)^s:
 - Maximum principle and Harnack inequality
 - Poisson Kernel and some explicit solutions
 - Extension problem

- We have also seen that s-harmonic functions are smooth, and the relation between fractional Laplacian and Riesz potentials in \(\mathbb{R}^n \).

- We next turn our attention to regularity estimates: If \(u \) solves the Dirichlet problem
 \[
 (-\Delta)^s u = f \text{ in } \Omega \\
 u = g \text{ in } \mathbb{R}^n \setminus \Omega
 \]
 then what is the regularity of \(u \) inside \(\Omega \)? And what about regularity up to the boundary?

- We will next answer these questions.

Interior regularity

Using previous results we saw on s-harmonic functions and Riesz potentials, we next prove:

Theorem. Let \(u \in C^{s,\alpha}(\mathbb{R}^n) \) be a solution to \((-\Delta)^s u = f\) in \(B_2 \). Then,

\[
|u|_{C^{s+\alpha,\alpha}(B_2)} \leq C \left(H^1 L^s(B_1) + H^s L^1(B_2) \right),
\]

wherever \(s \) and \(s+\alpha \) are not integers.

Proof. Let \(f \) be a function in \(C^0(\mathbb{R}^n) \) with compact support, and with \(f \equiv f \) in \(B_2 \), and with \(\|f\|_{L^s(\mathbb{R}^n)} \leq \|f\|_{L^s(B_1)} \).

Let
\[
W = I_{2s}(f) = c_{s,s} \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-2s}} \, dy,
\]

which satisfies \((-\Delta)^s W = f\) in \(\mathbb{R}^n \).
By the results we stated for reverse potentials, we have
\[\|\mathcal{W}_{c+2s}(R^n)\| \leq C(\|\mathcal{F}f\|_{L^2(B_2^n)} + \|\mathcal{W}_{c}(R^n)\|) \]

Since \(f \) has support in \(B_2 \), then
\[\|\mathcal{W}(x)\| \leq C\int_{B_2} \frac{\|\mathcal{F}f\|_{L^2(B_2^n)}}{|x-y|^{n+2s}} \, dy \leq C\|\mathcal{F}f\|_{L^2(B_2^n)} \rightarrow \|\mathcal{W}(x)\| \leq C\|\mathcal{F}f\|_{L^2(B_2^n)} \]

Combining this with \(\|\mathcal{W}_{c+2s}(R^n)\| \leq C\|\mathcal{F}f\|_{L^2(B_2^n)} \), we find
\[\|\mathcal{W}_{c+2s}(R^n)\| \leq C\|\mathcal{F}f\|_{L^2(B_2^n)} \]

Let now \(\nu = \mu - \lambda_1 \) and notice that
\[(\Delta)^v \nu = (\Delta)^\mu \mu - (\Delta)^\lambda \lambda = f - f = 0 \quad \text{in} \quad B_1 \]

Moreover,
\[\|\mathcal{W}_{c}(R^n)\| \leq \|\mathcal{W}_{c}(R^n)\| + \|\mathcal{W}_{c+2s}(R^n)\| \leq C\|\mathcal{F}f\|_{L^2(B_2^n)} \]

Therefore, \(\nu \in L^\infty(B_2^n) \) is an \(s \)-harmonic function in \(B_2 \), and thus satisfies
\[\|\mathcal{W}_\beta(B_2^n)\| \leq C(\|\mathcal{W}_{c+2s}(R^n)\|) \]

For any \(\beta > 0 \). Taking \(\beta = c+2s \), we find
\[\|\mathcal{W}_{c+2s}(B_2^n)\| \leq \|\mathcal{W}_{c+2s}(B_2^n)\| + \|\mathcal{W}_{c+2s}(B_2^n)\| \leq C(\|\mathcal{F}f\|_{B_2^n} + C\|\mathcal{W}_{c}(B_2^n)\|) \leq C(\|\mathcal{F}f\|_{B_2^n} + \|\mathcal{W}_{c}(B_2^n)\|) \]
• This is the main interior regularity estimate for the fractional Laplacian.

• When f is not $C^0(B)$ but only $C^0(B)$, the previous argument yields $u \in C^{s+\varepsilon}(B_\varepsilon)$ for all $\varepsilon > 0$. (We will see this in detail in next Chapter.)

