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Abstract

Thurstone's (1927) is not a proper model for multiple judgment paired comparison
data as it assigns zero probabilities to all intransitive patterns. To obtain a proper model,
Takane (1987) extended Thurstone's model by adding a vector of pair specific random errors.
We investigate an unrestricted Thurstone-Takane model when (a) the variances of the
paired specific errors are assumed to be equal, and (b) when they are assumed to be unequal.

We also consider a new model, an unrestricted Thurstonian mean and correlation
structure model. As the Thurstone-Takane model is a mean and covariance structure model,
and its covariance structure is not scale invariant, Thurstonian correlation and covariance
structure models are not equivalent, except in some restricted cases. In particular, this
correlation structure model is equivalent to the mean and covariance structure model
considered in Maydeu-Olivares (2001). Yet, their substantive interpretation differ.

Although the choice between a Thurstonian covariance vs. a correlation structure
model should be substantively motivated, it is also important to consider model fit and
estimation issues in choosing between these models. These issues are discussed using

numerical examples and simulation studies.

Keywords: MPLUS, goodness of fit, scale invariance, limited information estimation,

structural equation models, personnel assessment, comparative data, random utility models,

Case III model, Case V model.



1. Introduction

Given a set of stimuli and a sample of respondents, a multiple judgment paired
comparison experiment consists in presenting all possible pairs of stimuli to each respondent
asking them to choose one object within each pair. These experiments have a long tradition
and they are particularly popular in areas such as psychophysics and consumer behavior.
Several models have been proposed for these type of data (see David, 1988), one of the oldest
being proposed by Thurstone. Thurstone's (1927) model is characterized by three
assumptions: (a) whenever a pair of stimuli is presented to a respondent it elicits a
continuous preference (utility function, or in Thurstone's terminology, discriminal process)
for each stimulus; (b) within a pair, the stimulus whose continuous preference is largest will
be preferred by the respondent; (c) the continuous preferences are normally distributed in
the population.

In a multiple judgment experiment where the responses to n stimuli are to be

9| = - Of these patterns,

n] nn-—1)

modeled, one can observe 2" binary patterns, where i = [

n! are transitive, meaning that given the binary patterns one can rank order the stimuli, and
the rest intransitive. Maydeu-Olivares (1999) showed that the model proposed by Thurstone
is not a proper model for multiple judgment paired comparison data as it assigns zero
probabilities to all intransitive patterns. Takane must have been aware of this, as in 1987 he
proposed adding a vector of pair specific random errors to Thurstone's (1927) model. This
extension of Thurstone's model, henceforth referred in this paper as the Thurstone-Takane
model, is a proper model for multiple judgment paired comparisons as it assigns non-zero
probabilities to all paired comparisons patterns. Takane's (1987) crucial contribution,
however, was largely programmatic, and he provided neither identification restrictions nor

empirical examples. Maydeu-Olivares (2001) proposed a set of identification restrictions for



the Thurstone-Takane model and investigated the performance of limited information
methods (Muthén, 1978, 1993; Muthén, du Toit & Spisic, in press) to estimate the model.
He found that limited information methods have an excellent small sample behavior in
estimating and testing this model even with large number of stimuli. Yet, he also reported
that in applications often improper solutions were obtained in which estimates for the
variances of the pair specific errors became negative.

The purpose of the present contribution is threefold.

1) We show that these improper solutions occur because the identification
restrictions introduced by Maydeu-Olivares (2001) in the Thurstone-Takane
model are unnecessarily restrictive. Consequently, we provide an alternative set of
minimal identification restrictions to identify the Thurstone-Takane model.

2) We investigate by means of a simulation study the small sample performance of
limited information methods to recover a properly specified Thurstone-Takane
model.

3) We propose a new model for multiple judgment paired comparisons data based on
Thurstone's (1927) original proposals. That is, we introduce a solution —different
from Takane's (1987)- to the problem of specifying a Thurstonian model for
multiple judgment pair comparison data that assigns non-zero probabilities to all
paired comparisons patterns.

To do so, we shall first review the restrictions imposed by Thurstone's model and the
Thurstone-Takane model on the means, variances and covariances of the pairwise differences
among the continuous preferences assumed by Thurstone (1927). Next, we discuss the
identification of the Thurstone-Takane model, showing that Maydeu-Olivares' (2001)
identification restriction is unnecessarily restrictive. Next, we perform a simulation study to

investigate how well limited information estimation methods recover an unrestricted



Thurstone-Takane model under two conditions: equal and unequal variances for the paired
specific errors. Then, we introduce a new Thurstonian model for multiple judgment paired
comparisons data. Unlike the Thurstone-Takane model, our model introduces restrictions
only on the means and correlations -the variances are left unspecified- of the pairwise
differences among the continuous preferences assumed by Thurstone (1927). We conclude
our presentation with numerical examples to illustrate the behavior of Thurstonian

covariance and correlation structure models in fitting several actual datasets.

2. Thurstonian Covariance Structure Models for Multiple Judgment

Paired Comparison Data

2.1 Thurstone's model
Consider a set of n stimuli and a random sample of N individuals from the population

we wish to investigate. In a multiple judgment paired comparison experiment

n
nn-1 . . . ..
n= [ 2] = % pairs of stimuli are constructed and each pair is presented to each

individual in the sample. We shall denote by Y, the outcomes of each paired comparison

1 if subject j chooses object i
y, = ) o L =1,..,A8; j=1,..,N (1)
0 if subject J chooses object i
where | = (i,i"),(i=1,....,n-1; i' = i+1,...,n). Let tij denote subject j's unobserved continuous

preference for object i. According to Thurstone's (1927) model: (a) the preferences t are
normally distributed in the population, and (b) a subject will choose object i if t, = ti,j ,
otherwise s/he will choose object i”.

Thurstone (1927) proposed performing the following linear transformation on the set

of unobserved preferences



y, =t —t, (2)

Then, (b) may be alternatively expressed as

1 if yl}‘ >0

Y, = (3)

0 if yl}‘ <0

In matrix notation, Thurstone's model can be expressed as follows: Let t ~ N (,ut,Et) ,
then y = At. Aisaf x n design matrix where each column corresponds to one of the

stimuli, and each row to one of the paired comparisons. For example, when n = 4, A is

1 -1 0 0
1 0 -1 0
1 0 0 -1

A=lb 1 -1 o (4)
0 1 0 -1
0 0 1 -1

It then follows that the probability of any paired comparisons pattern under Thurstone's

(1927) model is
Pr[ﬁy.]= [ [ (y* : uy*,Zy*)dy* (5)

n. = AW, . =AZA (6)
where ¢ (o) denotes a A-variate normal density, and R is the multidimensional rectangular

region formed by the product of intervals

(0,00) ity =1

" l(=oc,0) ity =0 ()

Now, since A is of rank n - 1, 3, has rank n — 1 and Thurstone's model assigns zero
y

probabilities to all intransitive patterns (Maydeu-Olivares, 1999). Thus, Thurstone's model is



not a plausible model for multiple judgment paired comparisons data, but it may be a

suitable model for ranking data.

