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ABSTRACT: Heterogeneity characterization is crucial to define the quality of end products and to describe
the evolution of processes that involve blending of compounds. The heterogeneity concept describes both the
diversity of physicochemical characteristics of sample fragments (constitutional heterogeneity) and the
diversity of spatial distribution of the materials/compounds in the sample (distributional heterogeneity, DH).
Hyperspectral images (HSIs) are unique analytical measurements that provide physicochemical and spatial
information on samples and, hence, are ideal to perform heterogeneity studies. This work proposes a new
methodology combining HSI and variographic analysis to obtain a good qualitative and quantitative
description of global heterogeneity (GH) and DH for samples and blending processes. An initial step of image
unmixing provides a set of pure distribution maps of the blending constituents as a function of time that allows
a qualitative visualization of the heterogeneity variation along the blending process. These maps are used as
seeding information for a subsequent variographic analysis that furnishes the newly designed quantitative global
heterogeneity index (GHI) and distributional uniformity index (DUI), related to GH and DH indices,
respectively. GHI and DUI indices can be described at a sample level and per component within the sample.
GHI and DUI curves of blending processes are easily interpretable and adaptable for blending monitoring and
control and provide invaluable information to understand the sources of the abnormal blending behavior.

Blending process monitoring and control is an essential
operation in many industrial processes. Indeed, a good

blend is the necessary ground to ensure many other quality
attributes linked to physical and compositional properties of
manufactured products. Understanding blending means under-
standing heterogeneity, with all the complex aspects encom-
passed by this concept. The theory of sampling (TOS) by Gy
provided an excellent and renewed definition of heterogene-
ity.1,2 TOS distinguishes between constitutional heterogeneity
(CH) and distributional heterogeneity (DH). Whereas CH
focuses on the diversity of physical and chemical properties that
present individual fragments of the materials in a sample, DH is
focused on the quality of spatial distribution of the different
materials/compounds in the sample, that is, on how far they are
of presenting an even distribution. Because the DH concept is
very linked to spatial correlation, studying this heterogeneity
side requires looking at the properties of neighboring fragments
(increments).
Traditionally, blending was controlled by off-line analysis of

material increments taken every certain time or, more recently,
by on-line spectroscopic monitoring using diverse sensor
typologies that provide a single spectrum (or few spectra) per
sample.3−6 In most of these studies, a good blend implies that a
reference composition is achieved and gets stabilized in time.
Bulk sample properties are thus controlled, but the spatial
distribution side linked to a good blend is overlooked.
Nowadays, hyperspectral imaging (HSI) techniques work
attributing a spectrum to every individual pixel in the image
and, thus, connect chemical and spatial information of samples.

Hence, HSI are excellent measurements for a deeper study of
heterogeneity.7,8

The heterogeneity concept in TOS can be used to interpret
this kind of information in HSI. Indeed, different heterogeneity
aspects can be addressed focusing on the study of properties of
individual pixels or drawing the attention to properties of
neighboring pixels or neighboring pixel areas. It is very tempting
associating the first approach with the concept of CH and the
latter to the definition of DH. However, whereas looking at pixel
areas or neighboring pixels will provide a good indication of DH,
CH cannot be derived from the study of properties of individual
pixels because every pixel in an HSI may offer information on
one or more fragments of the material scanned. From now on
and to be accurate, we will use the term global heterogeneity
(GH) to design the heterogeneity information issued from the
independent exam of individual pixel properties, which reflects
both CH and DH, and the term DH to express the information
coming from the analysis of neighboring pixels or pixel areas.
Even ignoring the TOS formulation, some attempts to use

images to define the different heterogeneity aspects mentioned
can be found. Thus, GH has often been defined using histograms
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derived from pixel image intensities or pixel concentration
values issued from multivariate calibration models.9,10 Or,
approaches such as macropixel analysis, were connected to the
definition of DH by studying properties of pixel neighborhood
areas of different increasing sizes covering all scanned
images.11−14

Within the TOS context, variographic analysis has been
proposed to statistically study the influence of spatial correlation
in heterogeneity.1,2,15 A recent work has been published and
monitors blending by using variographic analysis based on large
field of view single spectroscopic measurements acquired as a
function of time on the material circulating on a conveyor belt.16

An attempt of using variographic analysis on HSI can be
encountered but is limited to extract and interpret variogram
parameters obtained after fitting the experimental variogram
with models inspired in geostatistical theory.17

In our work, we have designed quantitative indices of GH and
DH directly derived from the experimental HSI variograms and
easy to be interpreted. The full data analysis pipeline
incorporates the use of the multivariate curve resolution−
alternating least squares (MCR−ALS)method on the raw image
to compress HSI information and obtain the distribution maps
of the pure compounds in the sample analyzed.18−20 This step
allows defining GH and DH per sample and also individually per
compound, thus completing the heterogeneity description. The
distribution maps are the seeding information to obtain the so-
called GHI (global heterogeneity index) and the DUI
(distributional uniformity index), related to GH and DH,
respectively.When images are collected as a function of blending
time, GHI and DUI curves provide a very good tool to
understand the evolution of GH and DH along the blending
process and can be potentially used for end-point blending
detection or for blending control of end-products.
The indices designed are tested on simulated data and real in-

house blending runs of pharmaceutical products monitored by
NIR imaging. GHI and DUI curves have provided insight on the
quality of the blending evolution and on the detection and
characterization of blending faults at a sample and at a
compound level. Although the blending runs mimic a batch
process, the same methodology would apply to blending control
of continuous processes.

