Title:Plasmonic and chirality in the MID-IRStudent:Mariona Hernández FajulaDate:May 2019Supervisor/s:Dr. Malcolm Kadodwala
School of Chemistry, University of Glasgow

Plasmonic chiral metamaterials (PCM) can be used for ultra sensitive detection of chiral biomolecules. When light hits the chiral metal nanostructure it generates a superchiral electromagnetic field due to the collective vibrations of the free electrons. These fields interact in different ways between a pair of enantiomers depending on the handedness of the structure that supports it, and therefore, PCM provide a method to distinguish between optical isomers.

In this project the plasmonic effect of one micron gold shurikens in the MID-IR has been studied. Localized surface plasmons are plasmonic resonances that occur at the interface of the metal and a dielectric, and besides being confined on the nanostructures, they are highly influenced by size, shape, surroundings... An increment in the particle size or a change in the refractive index of the substrate that holds them induces a red shift in the position of the resonance. Moreover, the angle-dependent reflectivity spectra revealed that the resonance obtained, apart from the LSPRs, it also had a Bragg plasmon contribution.

Secondly the effect of the adsorption of a biomolecule onto the gold nanostructures has been studied. First, measuring the reference spectra for left and right-handed PCM before any molecule has been adsorbed and repeating them after adsorption generates a red shift of the resonance mode and is different for both LH and RH structures. These differences are parameterized as dissymmetries.