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b-globin reporter mRNA from polysomes. In contrast, the
TIA-1 PRD lacking the TIA-1 RBD fails to rescue TIA-1/
TIAR function as expected (Fig. 5A, PRD). Thus, although
a stimulatory role cannot be ruled out, the PRD of TIA-1
is not required for translational repression of 59TOP
mRNA. This suggests that the assembly of TIA-1 into
microscopically visible SGs, which is mediated by this
domain (Gilks et al. 2004), is not essential for keeping
59TOP mRNA dissociated from polysomes during amino
acid starvation.

Starvation-mediated repression of 59TOP mRNA
translation requires inactivation of mTOR
and activation of GCN2

Which signaling pathways are important for the trans-
lational repression of 59TOP mRNA during amino acid
starvation? Previous studies showed an important role of
mTOR kinase in reactivating repressed 59TOP mRNA
after the readdition of nutrients, including amino acids,
which specifically relay their signaling to mTOR via the
GTPase Rheb (Meyuhas 2000; Tang et al. 2001; Ma and
Blenis 2009; Patursky-Polischuk et al. 2009). We therefore
asked whether mTOR inactivation is critical for 59TOP
mRNA translational repression during amino acid star-
vation. As seen in the polysome fractionation assays in
Figure 6A, expression of mutant Rheb Q64L, which
constitutively activates mTOR (Li et al. 2004), renders
the rpL32-b-globin 59TOP mRNA insensitive to amino
acid starvation (Fig. 6A, cf. bottom and top panels). Thus,
starvation-mediated mTOR inactivation is critical for
59TOP mRNA repression.

Amino acid starvation is, via elevated levels of un-
charged tRNAs, known to activate the kinase GCN2,
which phosphorylates eIF2a, thereby reducing cellular
levels of the eIF2–GTP–tRNAi

Met ternary complex and
causing general reduction in translation initiation (Dong
et al. 2000; Bruhat et al. 2009). As seen in Figure 6B, 59TOP
mRNAs encoding rpS6, rpL21, and rpL12 all remain
associated with polysomal fractions in mouse embryonic
fibroblast cells (MEFs) knocked out for GCN2 (GCN2!/!),
whereas they efficiently shifted into the subpolysomal
fractions in wild-type (GCN2+/+) MEFs during amino acid
starvation (Fig. 6B, quantified in the right panels, and note
that rpL21 mRNA migrates immediately below rpS6
mRNA). GCN2-dependent regulation is specific for 59TOP
mRNAs, since non-59TOP b-actin mRNA remains associ-
ated with polysomes regardless of the presence of GCN2
or amino acids (Supplemental Fig. S6). Furthermore, the
general A254 RNA profiles revealed loss of overall trans-
lation repression in GCN2!/! MEFs upon amino acid
starvation (Supplemental Fig. S6). Collectively, these ob-
servations show that inactivation of the mTOR pathway
and activation of the GCN2 kinase is critical for 59TOP
mRNA repression upon amino acid starvation.

Discussion

Our studies identify the paralogous RNA-binding pro-
teins TIA-1 and TIAR as key factors in the translational
regulation of the 59TOP mRNA network (Fig. 7). Upon
amino acid starvation, TIA-1 and TIAR assemble with the
59 end of 59TOPmRNAs (Fig. 1; Supplemental Fig. S1) and
thereby repress the production of 59TOP mRNA-encoded

Figure 4. 59TOP mRNAs are released from poly-
somes by TIA-1/TIAR proteins upon amino acid
starvation. (A,B) Northern blots of sucrose gradient
polysome fractions, monitoring endogenous 59TOP
mRNAs encoding rpL23a, rpL36/rpL12, and PABPC1
(A), or control mRNAs lacking a 59TOP but contain-
ing 39 UTR TIA-1/R-binding sites, encoding b-actin
and calmodulin 2 (B). Cells were either starved for
amino acids (!AA, top panels) or left in full medium
(Full, bottom panels). Polysomal fractions are de-
noted on the basis of A254 profiles recorded during
fractionation and by staining gels for ribosomal RNAs
using methylene blue (data not shown). Quantifica-
tions of the fraction (in percent of the total amount)
of 59TOP mRNA found in the polysomal fractions
(indicated by bars above each gel) were performed
using a PhosphorImager and are shown on the right.
The data presented are based on three independent
knockdown experiments (n = 3), and error bars in-
dicate standard deviation from the mean. P-values
were determined by Student’s t-test (two tailed); (*)
P < 0.01; (**) P < 0.05.
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servations show that inactivation of the mTOR pathway
and activation of the GCN2 kinase is critical for 59TOP
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Ribosome Biogenesis and Protein synthesis
Fuentes et al., Science Adv. 2021
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LARP1 and energetic production
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