• The previous regularity estimate is for functions that are bounded in \mathbb{R}^n.

We next give a Corollary for functions that may have some growth at infinity.

We will denote

$$\|w\|_{L^2_w(\mathbb{R}^n)} := \left(\int_{\mathbb{R}^n} \frac{|w(x)|^2}{1 + |x|^{n+2s}} \, dx \right)^{\frac{1}{2}}$$

Recall that this quantity already appeared in the Heisenberg inequality for the fractional Laplacian.

Remark: This is the minimum integrability required so that $C^0(B)$ makes sense.

$$\begin{align*}
(C^0)^\star w(x) & = c \int_{\mathbb{R}^n} \frac{w(x) - w(y)}{|x - y|^{n+2s}} \, dy \\
& = c \int_{\mathbb{R}^n} \frac{w(x) - w(y)}{|y|^{n+2s}} \, dy + \int_{\mathbb{R}^n} \frac{w(x) - w(y)}{|y|^{n+2s}} \, dy
\end{align*}$$

$$\begin{align*}
& = c \left(\int_{R^n} \frac{w(x)}{|x|^{n+2s}} \, dx \right) \underset{\text{comparable to}}{\leq} \int_{\mathbb{R}^n} \frac{|w(y)|}{1 + |y|^{n+2s}} \, dy =: \|w\|_{L^\infty_w(\mathbb{R}^n)}.
\end{align*}$$

Corollary: Let $u \in L^2_w(\mathbb{R}^n)$ be a solution of $C^0 u = f$ in B_1. Then,

$$\|u\|_{C^{s+\varepsilon}(B_\varepsilon)} \leq C \left(\|f\|_{L^2_w(\mathbb{R}^n)} + \|u\|_{L^\infty_w(B_1)} + \|u\|_{L^2_w(\mathbb{R}^n)} \right)$$

provided that s and ε are not integers.
Proof. We consider $\vec{u} = \mu \vec{x}_{B_2}$ and see what is the equation that it satisfies.

First, notice that

$$(\Delta)^5 \vec{u} = \frac{(\Delta)^5 \vec{u} - (\Delta)^5 (\mu \vec{x}_{B_2})}{f - h}$$

We want to see that $f \in C^4(B_2)$. In order to apply the previous theorem, we need to prove that $h \in C^4(B_2)$, namely

$$\|h\|_{C^4(B_2)} \leq C \|u\|_{L^1(\mathbb{R}^n)}$$

for $x, \bar{x} \in B_2$

Let us show this. Take $x \in B_2$, then

$$h(x) = c \int_{\mathbb{R}^n} \frac{(\mu \vec{x}_{B_2}) (\vec{x}) - (\mu \vec{x}_{B_2}) (\bar{z})}{1|x-\bar{z}|^{n+2s}} d\bar{z} = -c \int_{\mathbb{R}^n} \frac{\mu(\bar{z})}{1|x-\bar{z}|^{n+2s}} d\bar{z}$$

and thus,

$$(h(x) - h(\bar{x})) \leq c \int_{B_2^c} \mu(\bar{z}) \left(\frac{1}{1|x-\bar{z}|^{n+2s}} - \frac{1}{1|\bar{x}-\bar{z}|^{n+2s}} \right) d\bar{z}$$

Now, we can differentiate under the integral sign in \mathbb{R}^n and get

$$|D^{k} h(x)| \leq c \int_{B_2^c} \frac{|\mu(\bar{z})|}{1|x-\bar{z}|^{n+2s+k}} d\bar{z} \leq c \int_{B_2^c} \frac{|\mu(\bar{z})|}{1+|\bar{z}|^{n+2s+k}} d\bar{z} \leq C \mu \|u\|_{L^1(\mathbb{R}^n)}$$

In particular, we get

$$\|h\|_{C^4(B_2)} \leq C \|u\|_{L^1(\mathbb{R}^n)}$$

(An alternative way would be to estimate the RHS in \mathbb{R}^n.)
Boundedness of weak solutions

- We next prove the following:

Proposition. Let Ω be any bounded domain, and u be the weak solution of

$$(-\Delta)u = f \text{ in } \Omega, \quad u = g \text{ on } \partial \Omega,$$

with $f \in L^p(\Omega)$ and $g \in L^q(\partial \Omega)$. Then,

$$\|\nabla u\|_{L^2(\Omega)} \leq \|g\|_{L^q(\partial \Omega)} + \|f\|_{L^p(\Omega)}.$$

Proof. Let B_R be a large ball in \mathbb{R}^n such that $\Omega \subset B_R$.