■ EXPERIMENTAL SECTION
A process mimicking the blending of a solid pharmaceutical
formulation was carried out using caffeine (CAF) and
acetylsalicylic acid (ASA) as active pharmaceutical ingredients
(APIs), both purchased at Sigma-Aldrich (a.r.), and sodium
starch glycolate, Explotab (EXP) as an excipient, donated by JRS
Pharma. Three batches were performed with API mass
proportions of 10:1, 1:1, and 1:10 (ASA/CAF), named B1,
B2, and B3, respectively. The mass fraction of EXP was kept at
15% in all batches. An approximate total mass of 0.8 g of the
formulation was weighed in a 2-halves cylindrical capsule (23
mm diameter × 5 mm height). Before starting the blending
process, an initial NIR HSI was collected at time = 0 s (t0) from
the capsule containing the three segregated ingredients. The
closed capsule was placed in a rotating device for mixing and a
total of 11 NIR images at cumulative blending times of 15, 30,
45, 60, 120, 180, 240, 300, 480, and 600 s, were recorded per
batch.
The images from the pharmaceutical mixture at each blending

time have been acquired with a pushbroom NIR image
acquisition system Specim FX17 by Spectral Imaging Ltd.,

Oulu, Finland, for industrial and laboratory use. The imaging
system consists of a hyperspectral camera and a 20 cm × 40 cm
scanning bed. From the raw signal provided by the camera,
reflectance and related absorbance spectra were calculated as
explained in Section 1 of the Supporting Information.
The camera frame rate was set to 35 Hz and the scanning bed

speed to 3.2 mm/s to keep an adequate aspect ratio of the image.
The FX17 sensor exposure time was set to 2 ms according to the
signal provided by the “white” reference to avoid saturated
signals. Spectra were recorded in the 900−1700 nm NIR
spectral range with a spectral resolution of 3.5 nm. The pixel size
in all images is approximately 0.1 × 0.1 mm2.
To study the reproducibility of the proposed heterogeneity

indices, several images were collected from the same sample with
different sensor exposure times in different days, see Section 4 of
the Supporting Information for detailed experimental descrip-
tion.

■ DATA TREATMENT
The data treatment is oriented to monitor the evolution of the
sample heterogeneity during a blending process. Below, the step
related to MCR−ALS analysis of blending images to obtain the
distribution maps of the pure ingredients of the formulation and
the subsequent use of thesemaps to obtain heterogeneity indices
based on variographic analysis per component and per sample is
described.

HSI Unmixing. Image Preprocessing.Before data analysis, a
squared area (150 × 150 pixels) from the center of each image
was cropped for further analysis, which represents a sample area
of ca. 15 × 15 mm. The NIR spectra of the image were
preprocessed using Savitzky−Golay first derivative (second
order polynomial and window size of five points)21 for baseline
correction. See Figure S1 in the Supporting Information.

Multivariate Curve Resolution−Alternating Least Squares.
Image unmixing was performed with MCR−ALS, which
provides the iterative decomposition of the preprocessed
hyperspectral data (D) into concentration profiles, from which
distribution maps can be derived (matrix C), and pure spectra
(ST) of the sample constituents. Although a HSI dataset can be
visualized as a three-dimensional (3D) data cube, where two
dimensions (x and y) are the pixel coordinates and the third is
the spectral dimension (λ), the data cube is unfolded into a two-
dimensional (2D) matrix D with rows (x × y pixels) and
columns (λ) that is decomposed according to the bilinear model
in eq 118,20,22

D CS ET= + (1)

where D is the data matrix containing the preprocessed NIR
pixel spectra and C and ST are the matrices with the
concentration and spectral profiles of the pure components in
the samples, respectively. E contains the variance not explained
by the bilinear model, related to the experimental error. After the
MCR−ALS resolution of the HSI dataset, the pure distribution
maps of the image constituents can be obtained by folding back
the stretched concentration profiles in C to recover the original
2D spatial structure of the image (see Figure 1).
The same bilinear model of MCR−ALS holds for multiset

analysis, which consists of the simultaneous analysis of multiple
images.19,20,23,24 In this case, multiset structures D are built
appending the submatrices Di linked to the pixel spectra of the
images collected in the different blending steps and three
additional matrices with spectra coming from images of the pure
ingredients to help in the unmixing analysis, as shown in Figure
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1. The decomposition of the multiset structure using eq 1
provides a single matrix ST of pure spectra, valid for all the
images analyzed, and a matrix C, formed by as many Ci
submatrices as images in the data set. The profiles in each of
theseCi submatrices can be appropriately folded back to recover
the related distribution maps of the images recorded at the
different blending times, see Figure 1.
The MCR−ALS algorithm requires an initial estimate of

either C or ST matrices to start the iterative optimization. In this
work, ST was estimated based on the selection of the purest pixel
spectra25 from the matrixD. The constrained ALS calculation of
C and ST was performed until convergence was reached.18−20