2.2 Thurstone-Takane's model
Takane's (1987) key contribution was to add a random error €, to each paired
comparison (2). He assumed that these errors were independent of each other and

independent of the unobserved continuous preferences t so that

=

where §2° is a diagonal matrix with elements wf. Then, y = At+e, and from (3), we find

¥ 0

t

0o @

H

A ®)

)

that the probability of any paired comparisons pattern under the Thurstone-Takane model is

given also by (5) and (7) but now

=AU, I =AZA + (9)

Now, since the observed data is binary, the pattern probabilities (5) are unchanged

. * .
when we standardize y using

1

- D(y* - py*) D= (Diag(zy* ))2 (10)
where at yl* =0, 71 = 0—2“*'*, and U|2* denotes a diagonal element of Zy* . As a result,
|
B = 0 and
T=-Dp. =-DAy, P =DXY D=D(AZA'+2°)D  (11)

We use Pin (11) to indicate that the covariance matrix of z* has ones along its diagonal.

Furthermore, 7 denotes a vector of thresholds, and the off-diagonal elements of P, are
z



tetrachoric correlations.
Therefore, the Thurstone-Takane model defined by equations (5), (7), and (9) can be

equivalently rewritten as

re(W)= S fale op ) m

where R is the multidimensional rectangular region formed by the product of intervals

R = . (13)

and 7 and P are constrained as in (11).
z

Equations (11), (12), and (13) define in fact a class of models as p, and X, can be
restricted in various ways. Takane (1987) provides an excellent overview of restricted
Thurstonian models. We shall use the term unrestricted model when only minimal
identification restrictions are imposed on u, and X,.

An interesting special case of the Thurstone-Takane class of models was proposed by

Takane (1987) in which it is assumed that 2° = w’I .

2.3 ldentification restrictions
From (11), (12), and (13) it is clear that to investigate the identification of any

member of the Thurstone-Takane class it suffices to investigate the identification of the

!/
structure k(0) = (7(9)/ , p(H)I) , where 0 denotes the model parameters and p denotes the

elements below the diagonal of P . stacked onto a column vector.
z

We shall consider now the identification of an unrestricted model when §2°is assumed
to be diagonal. We first note that because of the comparative nature of the data it is

necessary to set the location for the elements of u, and the location for the elements in each



of the rows (columns) of X,. Also, it is also necessary to set the location for the diagonal
elements of §2°. Arbitrarily, we shall set p, = 0, wz =1, and all the diagonal elements of X,
equal to one. Henceforth, we shall use P, to indicate that 3, has ones along its diagonal.

Similar identification conditions can be established for other models within this class.

For instance:

(a) When £2° = w’I, an unrestricted model is identified by letting p, = 0, X = P,
and w’ =1.

(b) A model where X is assumed to be a diagonal matrix (Thurstone's Case III
model) is identified by letting p, = 0 and wé =1 if it is assumed that £2° is
diagonal, or by p, = 0 and w® =1 if it is assumed that 2* = &’I.

(¢) Similarly, a model where it is assumed that 3 = ¢”l (Thurstone's Case V

model) is identified as in (b).

2.4 Maydeu-Olivares® (2001) identification restrictions
Maydeu-Olivares (2001) did not consider the standarization (10). Rather, he
considered the problem of identifying the Thurstone-Takane class of models using equations

(5), (7), and (9). Within this framework, since the variances in ¥  may not be identified
y

from the observed binary data, he simply suggested setting them equal to one by using

2 = 1-Diag(AZ A’). (14)

In addition, to identify an unrestricted model he suggested employing p, = 0 and X = P, as
we do here. With these identification restrictions, (@) is a linear function in the case of the
unrestricted model. However, this solution is unnecessarily restrictive. It introduces (fi — 1)

unnecessary restrictions. Also, Maydeu-Olivares (2001) reports it often yields improper

solutions in applications with some of the diagonal elements of (14) becoming negative.
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Furthermore, if, upon encountering an improper solution, a proper solution is sought by
imposing boundary constraints on the free parameters, a poorer fit will be obtained as ()

is linear.

3. Simulation study

We shall now investigate how well covariance structure models can be estimated in
small samples. This is necessary as often only very small samples are available in paired
comparisons applications, and the models under consideration are rather complex.

We shall use a limited information estimation approach due to Muthén (1978, 1993,

Muthén, du Toit & Spisic, in press) to estimate these models. Let p, and p, are the sample
counterpart of m = Pr (yI = 1) and T, = Pr (yI =Ly, = 1) , respectively, and let @, ()
denote a n-variate standard normal distribution function. Then, first each element of 7 is

estimated separately using

7 ==%"(p) =1, .. f (15)

ho=" (0, |7 —7)  1=2,,0 =1, 0 (16)

F :(I%—K,(B)) W(/%—FL(G)) (17)
where W = 2 (WLS: Muthén, 1978), W = (Diag (é))f1 (DWLS: Muthén, du Toit &

Spisic, 1997), or W = 1| (ULS: Muthén, 1993), and = denotes the asymptotic covariance

matrix of VN (k£ — &) which is computed as in Muthén (1978).
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Standard errors for the parameter estimates are obtained using (Muthén, 1993)

Acov(6) = Nl HEH’ H=(A'WA) A'wW (18)

where A = % Also, goodness of fit tests of the structural restrictions of the model  (0)

for the DWLS and ULS estimators can be obtained (Muthén, 1993) by scaling T := NF by
its mean or adjusting it by its mean and variance so that it approximates a chi-square

distribution as follows

r _ Tr[M]
° Tr[l\/I]T o= Tr[M2]T (19)

where M =W (Il — AH)E . T, and T,, denote the scaled (for mean) and adjusted (for mean

. . . . T . nn+1
and variance) test statistics. Ty is referred to a chi-square distribution with r = % —q

degrees of freedom, where ( is the number of mathematically independent parameters in 6.