Let $\varphi \in C_c^\infty(B_R)$ and such that

$$0 \leq \varphi \leq 1 \text{ in } \mathbb{R}^n, \quad \varphi \equiv 1 \text{ in } \Omega.$$

Then, for each $x \in \Omega$, we have $\varphi(x) = \max_{\mathbb{R}^n} \varphi$, and thus

$$(-\Delta)^s \varphi (x) = \frac{\omega_s}{n} \int_{\mathbb{R}^n} \frac{\varphi(x) - \varphi(y)}{|x-y|^{n+2s}} \, dy \geq c_s \int_{\mathbb{R}^n} \frac{dy}{|y|^{n+2s}} \geq c \frac{dy}{|y|^{n+2s}} = c \frac{dy}{|y|^{n+2s}} = \psi(x).$$

Hence, φ satisfies

$$(-\Delta)^s \varphi \geq c > 0 \text{ in } \Omega$$

$$\varphi = 1 \text{ in } \Omega$$

$$\varphi > 0 \text{ in } \mathbb{R}^n.$$

Let now $v(x) = \|g\|_{L^q(\partial \Omega)} + \frac{1}{c_s} \|f\|_{L^p(\Omega)} \cdot \varphi(x)$.

Then,

$$(-\Delta)^s v \geq \|g\|_{L^q(\partial \Omega)} \text{ in } \Omega$$

$$v \geq \|g\|_{L^q(\partial \Omega)} \text{ in } \mathbb{R}^n.$$

In particular,

$$(-\Delta)^s v \geq (\Delta)^s u \text{ in } \Omega$$

$$v \geq u \text{ in } \mathbb{R}^n.$$

Thus,

$$\|\nabla u\|_{L^2(\Omega)} \leq \|v\|_{L^2(\Omega)} \leq \|g\|_{L^q(\partial \Omega)} + \frac{1}{c_s} \|f\|_{L^p(\Omega)}.$$
Recall 1D example

- Solutions are smooth inside Ω (by interior regularity), but not up to the boundary (by the previous example).

In view of the example, it looks natural to conjecture that $u \in C^{1,1}(\Omega)$. This is what we will prove in this section:

\[\begin{cases} (\Delta)^5 u = f \text{ in } \Omega, & \\
0 \text{ in } \mathbb{R}^n \setminus \Omega, & \\
\Omega \text{ is a } C^2 \text{ domain} \end{cases} \implies \|u\|_{C^{1,1}(\Omega)} \leq C\|f\|_{L^2(\Omega)} \]

- To prove this, the strategy is to first prove that $\|u\| \leq C d^s$, where $d(x) = \text{dist}(x, \partial \Omega)$, and then combine this with interior estimates to get $u \in C^{1,1}(\Omega)$.

- To establish $\|u\| \leq C d^s$ in Ω, we will need to construct suitable barriers.

Barriers

\[\text{Proposition. For any } e \in S^{n-1}, \text{ the function } u(x) = (x \cdot e)_+^s \text{ satisfies} \]

\[\begin{cases} (\Delta)^5 u = 0 \text{ in } \{x \cdot e > 0\} & \\
0 \text{ in } \{x \cdot e \leq 0\} & \\
\end{cases} \]

Proof. Recall that $(\Delta)^5$ solves $(\Delta)^5 u = 0 \text{ in } \mathbb{R}^n$, using this, we find

\[
\int_{\mathbb{R}^n} \frac{2u(x) - u(x+e) - u(x-e)}{r^{n+2s}} \, dr \, ds = \int_{\mathbb{R}^n} \frac{2u(x) - u(x+re) - u(x-re)}{r^{n+2s}} \, dr \, ds
\]

(polar coordinates)

\[
= \frac{1}{2} \int_{S^n} \left(\int_0^\infty \left(\frac{2u(x) - u(x+re) - u(x-re)}{r^{n+2s}} \right) \, dr \right) \, d\sigma
\]
Now, using that \(\mu(x) = (x \cdot e)^s \), we have

\[
2u(x) - \mu(x+r) - \mu(x-r) = 2(x \cdot e)^s - (x \cdot e + (x \cdot e) r)^s - (x \cdot e - (x \cdot e) r)^s
\]