The constraints used were normalization of pure spectra in ST

and non-negativity in the concentration profiles in C.
The correspondence among species constraint, which sets

presence/absence of components in the different images, was
applied to the pure component images in order to decrease
ambiguity in the MCR solutions and provide more accurate
results19 (see Figure 1). TheMCR analysis was carried out using
an in-house GUI developed under MATLAB and related
routines.26

Design of Heterogeneity Indices Based on Vario-
graphic Analysis of Images. Heterogeneity can be very well-
studied with variograms. A variogram displays the evolution of
the variance as a function of a lag (expressed in time or distance
units). In a variogram, the variance values are estimated by
comparing pairs of observations separated at different lags.1,2,15

Variograms can be easily adapted to explore correlation
phenomena in 2D images (or 2D derived maps from 3D HSI)
and, if needed, in 3D images formed by three spatial coordinates.
For 2D image maps, experimental variograms are calculated
comparing properties of pixel pairs separated a certain lag using
the following equation

V h
N h

c x h c x( )
1
2

1
( )

( ) ( )
i

N h

i i
1

( )
2∑= · [ + − ]

= (2)

where V(h) is the variance associated with the lag (h), which is
found as half of the average of the squared differences of allN(h)
pairs of measured pixel values c(xi + h) and c(xi) separated by a
lag distance (h). Note that eq 2 expresses variance in absolute
units. If the results need to be expressed in relative terms, the
expression must be divided by the square of the average c value
for all pixels in the image analyzed.
The variogram represents the variance estimated by the

comparison of pixel pairs along the image as a function of the lag

distance among the pixels compared. In this work, the V(h)
values of image variograms were calculated using concentration
values (c) extracted from distribution maps obtained from
MCR−ALS and taking the lag distance in both vertical and
horizontal directions of the square image as depicted in Figure 2.

Figure 2A,B displays the pairs of pixels compared to calculate
V(1) and V(2), variances associated with a lag h = 1 and h = 2,
respectively. Figure 2C shows the complete variogram obtained
once V(h) values are calculated for all lags from 1 until the
maximum lag distance, which is set to half the number of pixels
of the squared image side, that is, 75 pixels in this study.
A representative shape for a variogram obtained from a 2D

image is shown in Figure 2C. When a moderate level of GH
exists, typical from pharmaceutical or alimentary mixtures,
neighboring pixel pairs, with small lag h, are expected to present
more similar properties than pixel pairs far away from each
other; therefore, variance values will be smaller for low lag
distances and will increase as the lag does, until a stabilization is
reached, which indicates that correlation among pixel pairs does
not exist anymore. The extension of the increasing part of the
variogram is called the range and represents the lag distance in
which there is correlation between the pixel pairs compared.
Beyond that distance, there is no correlation anymore and the
variance values get very similar to each other. The range defines
the extension of the spatial correlation within the image and,
therefore, relates to the DH. The sill is the maximum variance in
a variogram, although technically in increasing variograms is
often computed as the average of variance values.2 The sill can
be used as an estimate of the GH of the sample material.
In this work, the 2D distribution maps from MCR−ALS have

been chosen for variogram calculations because heterogeneity
can be estimated at individual component and at a sample level.
However, the same approach could use as initial information
predicted pixel (c) values obtained from multivariate calibration
models, pixel intensities from a specific spectral band, global

Figure 1. MCR−ALS analysis of an image multiset, where x and y are
spatial pixels and λ represents the spectra wavelengths.

Figure 2. Representation of the pixel pairs used for the variance
calculation in lag distance (a) h = 1 and (b) h = 2. (c) Representative
variogram showing the extension of the correlation part, range, and the
sill, linked conceptually to the variance in the absence of correlation.