(Tr[M))’

degrees of freedom.
Te[m] ©°

T, is referred to a chi-square distribution with d =

Let p be the w vector of first and second order proportions employed in (15)

and (16), and let 7 be its corresponding probabilities. Furthermore, let
JINé =N (p - (é)) . Then, goodness of fit tests of the overall restrictions imposed by the

model on the first and second order marginals of the contingency table 7 (6) can be

obtained (Maydeu-Olivares, 2001) by scaling T = N&’é using

- r - - TI'[M] -
T, = T T, = T, (20)
Tr[M] Tr[MQ]

~ ~ ~ ~ ~ /
where M = (I — AAHA*)F (I — AAHA*) , I denotes the asymptotic covariance matrix

of JN (p—m), and A= % T, and T, are to be referred to a chi-square distribution with
K
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degrees of freedom, respectively.

Maydeu-Olivares (2001) investigated the small sample behavior of Muthén's
procedures in estimating an unrestricted Thurstone-Takane's model with (14). He found that
the ULS and DWLS estimators clearly outperformed the asymptotically efficient WLS
estimator. The difference between ULS and DWLS was small, slightly favoring ULS. More
specifically, Maydeu-Olivares (2001) found that using ULS to estimate an unrestricted

Thurstonian model for 7 stimuli (21 binary variables being modeled), a sample size of 100

X —0
observations yielded parameters estimates with a relative bias ———— at most of 2% (in

absolute value), and standard errors with a relative bias at most of 10% (also in

absolute value). Furthermore, he found the mean and variance corrected statistics

(T, and T,) to match rather closely its reference chi-square distribution, whereas the mean
corrected statistics (T, and 'I:s) showed an unacceptable behavior, rejecting the model all too
often.

Nevertheless, the thresholds and tetrachoric correlations are a linear function of the
parameters of the models considered by Maydeu-Olivares (2001). This may explain the
excellent small sample behavior of the ULS procedure in his simulation. Larger sample sizes
may be needed to estimate a correctly specified Thurstone-Takane model. To investigate

this, we performed a simulation study under two conditions:

(a) Unrestricted Thurstone-Takane model with equal pair specific error variances, where

T=-DAp,, and P. = D(APA’+u'1)D.

(b) Unrestricted Thurstone-Takane model with unequal pair specific error variances, where
T =-DAy,, and P. =D(APA’'+2°)D.
4

To compare our results with those of Maydeu-Olivares (2001) we used the same
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estimation method (ULS in the third stage), the same number of stimuli (7), the same

number of replications (1000), and the same true values used in Maydeu-Olivares (2001):

0.5 1
0 08 1
-0.5 0.7 06 1
M, = 0 P, = 0.8 0.7 06 1 ) (21)
0.5 0.8 0.7 06 0.8 1
—-0.5 0.7 06 08 0.7 06 1
0 0.8 0.7 06 0.8 0.7 0.6 1
In addition, in condition (b) we employed as true values 2* = 1. To identify the models we

let in both conditions p; = 0. Also, in (a) we let w’ =1 and in (b) we let w) =1.
The sample sizes investigated in condition (a) were 100 observations and 500

observations; and in condition (b) 500 and 1000 observations.

3.1 Simulation results when equal pair specific error variances are assumed

All replications reached convergence. For both sample sizes, all estimates for p
showed a positive relative bias and all estimates for P, showed a negative relative bias.
There was no consistent trend in the sign of the relative bias of the estimated standard
errors. In the smaller sample size, the largest parameter estimate and standard error relative
biases were —2% and —7%, respectively. Thus, a sample size of 100 observations seems to be
sufficient to obtain accurate parameter estimates and standard errors. This is truly
remarkable given the degree of data sparseness and the complexity of the model. Table 1
summarizes the parameter estimates and standard errors results. Due to the large number of
parameters being estimated, in this table we have pooled the results across parameter
estimates having the same true value.

The results for the goodness of fit tests are shown in Table 2. We see in this table
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that none of the two statistics for assessing the structural restrictions of the model, T, and
T,, closely match their reference chi-square distributions. Neither does the mean corrected
statistic T, for assessing the overall restrictions of the model. However, the mean and
variance corrected statistic T, for assessing the overall restrictions of the model shows a
reasonable agreement to its reference distribution. A larger sample size is needed to obtain
reliable tests of the structural restrictions for models of this size. Yet, a sample size of 100
observations suffices to obtain reliable tests of both the structural and overall restrictions in
models for a smaller number of stimuli. We verified this in an additional simulation study

with four stimuli.

Insert Tables 1 and 2 about here

When we used a sample size of 500 observations we obtained less variable parameter

estimates, smaller relative biases, and now not only T, closely matched its reference

distribution, but also T, and T,.

3.2 Simulation results when unequal pair specific error variances are assumed

Again, all replications converged. For both sample sizes, all estimates for p, and £2*
showed a positive relative bias and all estimates for P, showed a negative relative bias. All
estimated standard errors showed a negative relative bias. When the sample size was 500,
the largest parameter estimate relative biases for the elements of for u, and P, were 2% and
—5%, respectively. However, relative biases for the elements of §2° ranged between 6% and
28%. Also, the largest relative standard error biases for the elements of u, was —5%.
However, relative biases for the elements of P, ranged between —10% and —17%, and for £2°

ranged between -7% and -22%., respectively. Clearly, this sample size is not large enough to
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obtain accurate estimates and standard errors for this particular model. However, as it can
be seen in Table 2 it is large enough to reliably test the structural and overall restrictions
imposed by this model, as the T, and T, and 'I:a statistics closely match their reference
distribution.

When we used a sample size of 1000 observations, the largest parameter estimate
relative biases for p,, P, and £2° were 1%, -2% and 11%, respectively. Also, the largest
standard error relative biases for p,, P, and £2° were -3%, -8% and -11%. This is remarkable,
as we used the same starting seed in conditions (a) and (b). When the same data is
estimated assuming that the variances are equal, 100 observations suffice to obtain accurate
parameter estimates and standard errors, but 1000 observations are needed if the pair
specific variances are to be estimated. Furthermore, inspecting the results in Table 1 we note
that better results (more accurate and less variable parameter estimates are more accurate
standard errors) are obtained with 100 observations when paired specific variances are
assumed equal than with 500 observations when they are assumed to be unequal. Similarly,
better results are obtained with 500 observations and equal variances than with 1000
observations and unequal variances.

When the pair comparison error variances are assumed unequal, the minimization

!/

/
(17) is performed with respect to ¥ = [u:,,pt’,wl] , where ,u: = (“1""’“6> ,

/ % !/ . .
p, = (10217"'7%7) ,and w = (wl,---,wzo) . These estimates are then transformed to obtain the

/
w! !/ .
parameters of interest @ = [[J,t .,/ W’ ] and standard errors for @ are obtained by the

multivariate delta method using

06 (9)
09’

Acov (6] = L cHEHe C= (22)
N

Previous attempts to estimate these models by minimizing a function of 8 directly resulted
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in a wild variability of parameter estimates and many non-convergent solutions. Sample sizes
larger than 10,000 observations were needed to obtain results similar to those obtained here

with 500 observations.