Therefore, for any \(\sigma \in \mathbb{R}^n \) with \(x \cdot e \leq 0 \), we have

\[
\int_0^\infty \left[2u(x) - \mu(x+r) - \mu(x-r) \right] dr = \int_0^\infty \left\{ (x \cdot e)^s - (x \cdot e + t)^s - (x \cdot e - t)^s \right\} dt \left[\frac{\sigma \cdot e}{r} \right]^{s-1} \frac{dr}{r^{s+2s}} = 0
\]

(since \(\Delta^s (x \cdot e)^s = 0 \) in \(\mathbb{R}^+ \)).

This gives us

\[
\int_{\mathbb{R}^n} \frac{2u(x) - \mu(x+y) - \mu(x-y)}{|y|^{n+2s}} dy = \frac{1}{2} \int_{\mathbb{R}^n} |\nabla u|^2 \left(\int_{\mathbb{R}^n} \left[2u(x) - \mu(x+r) - \mu(x-r) \right] dr \right) dy = 0
\]

This is the first and most simple barrier in \(\mathbb{R}^n \). It is a \(1D \) function in \(\mathbb{R}^s \).

Notice that with this barrier we can already show that \(u \in C_0^s \) in convex domains \(\Omega \subset \mathbb{R}^n \).

Indeed, if \(u \) solves \(\Delta^s u = 0 \) in \(\Omega \) (with \(f \in L^2(\Omega) \) and \(\Omega \) convex), then we do

\[
\Delta^s u = 0 \quad \text{in} \quad \Omega - \mathbb{R}^n
\]

We let \(\xi \in C^\infty_0(\mathbb{R}^n) \) be a function with compact support outside \(\Omega \) and with \(\xi \geq 0 \) in \(\mathbb{R}^n \). (but \(\xi \not\equiv 0 \)).

Then, we have \(\Delta^s \xi \leq -c_0 \) in \(\Omega \), for some \(c_0 > 0 \).

Now, for each \(x \in \Omega \) define \(x^* \in \mathbb{R}^n \) such that \(x - x^* = d(x) \) (the closest point to \(x \) on \(2\Omega \)).

We define \(\phi(x) = (\phi(x-x^*) \cdot e \cdot e)^s \) (a translation of our \(1D \) barrier), which solves \(\Delta^s \phi = 0 \) in \(\mathbb{R}^n \) (since \(\phi \in C_0^s \{ x-x^* \} \) by convexity).

Take now

\[
W = C_1 \phi \ast C_2 \xi
\]

with \(C_2 \) large enough so that \(\Delta^s W \geq \frac{1}{h^s} \) in \(\Omega \), and \(C_1 \) large enough so that \(W \geq 0 \) in \(\mathbb{R}^n \).
Then, we have
\[(-\Delta)^{\frac{n}{2}} u \leq (M^\prime(x))^\frac{n}{2} \leq (-\Delta)^{\frac{n}{2}} w \quad \text{in } \mathbb{R} \]
\[u \equiv 0 \leq w \quad \text{in } \mathbb{R}^n. \]

In particular,
\[u(x) \leq C_1 \phi(x) = C_1 |x-x_0|^\frac{n}{2} = C_1 d(x), \]

since this can be done for any \(x \in \mathbb{R} \), we get \(u \leq C d^\frac{n}{2} \text{ in } \mathbb{R} \).

Replacing \(u \) by \(-u \), we get \(|u| \leq C d^\frac{n}{2} \text{ in } \mathbb{R} \).

Essentially, the idea was to use \(\phi \) as a barrier for \(u \), but we had to modify \(\phi \) because of the right-hand side (RHS) of the equation.

Now, we want to do the same but in general \(C^2 \)-domains \(\Omega \) (not necessarily convex).

For this, we need to construct a barrier of this type:

In this way we will touch \(\Omega \) from outside with balls, and this barrier will lead to \(u \leq C d^\frac{n}{2} \).

In \(B_1 \), we have an explicit solution:

\[
\begin{align*}
\text{Prop. Solution in } B_1 & \quad \text{The function } u(x) = |x|^{-\frac{n}{2}} \left(1 - |x|^2 \right)^\frac{n}{2} \quad \text{solves } \\
& \quad \begin{cases}
(-\Delta)^{\frac{n}{2}} u = K \quad \text{in } B_1 \\
u = 0 \quad \text{in } \mathbb{R}^n,
\end{cases}
\end{align*}
\]

where \(K > 0 \) is a constant.