Analytical Chemistry pubs.acs.org/ac Article

https://dx.doi.org/10.1021/acs.analchem.0c03241
Anal. Chem. 2020, 92, 15880−15889

15882

https://pubs.acs.org/doi/10.1021/acs.analchem.0c03241?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03241?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03241?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03241?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03241?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03241?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03241?fig=fig2&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03241?fig=fig2&ref=pdf
pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c03241?ref=pdf


pixel intensities of all spectral range scanned, or any other type of
measurement that represents a 2D map of the specific material
or property to be analyzed.
To illustrate how variographic analysis can be used to study

heterogeneity, Figure 3 shows the procedure followed to extract

heterogeneity indices from two distribution maps related to real
images at different blending times obtained in this work. Thus,
Figure 3A,D show the distribution maps of the excipient,
Explotab, at the beginning and in the middle of a blending batch,
respectively. In Figure 3A, the excipient was not yet uniformly
mixed, as seen by large clumps with high (in red) or very low
concentration (in blue) of the substance. In Figure 3D, the
excipient was found to be better mixed with the other
ingredients, as shown by the small clumps present in the
distribution map and the narrower range in the pixel
concentration values. Figure 3C and 3F show the variograms
(in blue) related to maps in Figure 3A and 3D, respectively. In
Figure 3C a continuously increasing variogram is obtained, with
a range beyond the maximum lag distance used. On the other
hand, the variogram in Figure 3F shows a shorter range, around
35 pixel distance. There is also a clear difference in the sill of both
variograms, with the largest values found for the variogram
related to themap in Figure 3A, at the beginning of the blending,
where the variance among pixel concentration values is larger.
From a qualitative point of view, it can be concluded that both

GH, linked to the sill of the variogram, and DH, linked to the
range, are higher for the map in Figure 3A than for that in Figure
3D. However, there is a need for a quantitative reference
indicating how far from perfect mixing, that is, minimum DH,
the material of each map is. To set this ideally mixed reference,
the pixels of each map were randomized, as seen in Figure 3B
and 3E for the maps in Figure 3A and 3D, respectively. These
randomized maps have a double advantage: (a) the GH of the
real material is preserved, that is, the pixel concentration values
are the same as for the real map, and (b) there is a complete lack
of correlation among pixel concentration values, that is, the
situation that would happen when perfect mixing is achieved and
no DH is present. Figure 3C and 3F show the variograms of the

randomized maps (in red) in Figure 3B and 3E, respectively. As
expected, flat variograms with steady variance values are
obtained for all lag distances h because the lack of correlation
makes that neighboring pixels show concentration values as
similar as those shown by pairs of pixels very distant from each
other.
Looking at the variograms of the randomized maps, the sill of

the flat variogram obtained from the randomized map in Figure
3B is higher than the map in Figure 3E because the variation in
pixel concentration values is higher at the beginning of the
blending process, that is, many pixels have very high or very low
concentration values, whereas when the ingredients are better
mixed, the pixel concentration values get more similar. This fact
connects in a straightforward way with the expected decrease of
GH during blending.
In addition, comparing the variograms of the original maps (in

blue) with the related variograms of the randomized maps (in
red), it can be observed that the shape of the real variogram gets
closer to the shape of the flat variogram as blending progresses,
that is, the two variograms are more similar at the middle of the
process (Figure 3F), when the range for the real variogram gets
shorter and variance stabilizes at earlier lags, than at the
beginning of the blending (Figure 3C). This observation
connects with the expected decrease of DH during blending.
Based on the previous observations of the variographic

analysis of images with different degree of mixing, two
heterogeneity indices are proposed using information that can
be extracted from the real and randomized variograms obtained
from a component distribution map, namely:

a) The GHI: estimated from the sill, that is, the average of
the variance for all lags of the flat variogram from
randomized maps. Actually, the sill of the flat variogram is
an approximate estimation of the global variance of all
pixel concentration values in the image.27 Hence, GHI can
be easily interpreted as the variance (absolute or relative)
of pixel concentration values in the image.

b) The DUI: estimated by calculating the ratio of the area of
the variogram obtained from the real distribution map to
the area of the flat variogram derived from the related
randomized map

A
B

DUI =
(3)

where A is the blue striped area under the variogram for the real
map and B is the red striped area under the variogram for the
randomized map (see Figure 3C,F).
The DUI can vary between 0 and 1 and allows quantifying the

variation of DH based on variographic analysis. Experimental
variograms far from their related flat horizontal variogram, as in
Figure 3C, will give lowDUI values, indicating highDH. Instead,
experimental variograms close to its randomized map variogram
provide DUI values close to 1 indicating that themixture has low
DH. In this case, the DUI values for the maps in Figure 3A and
3D are 0.55 and 0.9, respectively, meaning that 55 and 90% of
ideal mixing is reached, respectively. It is relevant to note that the
DUI value changes depending on the extent of the lag scale, that
is, looking at Figure 3D,F, it is easy to see that if the lag scale had
a limit lower than 75, the DUI values would be lower and if the
images and related variograms had extended until a longer lag
scale limit, the DUI values would be smaller. This means that the
lag scale should adjust to the spatial scale level of heterogeneity
that needs to be studied. Far from being a disadvantage, this