4. Thurstonian Correlation Structure Models for Multiple Judgment

Paired Comparison Data

In the previous sections we considered two classes of Thurstonian models for paired
comparisons data. In both cases, the pattern probabilities are given by (12) and (13). The
models differ in the restrictions imposed on the thresholds and tetrachoric correlations:

(a) Thurstone-Takane class with equal pair specific errors, where 7 = —DAY, , and

P. =D(AZ A +1)D.

z

(b) Thurstone-Takane class with unequal pair specific errors, where T = —DAY, , and

P . =D(AZ A" +2°)D.

z

In this section we shall introduce a third class of Thurstonian models for paired

comparisons data with pattern probabilities also given by (12) and (13):

(c) Thurstone correlation structure model, where 7 = —Ap, , and Pz" = Off (AZtA’), where
Off(e) is used to denote the restrictions imposed on the off-diagonal elements of a
correlation matrix.

The rationale for this third class of models is as follows: The Thurstone and
Thurstone-Takane models are mean and covariance structure models in the sense that they
impose constraints on the mean vector and covariance matrix of y', the pairwise differences
among the unobserved continuous preferences t. However, as only the binary choices are
observed, the covariance matrix of y* can only be estimated from a correlation matrix.

Moreover, to estimate the parameters of these models one must resort to pre and post-
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multiply the covariance structure by the inverse of a diagonal matrix of model-based
standard deviations. This results in complex non-linear restrictions on the thresholds and
tetrachoric correlations.

The class of models (c) is a solution —different from Takane's (1987)- to the problem
of specifying a Thurstonian model for multiple judgment pair comparison data that assigns
non-zero probabilities to all paired comparisons patterns. It amounts to specifying a mean
and correlation structure model for y* consistent with Thurstone's (1927) seminal ideas
rather than a mean and covariance structure model. Correlation structure models are
commonly used in situations where modeling the variances is of no interest (McDonald,
1975). Within the present framework a mean and correlation structure model imposes
restrictions on the means and correlations of y', yet leaves the structure for the variances of
y" unspecified.

Now, from (6) the mean and covariance structures for y* implied by Thurstone's

model are p . = Al, and Zy* = AZtA/ . Thus, we shall assume p, = Ap, . Also, by
y y

parsimony we shall assume P, = Off (AZtA/) . That is, we assume that the restrictions on
y

the correlations among y* have the same functional form as the restrictions of Thurstone's
model on the covariances among y'. Then, the probability of any paired comparisons pattern

under this Thurstonian mean and correlation structure model is

n
Pr[ﬂy.]= [ [ (y :uyx,Py*)dy (23)
with limits of integration (7). These pattern probabilities are unchanged when we transform

y using z =Yy K. where at y, =0, 7, := —p, . As a result, B = 0 and

T = —Al, P, =Off(AZA') (24)

z

where now the pattern probabilities are given by (12), (13) and (24). Again, to identify an
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unrestricted model, it is necessary to set the location of the elements of u, and the location

of the elements in each of the rows (columns) of X,. Arbitrarily, we shall set p, = 0 and
Y =P,.

We immediately see that our proposed Thurstone correlation structure model has the
same pattern probabilities as the Thurstone-Takane model with Maydeu-Olivares (2001)
identification solution £2* = | — Diag (AZtA') . Our Thurstone correlation structure model
and Maydeu-Olivares' model are statistically equivalent, yet substantively different. The
correlation structure model makes no structural assumptions about the variances of y, no
pair specific random errors are assumed, and hence no improper solutions can be obtained.
However, as these two models are statistically equivalent, the simulation results reported by
Maydeu-Olivares (2001) for his model are applicable to our correlation structure model as
well.

An unrestricted correlation structure model is more restricted than an unrestricted
Thurstone-Takane model assuming §2° diagonal as the latter has (fi — 1) additional
parameters. Furthermore, although the Thurstonian correlation structure model has the
same number of identified parameters as the Thurstone-Takane model when £2° = w’l , these
models are not equivalent. Also, the Thurstone-Takane model with £2* = w’l and X,
diagonal is not equivalent to the Thurstonian correlation structure model with X, diagonal.
Nonetheless, the Thurstone-Takane model with £2° = w’l and X = o’l is equivalent to the
Thurstonian correlation structure model with X = o’l. In this special case, denoting by i,
and G° the parameters of Thurstone-Takane model and ; and o the parameters of the

Thurstone correlation structure model we have

- 1 9 o’
=0 /— G = 25
A 1—-20° 1—20° (25)

The choice between employing a covariance or a correlation structure within a
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Thurstonian framework, should be grounded substantively. If one believes that the variances
of y* ought to be modeled and one feels at ease with Takane's (1987) proposal of adding a
vector of pair specific errors to Thurstone then a Thurstone-Takane model should be
employed. On the other hand, if one believes that the variances of y* should not be modeled
then a correlation structure model should be employed. Statistically, large sample sizes are
needed to accurately estimate a Thurstone-Takane model with §2° diagonal. Rather small
sample sizes are needed to estimate a Thurstone-Takane model with £2° = w’l . However,
even smaller sample sizes are needed to estimate our proposed Thurstonian correlation
model. This can be seen in Table 1. The parameter estimates obtained by Maydeu-Olivares
(2001) are more accurate and less variable than those obtained for the Thurstone-Takane
model with £2° = w’l. Thus, if only a very small sample is available to estimate a very large
model, on statistical grounds, one should employ a correlation structure model. In addition,
special purpose software is needed to estimate covariance structure models, whereas
commercially available software such as MPLUS (Muthén & Muthén, 1998) can be employed
to estimate correlation structure models. To illustrate this point, in Appendix 1 we provide
code to estimate Thurstonian correlation structure models using MPLUS for the first of the

applications described in the next section.

5. Applications

We now provide three different applications in which we fit: (a) an unrestricted
Thurstonian covariance structure model assuming that £2° is a diagonal matrix, (b) an
unrestricted Thurstonian covariance structure model assuming £2° = w’l , and (c) an
unrestricted Thurstonian correlation structure model. Our aims are to compare empirically
models (b) and (c) which have the same number of parameters but are not equivalent, and

to investigate empirically if relaxing the assumption £2° = w’l letting £2* be a diagonal



20

matrix improves the fit of the covariance structure model.