Proof: Exercise (deduce it from the case \(n=1 \)).
However, for the construction of a barrier in $\mathbb{R}^n \setminus \mathcal{B}_1$, we have no explicit solution, and such construction is more complicated. This is what we will do next.

Superduation in $\mathbb{R}^n \setminus \mathcal{B}_1$

\[\text{Lemma. Let } \mathcal{E} \subseteq (\mathcal{E}_0, \mathcal{E}_1). \text{ Then, the function } \psi(x, \epsilon) \in \mathbb{R} \text{ satisfies}
\]
\[
\begin{cases}
(-\Delta)^s \psi(x, \epsilon) - \epsilon^{s-\sigma} \psi(x, \epsilon) = 0 \\
\psi(x, \epsilon) = 0
\end{cases}
\]

with $\psi < 0$.

Proof. We prove it in case $n=1$ (the proof is almost the same).

Since the function $\psi(x) = (-\Delta)^{s-\sigma} \psi(x)$ is homogeneous of degree $s-\sigma$, the $(-\Delta)^{s-\sigma} \psi$ will be homogeneous of order $(s-\sigma) - 2s = \sigma - s$ (recall that $(-\Delta)^s$ is of order $2s$).

Thus,

\[(-\Delta)^{s-\sigma} \psi(x) = \psi(x) \text{ in } (0, \infty),
\]

for some $\psi \in \mathbb{R}$. We need to check the sign of ψ.

We slide the function $(x-h)^s$ from the right until we touch $(x-h)^{s-\sigma}$. Namely consider $(x-h)^s$. For h large, this function is below $(x-h)^{s-\sigma}$. We make h small until they touch at one point x_0. Then,

\[
\psi(x_0) = \psi(x_0) - \psi(x_0) < (\Delta)^s \psi(x_0) = 0,
\]

and thus $\psi < 0$.

Remark. Here, we used that if $V \equiv W \in \mathbb{R}^n$ and $v(x) = w(x)$, then with strict inequality unless $V \equiv W$ a.e. in \mathbb{R}^n.

\[
(-\Delta)^s \psi(x) = \int_{\mathbb{R}^n} [\psi(x) - \psi(x-h)] (-\Delta)^s \psi(x-h) \, dx \leq \int_{\mathbb{R}^n} \left[\frac{1}{2} |v(x) - v(x-h)|^2 \right] \psi(x) \, dx \leq \int_{\mathbb{R}^n} \left[\frac{1}{2} |v(x) - v(x-h)|^2 \right] \psi(x) \, dx.
\]
We next show the following.

Lemma. Let B_1 be the unit ball in \mathbb{R}^n, and $u(x) = (x_1 - 1)^{5+\varepsilon}$. Then,

- If $\varepsilon = 0$, \[0 \leq -\varepsilon \frac{\partial}{\partial x_1} u \leq C_{\varepsilon} \left(\log |x_1 - 1| + 1 \right) \quad \text{in} \quad B_2 \setminus B_1. \]
- If $\varepsilon > 0$, \[-\varepsilon \frac{\partial}{\partial x_1} u \geq C_{\varepsilon} (x_1 - 1)^{5+\varepsilon - 5} \quad \text{in} \quad B_2 \setminus B_1. \]

Proof. For $x \in \mathbb{R}^n$, we denote $x = (x', x_n)$. To show the lemma, we compute $(-\Delta) u(x)$ where $x_0 = (0, t, 1)$, $t \in (0, 1)$.

To estimate $(-\Delta) u(x_0)$, we subtract the d-function $u(x) = (x_n - 1)^{5+\varepsilon}$ which satisfies

\[(-\Delta)^2 u(x_0) = \begin{cases} 0 & \text{if } \varepsilon = 0 \\ C_{\varepsilon} e^{-5} & \text{if } \varepsilon > 0 \end{cases} \quad \text{(with } C_{\varepsilon} \text{ as)} \]

Note that $u \equiv 0$ in \mathbb{R}^n and $u(x_0) = u(x_0')$ for all $p > 0$.