Figure 3. Distribution map of EXP at the beginning (A) and in the
middle (D) of a blending process (the colorbar refers to the MCR-
derived pixel concentration values in the maps). (B,E) are the
randomized maps from pixels in (A,D), respectively. (C) Overlapped
variograms from maps in (A), blue curve, and (B), red curve. (F)
Overlapped variograms from maps in (D), blue curve, and (E), red
curve. Striped blue and striped red areas are the areas under the real
map variogram curves and the randomized map variogram curves,
respectively.
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means that, if needed, the DH index can be studied at different
spatial scale levels.
Both GHI and DUI indices can be obtained from variograms

of individual components, but also total indices can be
calculated for several selected components or all components
of the formulation together. In this case, the indices are
estimated from the total variogram obtained by averaging the
variograms of the individual components using the following
equation

V h V h( )
1
nc

( )
j

jT
1

nc

∑=
= (4)

whereVT(h) is the variance at lag h for the total variogram, Vj(h)
the variance at lag h for the variogram of component j and nc is
the total number of components considered in the calculation.
In this work, the proposed heterogeneity indices have been
calculated using the distribution maps obtained at different
times of each blending process per component and per total
formulation.
The evolution of these indices has been used to follow the

progress of the blending process and understand faults related to
it.

■ RESULTS AND DISCUSSION
Simulated Systems. For a better understanding of the

heterogeneity indices proposed, the approach has been tested in
two systems that mimic the evolution of the distribution map of
an individual compound from a binary mixture during blending.
In system I (see maps in Figure 4A), it is assumed that the pixel
size is equal to the fragment size of the compound. The blending
simulation is carried out so that the fragments of the compound
of interest only change position, but the pixel concentration
keeps invariant (meaning that every pixel contains the
compound or not). Top, middle, and bottom lines in Figure
4A indicate situations where the compound of interest have a

bulk abundance of 5, 50, or 95% in the sample. The color code in
the maps is red for pixels with 100% abundance of the
compound and dark blue when the abundance is 0%. A certain
amount of noise has been added to the concentration values (see
Section 2 of the Supporting Information for more details on the
simulation).
Figure 4B shows the evolution of the DUI curves for the maps

in Figure 4A. Note that the increase of the DUI index matches
perfectly well the change in the spatial distribution of the
compound of interest (in red). The closer the maps to a uniform
distribution, the highest the DUI index. In all three systems, DUI
values very close to one (ideal mixing) are found when the map
is shown at r = 125 or higher. It is also interesting to note that
DUI curves when the compound of interest is at a 5% of
abundance or 95% of abundance are almost identical. This
clearly proves that the DUI index, as mentioned in the data
treatment section, only relates to variations in the distributional
pattern of compounds, not to their concentration level (it is a
concentration-independent index). Bearing this in mind, the
initial maps at 5% of abundance and 95% of abundance show an
identical spatial pattern, with a big 95% area with similar
concentrations (either low at the 5% abundance map or high at
the 95% abundance map) and a small 5% zone different from the
rest. From a spatial point of view, the initial situation when the
abundance of the compound of interest is 50% is worse than the
previous ones because two big different regions in the map are
present; hence, the lower initial DUI value.
Figure 4C shows GHI indices calculated in relative scale. As

mentioned in the data treatment section, this index is calculated
from the sill of the variogram of the randomized map of the
image. The reason why the GHI index remains invariant during
all blending processes in Figure 4A is due to the nature of the
blending simulation. Remember that in this case, mixing was
simulated by changing the pixel positions in the map, but not
their concentration values. Hence, the variance of the pixel
concentration values in the randomized maps at all blending

Figure 4. Simulated system I. (a) Simulatedmaps beforemixing, r = 0 and at different blending steps until r = 250 for a bulk abundance of compound of
interest equal to 5% (top), 50% (middle), and 95% (bottom); (b) DUI and (c) GHI curves calculated using the proposed variographic analysis of the
generated maps for all steps. Circles represent the heterogeneity indices related to the maps shown above.
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stages, represented by the sill of the variogram, is identical
because the pixel concentration values are the same (see the
invariance of the histograms of the distribution maps in Figure
S4 of the Supporting Information). Note that the GHI value
derived from the variogram sill is practically identical to the
variance of the pixel concentration values of the distributionmap
studied, as shown in Figure S4 of the Supporting Information.
Because GHI is given here in relative terms, the GHI is higher
when the compound of interest is minor and decreases as its
abundance increases.
System II shows the scenario where the pixel size can enclose

several fragments of the material. As a consequence, when
blending progresses, the fragments of the compound of interest
change position, but a single pixel can contain fragments of the
two different compounds in the binary mixture and, hence, the
pixel concentration of the compound of interest can acquire
different values from 0 to 100% depending on the proportion of
fragments present in the pixel. As in system I, top, middle, and
bottom lines in Figure 5A indicate situations where the
compound of interest have a bulk abundance of 5, 50, or 95%
in the sample (see Section 2 of the Supporting Information for
more details in the simulation).
It is important to note in maps of Figure 5A that not only the

