Title: Effect of lonic Liquids on the synthesis and reactivity of manganese

complexes with carboxylate ligand.

Student: Marian Guillén Moralejo

Date: June 2019

Supervisor/s: Dra. Montserrat Corbella Cordomí

Departament of Inorganic and Organic Chemistry

Dra. Beltzane Garcia Cirera

Departament of Inorganic and Organic Chemistry

In order to mimic the active site of the Mn-catalase enzyme, the syntheses of three manganese(II) (1-3) and four manganese(III) (4-7) compounds have been studied, and the effect that an Ionic Liquid (1-Butyl-3-methylimidazolium Chloride, BmimCl) and another chloride salt (Bu₄NCl) had caused on the syntheses.

For manganese(II) compounds, stoichiometric amounts of $Mn(2-NO_2C_6H_4COO)_2$ (previously synthesized) and 2,2'-bipyridine were used, and different reaction conditions (solvent and presence of BmimCl or Bu₄NCl in solution) were tested. The dinuclear compounds obtained 1 and 2 have general formula [{Mn(bpy)(2-NO₂C₆H₄COO)(L₁)}(μ -2-NO₂C₆H₄COO)₂{Mn(bpy)(2-NO₂C₆H₄COO)(L₂)}], where for 1 L₁ = EtOH, L₂ = H₂O and for 2 L₁ = L₂ = H₂O. Analogous compounds had been synthesized by the research group previously. Compound 3 [Mn(bpy)(H₂O)₂(2-NO₂C₆H₄COO)₂]_n could be a more complex system that will need to be studied in more detail.

Manganese(III) compounds were obtained from the comproportionation reaction between a manganese(II) salt (nitrate or perchlorate) and Bu₄NMnO₄. The reaction conditions were also modified by adding BmimCl or Bu₄NCl to the solutions, which led to the obtention of surprising compounds. Dinuclear compounds **4** and **7** (general formula [{Mn(H₂O)(bpy)}₂ (μ -2-NO₂C₆H₄COO)₂(μ -O)](X)₂, where X = NO₃- (**4**) or ClO₄- (**7**)) had already been obtained as well by the research group. The mixed-valence compounds [Mn(bpy)Cl₂(H₂O)₂] [{Mn(bpy)Cl}₂(μ -2-NO₂C₆H₄COO)(μ -O)₂{Mn(bpy)(H₂O)}] (**5**) and [Mn(bpy)₂Cl₂][{Mn(bpy)(H₂O)}₂(μ -2-NO₂C₆H₄COO)₂(μ -O)]Cl₃(ClO₄) (**6**) were only obtained by adding BmimCl or Bu₄NCl to the solutions. These could also be more complex systems.

In this work, any crystal of good quality for X-ray diffraction has been obtained. However, the different compounds were characterized by IR spectroscopy, conductivity measurements,

study of the magnetic behaviour and EPR spectroscopy. The molecular formulas of compounds 1-7 have been proposed from these studies.

Finally, an attempt to measure the catalase activity of the manganese(III) compounds **4-7** was performed, by the volumetric measurement of the O_2 evolved by the reaction of disproportion of H_2O_2 . The compounds were poorly active, and the results have not been included in the memory.

Keywords: Manganese, Ionic Liquid, magnetic properties, EPR spectroscopy.