and that, for $1 \ll t$,

\[0 \leq \begin{cases} (x_n - 1)_+ - (p + t)^{5+\varepsilon}_+ \leq C |y|^2 \\ \text{(Exercise)} \end{cases} \]

Thus,

\[0 \leq (-\Delta)^2 (x_n - 1)_+ \leq \begin{cases} C \varepsilon e^{-5} & \text{for } \varepsilon \in \mathbb{R}^n \\ C |y|^{2+\varepsilon} & \text{for } \varepsilon \in \mathbb{R}^n \setminus B_2 \\ C |y|^{5+\varepsilon} & \text{for } \varepsilon \in \mathbb{R}^n \setminus B_2 \end{cases} \]

Therefore,

\[\Delta u \geq (-\Delta)^2 (x_n - 1)_+ \quad \text{in} \quad B_2 \setminus B_1 \]

\[\geq \begin{cases} -C (\log |x_1 - 1| + 1) & \text{if } \varepsilon = 0 \\ -C & \text{if } \varepsilon > 0 \end{cases} \]
Using now that
\[
(-\Delta)^s u(x) = (-\Delta)^s (u(x)) + (-\Delta)^s (v(x)),
\]
we find
\[
-C(\delta \rho_{\rho(x)}) \leq (-\Delta)^s u(\rho(x)) \leq 0 \quad \text{if } \rho \leq 0,
\]
\[
-C \rho^s \leq (-\Delta)^s u(\rho(x)) \leq C \rho^s \quad \text{if } \rho > 0,
\]
with \(C < 0\) (by previous lemma).

Using the previous lemma, we can now construct a supersolution.

Prop. (Supersolution). Let \(se(\delta)\). There exists \(\delta > 0\) and a radial function \(v(\rho)\) such that
\[
(-\Delta)^s v \geq 1 \quad \text{in } B_{\delta + \epsilon} \setminus \overline{B_\delta},
\]
\[
v = 0 \quad \text{in } B_\delta,
\]
\[
0 \leq v \leq C(1 + \|x\|)^{-s} \quad \text{in } \mathbb{R}^n \setminus B_{\delta + \epsilon},
\]
\[
1 \leq v \leq C \quad \text{in } \mathbb{R}^n \setminus B_{\delta + \epsilon},
\]
\[
(\text{Supersolution})
\]

Proof. Let
\[
v(x) = \begin{cases} 2(1 + \|x\|)^{-s} & \text{in } B_{\delta + \epsilon} \setminus \overline{B_\delta}, \\
1 & \text{in } \mathbb{R}^n \setminus B_\delta, \end{cases}
\]
with \(\epsilon \in (0, \delta)\) (for example, \(\epsilon = \delta/2\)).

By previous lemma, we have in \(B_{\delta + \epsilon} \setminus \overline{B_\delta}\)
\[
(-\Delta)^s v(x) \geq -C(1 + \|x\| + \|x\|^{-s}) + C(1 + \|x\|)^{-s} - C \quad \text{in } B_{\delta + \epsilon} \setminus \overline{B_\delta},
\]
with \(C > 0\). Thus, if \(\delta > 0\) is small, we have
\[
(-\Delta)^s v(x) \geq 1 \quad \text{in } B_{\delta + \epsilon} \setminus \overline{B_\delta},
\]
as desired.
Boundary regularity

Proposition. Let \(\Omega \) be any \(C^2 \) and bounded domain. Let \(u \) be the weak solution of
\[
\begin{align*}
\Delta u &= f \text{ in } \Omega \\
\mathbf{n} \cdot \nabla u &= 0 \text{ on } \partial \Omega,
\end{align*}
\]
with \(f \in L^2(\Omega) \). Let \(d(z) = \text{dist}(z, \partial \Omega) \). Then,
\[
|u(z)| \leq C(\|f\|_{L^2(\Omega)}) d(z) \quad \text{in } \Omega,
\]
with \(C \) depending only on \(\Omega \) and \(f \).

Proof. Since \(\Omega \) is \(C^2 \), there exists \(\rho > 0 \) such that any point of \(\partial \Omega \) can be touched from outside with a ball of radius \(\rho \) contained in \(\Omega \). (Receding \(\rho \) if necessary, we may assume that \(\rho = 1 \).)