5.1 Modeling preferences for compact cars

Maydeu-Olivares (2001) reported a study in which preferences for compact cars
among college students where investigated. The sample size was 289 and he published a
subset of the data consisting of the responses to these four cars {Opel Corsa, Renault Clio,
Seat Ibiza, Volkswagen Polo}.

The structural and overall goodness of fit tests for the three models under
consideration are provided in Table 3. As can be seen in this table, the differences in overall
fit between the unrestricted covariance structure model with £2° = w*l and the unrestricted
correlation structure are negligible. Also, there is no improvement in the fit of the covariance

structure model when the assumption §2° = w’l is relaxed by assuming that §2° is diagonal.

Insert Tables 3 and 4 about here

Regarding the parameter estimates, it is important to realize that when it is assumed
that £2° = w’l the free parameters are estimated relative to the value assigned to w’.
Similarly, when it is assumed that £2° is a diagonal matrix, the free parameters are
estimated relative to the value assigned to wé . In our discussion of the identification of these
models, we suggested —for ease of implementation- assigning a value of one to w” and wz .
However, arbitrarily choosing another value for w’ and wé results in a different set of
parameter estimates with the same pattern probabilities. This indeterminacy is
unsatisfactory from an applied perspective as one is interested in meaningfully interpreting
the parameter estimates. In Appendix 2 we describe a solution to this problem consisting in

a reparameterization of the model that yields parameter estimates for all the free parameters
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and w® when £2° = w’l is assumed, or for all the free parameters and w§ when £2° is
assumed to be diagonal. Although this reparameterization solution is more complex to
implement, we strongly recommend its use in applications to overcome the indeterminacy
just described.

In Table 4 we provide the parameter estimates and standard errors for the covariance
structure model assuming £2° = w’l obtained using this reparameterization. The value
estimated for w® was 0.13 with a standard error of 0.04. With these data, fixing w* =1 to
identify the model causes the parameter estimates in P, to lie outside the range [-1, 1]. A
fixed value of 1 for w” is too large in this application. In Table 4 we also provide the
parameter estimates and standard errors for the unrestricted correlation structure model. We
notice that the same substantive conclusions are obtained using both approaches. However,
the standard errors for the elements of P, in the correlation structure model are considerably
smaller, and because this is a linear model, they are more homogeneous.

Given the results observed in Table 4, we conjectured that a model assuming
X = o’l could adequately fit these data. Thus, we fitted an unrestricted Thurstonian
correlation structure model assuming X = 0’1, and a Thurstone-Takane model assuming
2° =l and X = o’l to these data. These two models are equivalent. The goodness of fit
tests are also reported in Table 3. It is unclear how to perform nested tests using the mean
and variance corrected statistics. However, Satorra and Bentler (2001) have recently
provided expressions for performing nested tests using the mean corrected statistics. Using
a = 0.01, nested tests of the overall restrictions suggests that no fit improvement is obtained
by assuming either an unrestricted covariance or an unrestricted correlation structure model
over a model with the restriction X = o’l . Thus, the most parsimonious representation for

these data is a model with the restriction X = o’l . With standard errors in parentheses, the

parameter estimates in the correlation structure metric are p, = 0.20 (0.07), p, = -0.16
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(0.07), p; = -0.11 (0.07), 0® = 0.45 (0.01), and in the covariance structure metric are p, =

0.65 (0.23), p, = -0.50 (0.23), p; = -0.36 (0.22), 0> = 4.78 (1.11), where we fixed w* =1.

5.2 Modeling paired comparisons in a personality assessment task

In personnel selection tasks it is often necessary to obtain some personality
assessment of the applicants. Rating scales are ill-suited to this purpose as applicants
naturally distort their responses to match a desirable personality profile. This desirability
effect can be greatly reduced by using a paired comparisons design in which respondents are
forced to choose between pairs of desirable stimuli. At the Catalan Police Academy (Spain) a
personality assessment is performed on all trainees using a paired comparisons design. Given
a set of adjectives describing personality characteristics, trainees are presented with all
adjective pairs and are asked to choose the adjective that best describes their personality
within each pair. In Table 5 we provide all binary response patterns and observed
frequencies yielded by all male trainees (580) assessed during 2001 from one particular police
corps to four of the adjectives {competent, orderly, reliable, and resolved}. These data will

be analyzed in this example.

Insert Tables 5 to 8 about here

The overall goodness of fit tests for the three models under consideration are
presented in Table 6. As can be seen in this table, the covariance structure model with
unequal paired specific error variances provides a good fit to these data. The other two
models fit rather poorly while the covariance structure model assuming £2* = w’l fits better
than a correlation structure model.

In Table 7 we provide the parameter estimates and standard errors for the good-
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fitting model. These were estimated by fixing wz = 1. The reparameterization approach
described in Appendix 2 yields a value of 0.99 for w? (SE = 0.37). Hence the fixed value
assigned to wz is appropriate. As can be seen in this table, the parameter estimates for £2°
differ considerably, ranging from 0.25 (SE = 0.26) to 4.45 (SE = 1.83). Thus, it is not
surprising that a model assuming equal pair specific error variances fits poorly. Interestingly,
the ordering of the mean preferences is {orderly, resolved, competent, and reliable}. Thus,
for instance, police trainees prefer to describe themselves as orderly rather than resolved.
Also, it is interesting to see that there are only two significant parameter estimates in P;:
Police trainees describing themselves as competent are more likely to describe themselves as
reliable, and police trainees describing themselves as competent are more likely to describe

themselves as resolved.

5.3 Modeling preferences for celebrities

Kroeger (1992) replicated a classical experiment by Rumelhart and Greeno (1971) in
which respondents were presented with pairs of celebrities and they were asked to select the
celebrity with whom they would rather spend an hour of conversation. Here we shall analyze
a subset of Kroeger's data consisting of the females' responses (96 subjects) to the paired
comparisons involving the set of former U.S. first ladies (Barbara Bush, Nancy Reagan, and

Hillary Clinton) and athletes (Bonnie Blair, Jackee Joyner-Kersee, and Jeniffer Capriati).

Insert Tables 8 and 9 about here

Again, we fitted the three models under consideration to these 15 paired comparisons.
The overall goodness of fit tests for these models are presented in Table 8. As can be seen in

this table, the correlation structure model does not fit these data well. But the covariance
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structure model assuming £2° = w’l provides a good fit to these data. Furthermore, no
improvement in fit is apparent by relaxing the restriction £2° = w’l and assuming that $2°
is a diagonal matrix.