distributional pattern gets more uniform as blending progresses,
but also the pixel concentration range is reduced (see the
evolution of the histograms of the distributionmaps in Figure S5
from the Supporting Information). These two phenomena
reflect in the DUI and GHI curves, respectively.
Figure 5B shows the DUI curves for the blendings in 5A and

they are very similar to those shown in system I (Figure 4B)
because the modification in distributional pattern of the
blending has been done in the same manner. Again, curves for
5 and 95% compound abundance are very similar and differ from
the 50% compound abundance blending.
GHI curves in Figure 5C show a clear change with respect to

those in Figure 4C. Because blending causes that the pixel

concentration range narrows, the variance associated with pixel
concentration values, reflected by the sill of the variograms of the
randomized maps, decreases and so does the GHI index. Note
again that the GHI values derived from the variogram sill agree
with the variances of the pixel concentration values of the
distribution maps studied, as shown in Figure S5 of the
Supporting Information. The decrease in these relative GHI
indices happens for the three blendings studied, but the decay
can be more clearly seen when the compound of interest is in a
minor proportion.
The increase of the DUI curve and the decrease of the GHI

curve is the behavior expected for real blending processes
monitored by imaging when mixing proceeds in a correct way.
Deviations from this behavior are indications of blending
problems in the formulation studied or in individual
compounds.

Real Blending Processes. The real blending processes
studied correspond to the scenario simulated in system II, where
the pixel size is clearly bigger than the fragment size of the
different materials in the formulation.
Note that each of the images recorded provides a number of

pixel spectra large enough to derive reliable statistical indicators
and, besides, covers a sample area slightly higher than a pill size
(15 × 15) mm2. This means that the lag scale in the variograms
will adjust to the spatial level of heterogeneity that needs to be
studied.
As mentioned in the Data Treatment section, the study of the

real blending processes first requires an unmixing step to obtain
the pure distributionmaps of the compounds in the formulation,
followed by the computation of the GHI and DUI curves
associated with the formulation and with each of their individual
compounds.

Unmixing of NIR-HSI Data and Qualitative Evaluation
of Blending Evolution. NIR HSI unmixing by MCR−ALS
was carried out on a multiset structure containing a total of 36
preprocessed images, structured as a column-wise augmented

Figure 5. Simulated system II. (A) Simulated maps before mixing, r = 0 and after every 25 mixing steps interval until r = 250 for a bulk abundance of
compound of interest equal to 5% (top), 50% (middle), and 95% (bottom); (B) DUI and (C) GHI curves calculated using the proposed variographic
analysis of the generated maps for all steps. Circles represents the heterogeneity indices related to the maps shown above.
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matrix. The multiset structure analyzed was formed by the
preprocessed images of the three batches B1, B2, and B3, at 11
blending times each, and the three images of the pure
ingredients (ASA, CAF, and starch, EXP). The pure resolved
spectral profiles of the mixture formulation ingredients are
shown in Figure S6. The evolution of the blending process can
be qualitatively assessed by observing the MCR−ALS pure
component distributionmaps from theNIRHSI. Figures S7−S9
in the Supporting Information show the evolution of the
distribution maps of the three ingredients, CAF, ASA, and EXP,
at the 11 blending times for batch B1 (10:1ASA/CAF), B2,
and B3, respectively.
Figure 6 shows combined RGB maps overlaying the

information of the three pure component maps (red for CAF,
green for EXP, and blue for ASA) for batches B1, B2, and B3 in
the first, second, and third row of the figure, respectively. In the
blending evolution of batch B1 (10:1ASA/CAF), the RGB
map at t0 shows the segregated ingredients before blending
started. The succeeding maps, t15 and t30, show the decrease of
the segregation level, but still some clumps of pure ingredients
are visible. After consecutive blending steps, from t45 onward, all
three components were visually more evenly distributed in the
imaged area. For batch B2, t0 shows the segregated ingredients
and a decrease of the segregation level is observed in distribution
maps from consecutive blending times. However, at long
blending times, the ingredients start to segregate, probably due
to overmixing, as can be observed by the visible large clumps of
different ingredients in the last two maps, at t480 and t600. Last,
batch B3 (1:10ASA/CAF) starts with the segregated situation
at t0 and a certain blending improvement in the immediate
blending times. However, from blending time t120 and beyond,
an increase of segregation was observed mainly because of the
formation of large granules of pure CAF, the major ingredient of
this formulation. It is also interesting to note that the segregation
behavior is different in every component. Thus, when visualizing
maps from batches B2 and B3, clumps are generally associated
with CAF (in red) and starch (in green), whereas ASA (in blue)
seem to show amore even distribution (see maps in Figures S3−
S5 for more clarity).
From a qualitative point of view, it can be observed that the

blending quality decreases from batch B1 to B2, being B3 the
worst blended batch. It is also seen that blending quality is
compound-dependent. These different situations will be
quantitatively confirmed using the heterogeneity indices
proposed in this work.
Blending Process Monitoring with Image Variogram-

Derived Heterogeneity Indices. In this section, the assess-
ment of blending quality using the proposed indices related to
GHI and DUI is presented.