Thus, we only need to prove \(|u(x)| \leq C(\|f\|_{L^2(\Omega)}) d(z) \quad \text{for } x \in \Omega \text{ close to } \partial \Omega. \)

Let \(\delta \) be small, and let \(\rho \) be the recombination constructed before,
\[
\begin{align*}
\Delta \rho &\geq 1 \quad \text{in } B_{2\delta} \setminus B_{\delta} \\
\rho &= 0 \quad \text{in } B_{\delta} \\
\rho &\geq 1 \quad \text{in } \Omega \setminus B_{2\delta} \\
\rho &\leq C(\frac{1}{\delta}, \|f\|_{L^2(\Omega)}) \quad \text{in } B_{2\delta} \setminus B_{\delta}
\end{align*}
\]

For any \(x \in \Omega \) such that \(d(z) > \delta \), let \(\rho(x) = \epsilon \) be such that \(x + \epsilon \rho = \rho(x) \) (projection of \(x \) on \(\partial \Omega \)). Let \(z \) be the center of the ball \(B_{\rho(z)}(z) \subset \Omega \) such that \(x \in B_{\rho(z)}(z) \).

Then, the function \(W(x) = \rho(\rho(x)) \) satisfies:
\[
\begin{align*}
\Delta W &= \Delta \rho \geq 1 \quad \text{in } (B_{3\delta} \setminus B_{2\delta}) \setminus \partial \Omega \\
W &\geq 0 \quad \text{in } \Omega \setminus \partial \Omega \\
W &\geq C(\frac{1}{\delta}, \|f\|_{L^2(\Omega)}) \quad \text{in } \Omega \setminus B_{\rho(z)}(z)
\end{align*}
\]
Thus, \(w = w \) in \(\Omega \), and in particular \(w(x) \geq 0 \).

This means that \(w(x) \leq C(1, \|f\|_{L^2(\Omega)}) d(z) \), as desired.
Theorem. Let \(\Omega \) be any \(C^2 \) and bounded domain, and \(u \) be the weak solution to
\[
\Delta u = f \text{ in } \Omega,
\]
with \(f \in L^2(\Omega) \). Then,
\[
\|u\|_{C^2(\Omega)} \leq C \|f\|_{L^2(\Omega)},
\]
with \(C \) depending only on \(\Omega \) and \(\Delta u \).

Proof: Let \(x_1, x_2 \in \Omega \), and let us prove that
\[
\|u(x_1) - u(x_2)\| \leq C \|f\|_{L^2(\Omega)} |x_1 - x_2|.
\]

Noticing that we used \(f \leq Cd^2 \) in \(\Omega \), proceed before.

- If \(\frac{r}{2} < |x_1 - x_2| \), then \(B_{\frac{r}{2}}(x_2) \subset \Omega \). Therefore, any function \(\tilde{u}(x) = u(x_1 + r \xi) \)
 satisfies:
 \[
 \tilde{u} \in C^2(B_1),
 \]
 \[
 (\Delta)^2 \tilde{u} = f, \quad \text{ in } B_1.
 \]
 Notice that \(u(x_1) - u(x_2) \) is finite, \(|x_1 - x_2| \leq C \|f\|_{L^2(\Omega)} |x_1 - x_2|.

- In particular, \(\|u\|_{C^2(\Omega)} \leq C \|f\|_{L^2(\Omega)} \).
Remarks. The main part of the proof was $L^\infty \leq C d^s$. Once this was proved, we had two cases, depending on how close are x_1 and x_2, relative to their distance to $\partial \Omega$.

- When they are very close to each other, and far from $\partial \Omega$, then $u \in C^s$ by interior estimates.
- When they are very close to each other, but closer to the boundary, then we just used $L^\infty \leq C d^s$.
- When they are very close to $\partial \Omega$, but even closer to each other, we needed to combine (rescaled) interior estimates with $L^\infty \leq C d^s$.

A minor modification of the proof of the previous theorem yields the following:

Proposition: Assume Ω is C^2 in B_R, and u satisfies

\[
\Delta^s u = f \text{ in } \Omega \cap B_R,
\]

\[
\mu = 0 \text{ in } \Omega \cap \partial B_R.
\]

Then,

\[
\|u\|_{C^s(\Omega \cap B_{R/2})} \leq C \left(\|\Delta^s u\|_{L^2(\Omega \cap B_{R/2})} + \|f\|_{L^2(\Omega \cap B_{R/2})} \right)
\]

with C depending on s and Ω.