In Table 9 we provide the parameter estimates and standard errors for the covariance
structure model with £2° = w’l using the reparameterization approach of Appendix 2. The
estimate of w” is 0.26. As can be seen in this table a preference for Barbara Bush is strongly
related to a preference for Nancy Reagan. Furthermore, preferences for the three athletes are
all positively correlated. These are the only significant correlations in P, given the small
sample size available, but the non-significant correlations also seem to agree with what one
would expect. For instance, preferences for Hillary Clinton are negatively related to
preferences for Barbara Bush and Nancy Reagan. Finally, the ordering of the mean
preferences for these celebrities under this model is {Hillary Clinton, Jackie Joyner- Kersee,
Barbara Bush, Jeniffer Capriati, Bonnie Blair, and Nancy Reagan} although the large

standard errors obtained with this small sample size leads to numerous ties in this ordering.

6. Discussion and conclusions

In this paper we have considered mean and covariance structure and mean and
correlation structure Thurstonian models for multiple judgment paired comparison data.
Letting y* denote the vector of pairwise differences among the unobserved continuous
preferences assumed to underlie the binary choices in Thurstonian models, in both cases, the
mean structure is m. = AY, . In the covariance structure model it is assumed that
Zy* = AZtA' +£2°, and in the correlation structure model it is assumed that

P = Off (AZtA') . These correlation and covariance structures are not equivalent models
y

because the covariance structure model is not scale invariant. Furthermore, the correlation
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structure model is more restrictive than the covariance structure model. In Maydeu-Olivares
(2001) this issue was overlooked and he proposed identification restrictions for the covariance
structure model that were unnecessarily restrictive.

We believe that the choice between employing a covariance or a correlation structure
within a Thurstonian framework should be motivated substantively. However, it is also
important to consider model fit and estimation issues in choosing between these models.
Model fit issues are important because substantive conclusions drawn from a poor fitting
model are meaningless. Estimation issues are also important since in many applications of
multiple judgment paired comparisons data only small samples are collected and the
contingency tables can be extraordinarily sparse. We have investigated in some detail model
fit issues in applications and estimation issues in simulation studies. We have considered
three unrestricted Thurstonian models: (a) a covariance structure model assuming that £2* is
a diagonal matrix, (b) a covariance structure model assuming £2° = w’l , and (c) a
correlation structure model. Models (b) and (c) have the same number of identified
parameters yet they are not equivalent models. Model (a) is more general.

We have reported here three numerical examples that illustrate well our model-fit
findings. In not any of the applications we have investigated, the correlation structure model
fitted the data better than the covariance structure model assuming §2° = w’l, although the
differences in fit were in some cases small. This was the case in the first of the applications
we reported. Regarding the assumptions on £2* in covariance structure models, we have
found that in many applications no appreciable fit improvement is obtained by assuming
that 2 is a diagonal matrix rather than £2* = w’l. This was the case in the third
application we reported. However, this statement must be qualified, as most applications we
have considered consisted of small samples. When larger samples are available, a substantial

fit improvement assuming §2° diagonal over §2° = w’l is more likely to be found. This was
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the case in the second application we reported.

The simulation studies performed suggest that samples as small as 100 observations
suffice to estimate covariance structure models for 7 stimuli assuming £2* = w’l . Larger
sample sizes are needed to estimate covariance structure models when £2° is assumed to be a
diagonal matrix. Correlation structure models can be estimated with smaller sample sizes
than covariance structure models assuming £2* = w’l .

Taking together model fit and estimation results we tentatively conclude that from a
statistical viewpoint the use of a covariance structure model with 2° = w’l is to be
recommended. If a large sample is available, we conjecture that a covariance structure model
assuming that £2° is a diagonal matrix may yield a substantial fit improvement. However, if
only a extremely small sample is available relative to the size of the model, a correlation

structure model should be considered, as this model can be estimated with very small

samples.
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TABLE 1

Simulation results for an unrestricted Thurtone-Takane model with 7 stimuli: Parameter estimates and standard errors

0% =2l £2? diagonal Maydeu-Olivares (2001)
N = 100 N = 500 N = 500 N = 1000 N = 100

par Xest. XSEs stdest.| Xest. XSEs stdest.| Xest. XSEs stdest.| Xest. XSEs stdest.| Xest. XSEs std est.
pw=0.5 | 0.50 0.11 0.11 0.50  0.05  0.05 0.50 0.11 0.12 0.50 0.08 0.08 0.50 0.09 0.09
n="~0 0.00 0.10 0.10 0.00 0.05 0.05 0.00 0.05 0.05 0.00 0.04 0.04 0.00 0.09 0.09
p=-05| -0.51 0.12 0.13 -0.50  0.05  0.06 -0.51 0.09 0.10 -0.50 0.07 0.07 -0.51 0.11 0.11
p=081 0.79 0.08 0.08 0.80 0.04 0.04 0.79 0.09 0.10 0.80 0.06 0.06 0.80 0.05 0.05
p=20.71] 0.69 0.10 0.10 0.70 0.04 0.04 0.68 0.12 0.14 0.70 0.08 0.08 0.70 0.06 0.06
p=20.6 | 0.59 0.12 0.12 0.60 0.056  0.05 0.58 0.15 0.17 0.60 0.10 0.11 0.60 0.06 0.07

Ww=1 -- -- -- - - - 1.13 0.58 0.69 1.06 0.38 0.41 - - -

Notes: ULS estimation; 1000 replications;




TABLE 2

Simulation results for an unrestricted Thurtone-Takane model with 7 stimuli: Goodness of fit tests

30

Nominal rates
Null hypothesis Model N Stat. Mean Var. 1% 560 10% 20% 30% 40% 50% 60% 70% 80% 90%
100 T, 2109 5394 3.2 11.2 204 323 425 54.1 63.1 708 787 84.2 91.2
2 =W’la T, 56.6 373 0.1 0.6 28 13,5 31.1 473 65.8 79.7 89.2 958 99.7
T, 204.6 472.1 1.5 6.1 12.3 235 328 41,5 498 59.1 694 79.5 89.1
H, k= (6) > T, 1225 1625 | 04 24 60 167 293 398 509 627 758 862 94.3
500 T, 183.8 421.2 1.4 5.9 11.2 224 314 394 477 577 685 776 894
0? diagonal ® T, 114.1 156.7 0.4 2.2 6.0 172 28.0 377 484 61.0 73.6 84.8 934
1000 E 184.0  439.1 1.9 6.5 122 21.0 30.3 40.6 484 579 67.6 77.7 88.9
. 132.8 223.8 0.9 4.2 8.6 179 274 398 488 60.6 72.0 81.7 92.7
100 . 206.1 2894.1 | 17.7 249 295 357 39.9 436 473 512 556 60.0 66.4
2 =u’la B 21.5  30.9 0.3 3.4 7.8 177 285 40.1 51.8 63.4 743 84.7 95.4
500 :S 205.8 3148.3 | 181 252 28.8 36.0 39.2 43.6 46.7 50.2 54.3 58.9 63.8
H, :m=m(0) A 26.6  52.4 1.1 50 10.6 19.8 299 39.7 50.0 59.9 69.5 81.5 91.8
500 I 185.1 2668.2 | 16.3 23.0 27.2 339 375 424 464 50.6 54.0 59.6 66.1
2 diagonal ® A 24.6  47.7 1.2 56 10.0 17.7 282 38.6 50.2 60.7 70.7 81.3 91.8
T, 185.3 2498.1 | 16.8 24.1 28.6 34.6 38.6 43.0 46.8 505 54.1 58.7 65.6
100 T, 25.7  48.3 1.4 4.7 95 194 299 399 39.6 50.0 59.9 70.2 81.8

Notes: ULS estimation; 1000 replications; ® 204 d.f.; ® 184 d.f.