First, a description of the blending quality of the formulation
for the three batches is provided. Thus, Figure 7A shows the per

sample heterogeneity indices GHI (left plot) and DUI (right
plot) obtained from the total variograms (see eq 4) taking into
account all formulation ingredients in the blendings. The
evolution of the quantitative heterogeneity indices confirms the
qualitative interpretation pointing out that batch B1 had a good
blending evolution, whereas abnormal blending behaviors were
detected in batches B2 and B3.

Figure 6. Combined RGB maps with overlaid pure component distribution maps obtained with MCR−ALS for batches B1 (top row), B2 (middle
row), and B3 (bottom row). RedCAF, greenEXP, and blueASA.

Figure 7. (A) Per sample GHI and DUI curves for blending of batches
B1, B2, and B3. Inset plot zooms per sample GHI values after t0. (B)
GHI and DUI curves per component for blending batches B1, B2, and
B3. Left plots, GHI curves. Right plots, DUI curves. Note that some per
component GHI values are outside y-axis scale at the beginning of the
process.
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Thus, observing the per sample GHI curves in Figure 7A (left
plot), a rapid drop of GHI is observed right after the blending of
all batches started. That was an expected behavior considering
that the formulation ingredients were completely segregated in
the capsule before the start of the blending process. Per sample
GHI kept decreasing for all batches until 60 s of blending time,
when all batches reached a GHI, expressed in relative variance,
below 0.13. After t60, GHI stabilized for batch B1, but batches B2
and B3 showed an increasing trend, more visible and erratic for
B3, see inset plot in Figure 7A (left plot). Per sample GHI at the
end of each blending were 0.1, 0.18, and 0.26 for batches B1, B2,
and B3, respectively.
Per sample DUI curves, Figure 7A (right plot), confirmed the

visual interpretation of the spatial component distribution seen
in maps of Figure 6B. Whereas the DUI curve had stabilized for
batch B1 after the first minute of blending, a decreasing trend
was observed for batches B2 and B3, with the most erratic
behavior linked again to batch B3. The increase of segregation in
the formulation ingredients for blends B2 and B3 shown in
Figure 6B is reflected by the low DUI values obtained at the end
of the blending. Indeed, the DUI value for batch B3 at t600 is
almost as low as before the blending started at t0.
The per sample DUI values obtained at the end of each

blending at t600 were 0.94, 0.77, and 0.62 for batches B1, B2, and
B3, respectively, meaning that the batch material reached 94, 77,
and 62% of ideal mixing in the three batches.
To complement the heterogeneity description per formula-

tion for all three batches in Figure 7A,B shows the per
component heterogeneity indices for all batches studied,
estimated as described in the data analysis section. In Figure
7B, the GHI curves for all compounds of batch B1 showed the
same behavior as the formulation GHI curve, defined by a
decrease and stabilization of GHI values. The higher GHI values
obtained for CAF are related to its low concentration level in the
B1 formulation, which resulted in a higher relative variance. The
DUI curves of the different components of batch B1 showed that
as the blending proceeded, theDHdecreased and, consequently,
DUI values increased for all components. Indeed, after 200 s of
blending time, the DUI curves stabilized with a value circa 0.95
for all components of the formulation in B1. Both GHI and DUI
curves show the expected evolution for a good blending behavior
(as happened in Figure 5 for the simulated system II).
Figure 7B (middle row) shows GHI and DUI curves of batch

B2 at the left and right plots, respectively. In this case, although
the increasing trend of GHI after t60 was observed for all
ingredients, slightly higher changes were associated with CAF
and ASA. Regarding the DUI curves obtained per component in
batch B2, Figure 7B shows that the decreasing trend of the DUI
curve for the total formulation seen in Figure 7A was clearly
associated only with CAF and EXP (the more even spatial
distribution of ASA can be clearly seen in the individual
distribution maps of this compound in Figure S8). Thus, while
the DH of ASA kept stable and showed steady DUI values
around 0.88 during most of the blending process, CAF and EXP
decreased from a DUI value roughly equal to 0.9 at t60 to a value
lower than 0.75 at t600. This increase of DH, quantitatively
represented by the decrease of the DUI value, matches the visual
qualitative interpretation of CAF and EXP maps of batch B2 in
Figure 6B.
Finally, for batch B3, Figure 7B (bottom left) shows that the