Exercise: Show this Proposition.

We next show that, when $\mu > 0$, then $C d^s \leq \mu \leq C d^s$ in Ω for all C^2 domains Ω.
Subsolution and Hopf's Lemma

Proposition (Hopf's Lemma): Let \(\Omega \) be an \(C^2 \)-domain in \(\mathbb{R}^n \), and assume that \(u \) satisfies

\[
\begin{align*}
(-\Delta) u &\leq 0 \text{ in } \Omega \\
\n &\text{and } u = 0 \text{ on } \partial \Omega.
\end{align*}
\]

Then, either \(u \equiv 0 \) in \(\mathbb{R}^n \), or \(\exists c \geq 0 \) such that

\[
u \equiv cd^\frac{n}{n-2} \text{ in } \Omega.
\]

for some \(c > 0 \).

To show this, we need:

Lemma (Subsolution): There is a function \(\psi \) satisfying

\[
\begin{align*}
(-\Delta) \psi &\leq -1 \text{ in } B_1 \setminus B_{\frac{1}{4}} \\
\psi &> 0 \text{ in } B_1 \\
\psi &\geq (g - 1)_+ \text{ in } B_{\frac{1}{2}} \\
\psi &\equiv 0 \text{ on } \partial B_1.
\end{align*}
\]

Proof: We know that \(v(x) = (g - 1)_+ \) satisfies

\[
(-\Delta) v = K \text{ in } B_1 \\
v \equiv 0 \text{ on } \partial B_1, \quad \text{with } K > 0.
\]

Let \(q \in C^2(B_{\frac{1}{2}}) \) such that \(\int_{B_{\frac{1}{2}}} q = 1 \), \(q > 0 \).

Then,

\[
(-\Delta) \psi \leq -c < 0 \text{ in } B_1 \setminus B_{\frac{1}{4}}.
\]

Thus, \((g + (a - 1)_+)^2 + \psi \geq 0 \) satisfies

\[
(-\Delta) \psi = K - \psi \leq -1 \text{ in } B_1 \setminus B_{\frac{1}{4}},
\]

if \(g > 0 \) is large enough.

Proof of proposition. By maximum principle, either \(u \equiv 0 \) or \(u > 0 \) in \(\Omega \).

Rescaling if necessary, for every \(x \notin \Omega \) there is \(z \in \Omega \) such that \(g(y) \leq x \) and \(x^* \in \partial \Omega \).

Since \(u > 0 \) in \(\ Omega \), \(u \equiv 0 \) on \(\partial \Omega \). Using the subsolution, we find

\[
u(x) \geq cd^\frac{n}{n-2} \text{ for all } x \text{ in the segment from } z \text{ to } x^*.
\]

Thus, \(u \geq cd^\frac{n}{n-2} \) in \(\{d \geq \frac{1}{2}\} \), and we are done.
Summary of Chapter 1

\[(\Delta)^s u(x) = c_s \text{ P.V.} \int_{\mathbb{R}^n} \frac{u(x) - u(y)}{|x-y|^{n+2s}} \, dy = \frac{c_s}{2} \int_{\mathbb{R}^n} \frac{\partial^2 u(x)}{|x-y|^{n+2s}} \, dy\]

[\((\Delta)^s \) is nonlocal, of order 2s, translation/rotation/scale invariant.]

- Maximum and comparison principle (global):

\[\text{if } s < \frac{n}{2}, \text{ then } \exists M, m \geq 0 \text{ such that } M \Delta^s u \geq m \Delta^s u \text{ in } \mathbb{R}^n\]

- Existence and uniqueness of weak solutions

- Regularity:

\[\Delta^s u = f \in C^0(B_1) \Rightarrow u \in C^{2s+m}(B_{1/2})\]

\[\Delta^s u = 0 \text{ in } B_1 \Rightarrow u \in C^{2s-\varepsilon}(B_1) \text{ for all } \varepsilon > 0\]

- Harnack inequality:

\[\Delta^s u = 0 \text{ in } B_1 \Rightarrow 0 \leq u \leq C_0 |B_1|^{-1/2s} \text{ in } B_{1/2}\]

- Boundary regularity:

\[\Delta^s u = f \text{ on } \partial B_1 \Rightarrow \partial u \in C^{s-\varepsilon}(\partial B_1) \text{ for all } \varepsilon > 0\].