TABLE 3

Goodness of fit tests for the compact cars data

Hoy: k =k (0) Hy: 7 =m(0)

Model stat  val. df p-val | stat val. df p-val

cov. structure T 8.51 -- -- T 2.21 -- --
unrestricted T, 7.98 7 0.33 'I:S 24.22 7 <0.01
2* diagonal T, 665 581 034 2020 4.10 <0.01

cov. structure T 10.11 - - T 1.91 - -
unrestricted T, 1293 12 0.37 T, 7.35 12 0.01
2 — T, 877 813 037 1854 440  0.02

corr. structure T 9.21 - - T 2.18 - -
unrestricted T, 1013 12 060 | T, 2877 12  <0.01
T, 7.82 9.27 0.58 Na 22.22  4.57 0.01

corr. structure T 55.91 -- -- T 3.87 -- --
3 =0l T, 30.46 17 0.02 T, 44.44 17 <0.01
T. 1569 875 0.07 R 2287 771 0.01

Notes: T, and "IZS are Satorra-Bentler's scaled statistics, T, and 'I:a are Satorra-Bentler's

adjusted statistics. The correlation structure model with ¥ = o’l is equivalent to a

covariance structure model with ¥, = ¢’l and 02° = w’I.



TABLE 4
Estimated parameter estimates and standard errors for an unrestricted model

applied to the cars data

p Opel Seat VW Renault [T
' Corsa Ibiza Polo Clio

Opel 1 0.66 0.50 0.56 0.20
= Corsa (004)  (0.04)  (0.04) | (007) | g
g Seat 0.54 1 0.56 050 | -0.15 | S
5 Thiza | (0.10) 0.04)  (0.04) | (0.07) | #
% VW | 027 035 1 050 | -0.11 %
§ Polo (0.08)  (0.06) (0.04) | (0.07) Té
S | Renault | 0.35 0.27 0.24 1 0 5

Clio (0.13)  (0.14)  (0.09) (fixed)

0.22 -0.18 -0.14 0
H (0.08)  (0.09)  (0.09)  (fixed)

Notes: N = 289; standard errors in parentheses; the covariance structure model assumes

2° =Wl &P = 0.13 (0.04).
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TABLE 5

Observed frequencies of paired comparisons patterns in the personality profile data

no. pattern obs. no. pattern obs. no. pattern obs. no. pattern obs
* 1 111111 1 17 101111 1 *33 011111 43 *49 001111 19
* 2 111110 14 18 101110 2 *34 011110 81 50 001110 3
3 111101 2 19 101101 O 35 011101 2 51 001101 O
* 4 111100 25 20 101100 O 36 011100 12 52 001100 1
* 5 111011 1 *21 101011 1 37 011011 7 *53 001011 7
6 111010 4 22 101010 O 38 011010 19 54 001010 1
* 7 111001 O *23 101001 2 39 011001 1 55 001001 3
* 8 111000 5 24 101000 2 40 011000 10 56 001000 O
9 110111 O 25 100111 O 41 010111 11 *57 000111 13
10 110110 10 26 100110 3 *42 010110 78 *58 000110 23
11 110101 3 27 100101 1 43 010101 3 59 000101 2
*12 110100 33 28 100100 3 *44 010100 62 *60 000100 8
13 110011 5 29 100011 O 45 010011 O *61 000011 4
14 110010 5 30 100010 1 46 010010 9 62 000010 O
15 110001 1 *31 100001 2 47 010001 3 *63 000001 2
*16 110000 12 *32 100000 2 48 010000 7 *64 000000 5

Notes: N = 580; * transitive patterns



TABLE 6
Overall goodness of fit tests for the unrestricted models

applied to the personality assessment data

Model stat val. df p-val
0.65 - -
8.75 7 0.27
798 272 0.28
19.85 - -
201.43 12 <0.01
169.21 4.16 <0.01
26.74 - -
261.28 12 <0.01
220.83 4.24 <0.01

cov. structure

€ diagonal

cov. structure

07 =%l

corr. structure

R e 0 T T N N [ A A

Notes: N = 580; T, and T, are the scaled for mean and adjusted for mean and variance

statistics.
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Estimated parameter estimates and standard errors for an unrestricted covariance structure

Notes: N = 580; standard errors in parentheses; correlations in bold are significant at

o = 0.05.

model assuming §2* diagonal applied to the personality assessment data

P, competent  orderly reliable resolved
competent 1
orderly 0.48 1
(0.27)
reliable 0.44 0.25 1
(0.20) (0.31)
resolved 0.60 0 0.10 1
(0.22) (0.50) (0.37)
-0.11 0.68 -1.24 0
He 0.07)  (0.21)  (0.20)  (fixed)
o " o o o o
0.25 0.59 0.80 4.45 1.39 1
(0.26) (0.31) (0.78) (1.83) (0.84) (fixed)




TABLE 8

Overall goodness of fit tests for the unrestricted models applied to the celebrities data

Model stat val. df p-val
9.94 - -
135.05 86  <0.01
49.44 1554  0.02
8.63 - -
124.73 100 0.05
41.00 16.09 0.16
12.92 - -
172.75 100  <0.01
57.82 17.05 <0.01

cov. structure

2* diagonal

cov. structure

0% = %l

corr. structure

i e N [ e N N E A

Notes: N = 96; T, and T, are the scaled for mean and adjusted for mean and variance

statistics.
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TABLE 9
Estimated parameter estimates and standard errors for an unrestricted covariance structure

model assuming £2° = w’l applied to the celebrities data

p Barbara Nancy Hillary Bonnie Jackie Jennifer
t' Bush Reagan Clinton Blair Joyneer  Capriati
Barbara 1
Bush
Nancy 0.74 1
Reagan (0.12)
Hillary -0.24 -0.39 1
Clinton (0.49) (0.54)
Bonnie 0.23 0.34 -0.21 1
Blair (0.27) (0.25) (0.45)
Jackie -0.03 0.03 -0.49 0.37 1
Joyneer (0.25) (0.24) (0.47) (0.08)
Jennifer 0.25 0.20 -0.58 0.43 0.31 1
Capriati (0.23) (0.26) (0.55) (0.20) (0.10)
0.09 -0.28 0.44 -0.27 0.16 0
H (0.15) (0.16) (0.21) (0.14) (0.14) (fixed)

