Title: Enthalpy-entropy compensation effect: verification of a chemical model by numerical simulations

Student:	Arnau Clavero Masana
Date:	June 2020
Supervisor/s:	Dr. Joaquín F. Pérez de Benito Departament of Ciència de Materials i Química Física

Many homologous reaction series present linear correlations between the enthalpy ($\Delta H_{\neq i}^{\circ}$) and entropy ($\Delta S^{\circ}_{\neq i}$) of activation (kinetic compensation effect), the slope being the isokinetic temperature of the series (T_{iso}) , so that at $T = T_{iso}$ all the reactions of the family share the same value of the rate constant. Unfortunately, however, the random errors committed in the laboratory in the determination of $\Delta H^{\circ}_{\neq i}$ and $\Delta S^{\circ}_{\neq i}$ are interrelated, and so tend to produce false isokinetic relationships. As a result, the existence of physically meaningful isokinetic relationships is a topic of lasting controversy. In this research project, it is shown that both the LFER-type (either Hammett or Taft) and isokinetic linear correlations are direct consequences of two more basic correlations, those of $\Delta H_{\neq i}^{\circ}$ vs. σ_i and $\Delta S_{\neq i}^{\circ}$ vs. σ_i , where the abscissa is the Hammett (or Taft) substituent parameter. A mathematical model has been developed, according to which T_{iso} can be interpreted as the temperature at which the reaction constant obtained as the slope of the LFER-type straight line takes a zero value ($\rho = 0$). Moreover, the numerical simulations performed indicated that the $\log k_{\rm T}$ vs. $\sigma_{\rm i}$ and $\Delta H_{\neq \rm i}^{\circ}$ vs. $\Delta S_{\neq \rm i}^{\circ}$ linear plots can be visualized as two faces of the same coin, since, if the kinetic data obey the first law with a high correlation coefficient, the probability of fulfillment of the second will be very high. Finally, it has been found that values of $T_{\rm iso}$ and T_{δ} (the slope of the linear correlation between the enthalpyentropy deviations) very close to the mean working temperature, as well as correlation coefficients of the $\Delta H_{\neq i}^{o}$ vs. $\Delta S_{\neq i}^{o}$ linear plots much higher than those corresponding to the $\Delta H_{\pm i}^{\circ}$ vs. σ_i and $\Delta S_{\pm i}^{\circ}$ vs. σ_i plots, are all indicative of false isokinetic relationships, highly contaminated by the statistical correlation between the enthalpy and entropy experimental errors.