GHI curve stabilized for the ASA component, although the value
of the index remained high because of its low concentration
level. Thus, the irregular behavior of the sample GHI curve for

batch B3 seen in Figure 7A is mainly due to CAF, with a steady
increasing tendency, and EXP, with an erratic evolution reaching
a maximum GHI value at t300. Figure 7B (bottom right) shows
the DUI curves for the three components in batch B3. Although
an even spatial distribution is not fully achieved by any
component, the segregation tendency is much more clearly
associated with CAF and EXP than with ASA (see separate
distribution maps of this compound in Figure S9 for further
clarification). Indeed, the lowest DUI values at the end of batch
B3 are obtained for CAF and EXP, even though these are the two
major ingredients of this formulation. The clear irregular and
decreasing tendency of the DUI curves of CAF and EXP
matches the emergence of large clumps of these two compounds
in their distribution maps at long blending times, particularly
visible at t600 in red for CAF and in green for EXP, as seen in
Figure 6 (bottom).
There are some interesting additional remarks linked to the

plots observed. GHI values can be expressed in absolute or
relative variance units. When linked to pixel concentration
variation, GHI values in absolute variance scale would need
maps issued from a calibration-based model, for example, PLS,
to obtain a useful interpretation. GHI values in a relative scale
allow working with maps derived from calibration-free method-
ologies, such as MCR. When working with GHI values in a
relative scale, it should be reminded that high relative variance
values may just appear because a minor compound is studied.
This effect is clearly seen in GHI curves of ASA (in blue), the
compound that tends to have the best blending in all batches,
where the magnitude of GHI values increases from B1 to B2 to
B3, matching the decreasing content of this compound in the
three batch formulations. Therefore, interpretation should not
be focused only on the GHI value, which is concentration scale-
dependent, but on the evolution tendency of GHI, that is,
whether it gets stabilized during blending or presents an
increasing or irregular tendency.
This is not the case for DUI values, which only refer to the

spatial distribution pattern of compounds. In this case,
compounds present in different concentration levels may
reach very similar and equally good DUI values when blending
is correct (see the case of the DUI curves of ASA, CAF, and EXP
in batch B1, where the ratio ASA/CAF is 10:1). DUI curves, as
mentioned before and proven in the simulated blendings, do not
suffer from scale-dependency and can be interpreted looking
both at the DUI values obtained and at the shape of the curve.
As seen throughout this work, the good performance and easy

interpretability of the heterogeneity indices proposed has been
proven in simulated and real blending systems. From an
analytical point of view, the robustness of the quantitative values
of the indices proposed has also been tested and is described in
detail in Section 4 of the Supporting Information. To do so,
images from the same sample showing a mixture of the same
composition as B1, collected at different exposure times and in
different days have been acquired. The per sample and per
component values of the GHI andDUI indices show a very good
reproducibility, as seen in Figures S10 and S11 of Section 4 in
the Supporting Information. It is interesting to note that DUI
indices are particularly stable because they are obtained from
area ratios between variograms of real and randomizedmaps and
all variability contributions other than the distributional pattern
of the material are cancelled out. In the case of GHI, satisfactory
values are obtained with slightly bigger fluctuations in minor
compounds than in major compounds, as expectable in any
analytical parameter.
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To conclude, both GHI and DUI indices are needed to
describe properly the blending behavior because they focus on
global and DH, respectively. When blending evolution is good
for all sample constituents, DUI curves reaching high and stable
values tend to go with GHI curves that also remain low and
stable, as happens in batch B1. However, many other situations
can be encountered where there is no synchronicity between the
evolution of GHI and DUI curves and strong variations in DUI
values do not lead to clear changes in GHI values or vice versa, as
seen in batches B2 and B3. Likewise, a complete heterogeneity
description should join a per sample and a per component
description because the different sample constituents do not
necessarily show the same heterogeneity pattern.

■ CONCLUSIONS

HSI followed by image unmixing and variographic analysis
provides an excellent combination to describe the global
heterogeneity and DH in samples and the dynamic evolution
of these attributes in blending processes. Indeed, a first visual
qualitative description of heterogeneity can be extracted from
the distribution maps retrieved by MCR−ALS, whereas the
quantitative estimation of GH and DH is achieved through the
proposed GHI and DUI, respectively.
The design of the GHI and DUI indices allows heterogeneity

descriptions at a sample and component level. The assessment of
blending evolution using per sample heterogeneity indices is
appropriate to see the overall process evolution and to detect
possible abnormal behaviors. Per sample GHI and DUI values
can also be adopted as quantitative criteria to define blending
quality or blending end-point by setting threshold values that
need to be reached to stop a blending process, for example, a
desired relative variance level for GHI and/or a preset
percentage of ideal mixing for DUI. Although these indices
have been tested in batch blending processes, their use can be
directly transferred to monitoring and control of continuous
blending operations.
The use of unmixing methods on the collected images

provides maps that allow a per component description of
heterogeneity through GHI and DUI indices that reflect
appropriately the individual behavior of the sample or blending
constituents. This individual description of heterogeneity offers
additional advantages, such as a higher flexibility in blending
monitoring and control protocols, for example, if there is only a
single or some critical components in a blending process that
need to be controlled, and contributes to a better understanding
of the sources of abnormal global blending behaviors.
In general, the methodology proposed provides a good

qualitative and quantitative description of heterogeneity for any
kind of sample and for monitoring and control of processes that
involve heterogeneity variations, such as blending operations.
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