Notes: N = 96; standard errors in parentheses; correlations in bold are significant at

a = 0.05; &= 0.26 (0.09).
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APPENDIX 1

Estimation of Thurstonian correlation structure models using MPLUS

Let y" be a fi-multidimensional normal density categorized according to a set of

thresholds. When there are no exogenous variables, the measurement model used in MPLUS

(Muthén & Muthén, 1998) is

Yy =v+An+te (26)
where 77 denotes a p-dimensional vector of latent variables, € denotes a A-dimensional vector
of residual measurement errors, v denotes a n-dimensional vector of measurement intercepts

and A is a fi x p matrix of measurement slopes (factor loadings). We further assume that

(GG o)

MPLUS implements a three-stage estimation approach equivalent to the approach

described here except that the asymptotic covariance matrix of JIN (k— k), B, is computed
as in Muthén (1984) rather than as in Muthén (1978) as we do here. In the third stage, the
user may choose ULS, DWLS or WLS estimation.

Since when ULS is selected, no standard errors nor goodness of fit tests are provided,
we shall provide code here to estimate an unrestricted Thurstonian correlation structure
model using DWLS to the compact cars data. In this code we assume that the individual
data is provided, a file of 289 observations consisting of 6 columns separated by spaces. To
estimate this model, we let v =0,A = A,a = p,, and ¥ = P, . That is, we simply estimate a
factor model with n latent variables, a fixed matrix of factor loadings A, and we estimate the
factor means and inter-factor correlations. The matrix @ is not estimated in MPLUS. To

identify the model we fix the last factor mean, and we fix all the factor variances to 1.
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Finally, we need to fix the MPLUS thresholds to zero.

TITLE: DWS estimtion of Maydeu-Oivares (2001) data
DATA: FILE IS pc. dat;
VARI ABLE: NAMES ARE yl1-Yy6;

CATEGORI CAL = y1-y6;
ANALYSI S:  TYPE = MEANSTRUCTURE;

ESTI MATOR = W.SM ;

! nean corrected test statistic
! W.SMV yi el ds the nean and variance corrected statistic
MODEL:
f1 BY yl@d y2@ y3@,
f2 by yl@1 y4@ y5@,;
f3 by y2@1 y4@1 y6@;
f4 by y3@1 y5@1 y6@ 1;
! fixed factor loadings, this is the A matrix
f1-f4@.; (28)
! factor variances are fixed at 1
! factor correlations are free paraneters
[y1$1 y6$1@] ;

thresholds fixed to zero, by default they are free
[fl f2 3 1;
! factor means free, default is fixed to zero

! neasurenent intercepts are zero by default
QUTPUT: TECHI,

MPLUS only provides tests of the structural restrictions implied by the model. If both the
mean (T,) and the mean and variance (T,) tests statistics are of interest, the model must be
run twice. Despite the difference of estimation method (DWLS vs. ULS) and formula used to
estimate =, the results obtained using MPLUS closely match those reported in Table 3: T, =
10.69, p =0.56, and T, = 8.01, p = 0.53.

Using straightforward modifications on this code one can estimate a variety of

restricted Thurstonian correlation structure models. For instance, using

f4 with f1-f3@;
f3 with f1-f2@;
f2 with f1@,;

in place of (28) yields a model where X, is a diagonal matrix (Thurstone’s Case III model).
Alternatively, using

f1-f4 (1);

f4 with f1-f3@;

f3 with f1-f2@;
f2 with f1@;

in place of (28) yields a model with the restriction X = ¢l (Thurstone’s Case V model).
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APPENDIX 2
A reparameterization approach to estimate Thurstonian covariance

structure models

Consider an unrestricted covariance structure model assuming £2° = w’l , so that
T = —-DAW, , and sz = D(APtA’ + wzl) D. This model can be identified by letting p, = 0,
and w’ = 1. However, arbitrarily choosing another value for w” results in a different set of
parameter estimates with the same pattern probabilities. From an applied perspective, this
indeterminacy is troublesome as one is interested in meaningfully interpreting the parameter
estimates. Here we describe a reparameterization approach that yields an estimate of w” as
well, thus overcoming this indeterminacy.

Maydeu-Olivares (1999: Appendix 2) pointed out that because A is of rank n - 1, it

can be factored as A = K S, where Sis an (n - 1) x n matrix and K is an fi x (n -1) matrix.

Letting S = [I | —1nfll , K equals the first n - 1 columns of A. Thus, the model can be

n-1 |

reparameterized as

T = —DKy, P. =D(KZK' +u’1)D (29)

z

1

where D = (Diag(KZz K’ + wQI))ig, p, =Sp, isa (n-1) vector and ¥, =SPS isa (n-1)

z

x (n - 1) matrix. The relation between both sets of parameters is

2-¢° )
! ifi=n
Bo= p, = 2
‘ ‘ W12 -6 6% +25
! 2' I otherwise

where we use [L: to denote the identified parameters in g, and Oy and g, to denote the
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elements of P, and X,. Next, we use a Cholesky decomposition for X,, X, = VV’, where V
is a lower triangular (n - 1) x (n - 1) matrix. Then, to be able to estimate w (we do not

estimate w” directly) we set the (n - 1, n - 1) element of V equal to 1. For instance, with

n = 4 stimuli,

v, 0 O
V = V21 22 O :
V31 V32 1

!/
The minimization is then performed with respect to ¥ = (uz’ , V/, w) , where

!/
= (vn,v21 .“’Vn,n—l) . These estimates are then transformed to obtain the parameters of

/
ol . o
interest 8 = [[l,t P, ,wQ) and standard errors for € are obtained by the multivariate delta

method using (22).
A similar approach may be employed to estimate an unrestricted covariance structure

model when £2* is assumed to be a diagonal matrix. In this case, the minimization is

/

!/
performed with respect to 9 = (uz’,v/,w’) , where w = (w w -",wﬁ) and the resulting

177727

/

ol /
estimates are transformed to obtain the parameters of interest 8 = [[J,t 0,/ W’ ] .



