# Genome-wide association studies and follow-up analyses

Dora Koller, Ph.D. Postdoctoral Fellow, Cormand Lab Department of Genetics, Microbiology and Statistics Universitat de Barcelona dorakoller@ub.edu, ODoraKoller



#### About me



#### Genetic variants

**Original sequence** 



SNP (single nucleotide polymorphism)



VNTR (variable number of tandem repeats)

THE SKY <mark>SKY SKY SKY SKY SKY</mark> IS BLUE

CNV (copy number variant)







## Complex traits

٠

٠

75



#### Gene Trait Percent in population (%) 45 40 35 Examples 30 25 20 Sickle cell anemia 15 Cystic fibrosis 10 Huntington disease Duchenne muscular dystrophy Blood group

AB

0

Mendelian (monogenic) traits

## Main approaches to investigate complex traits

#### Single genes

**Genotyping of predetermined SNPs** 

One or a limited number of SNPs are measured in pre-specified genes.

## "All" genes

Genome-wide genotyping

A certain number of variants are directly measured, and millions are imputed using a reference panel (e.g., Haplotype Reference Consortium, 1000 Genomes).

Whole exome sequencing

Sequencing regions of the genome (about 2%) that are involved in coding for proteins. Particularly suitable to detect structural variants, i.e., insertions, deletions, and CNVs.





## Candidate gene studies



#### Genome-wide association studies





cases (n=1,000) people with heart disease



controls (n=1,000) people without heart disease

Genome Research Limited



controls



## Types of GWAS



### Confounding factors

#### Population stratification



Balding, Nature Reviews Genetics 2010

Population stratification arises when cases and controls are sampled from genetically different underlying populations, thus causing any associations found to be due to sampling differences rather than the disease of interest. Systematic "errors" on the SNP array chips

Sex, age

Disease heterogeneity

Appropriate reference panels

Gene annotation

## GWAS process



## Biobanks for genotypic and phenotypic data





- 200,000 East Asians
- 47 common diseases, 59 quantitative traits
- 12 cooperative medical institutes all over Japan

## ibiobank"

#### Data on UK Biobank participants



- 500,000 participants
- six ancestry groups
- ≥ 7000 phenotypes
- 23 cooperative medical institutes all over the UK

#### Why do we need biobanks for different populations?



The number of variants more common in the population compared to global population

The 1000 Genomes Project Consortium. A global reference for human genetic variation. *Nature* **526**, 68–74 (2015)

#### Genomic data science - collaboration is the way



#### HARNESSING THE POWER OF 800+ INTERNATIONAL SCIENTISTS & 900,000 PARTICIPANTS

Since 2007, the PGC has been committed to uncovering the role of genetics in psychiatric disorders. Ultimately, we want to improve the lives of those who suffer from psychiatric illness.



## Genome-wide genotyping

A certain number of variants (e.g., 850,000 for the UK Biobank) are directly measured, and millions (e.g., >90million for the UK Biobank) are imputed using a reference panel (e.g., Haplotype Reference Consortium, 1000 Genomes).



|             |                     |                        | Overall   | SNPs/INDELs |           |        |      |         | CNVs        | мт  |     |
|-------------|---------------------|------------------------|-----------|-------------|-----------|--------|------|---------|-------------|-----|-----|
| Distributor | Array               | ShortName <sup>a</sup> |           | Total       | autosomal | x      | ۲    | Exonic  | Splice-site |     |     |
| Illumina    | Exome V1.1          | Exome                  | 242,901   | 242,682     | 237,436   | 5107   | 139  | 225,826 | 2082        | o   | 219 |
| Illumina    | Immuno V2           | Immuno                 | 252,604   | 252,603     | 249,285   | 2115   | 1203 | 6840    | 280         | o   | 1   |
| Illumina    | Cyto12              | Cyto12                 | 297,481   | 296,540     | 278,181   | 15,988 | 2371 | 5125    | 21          | 941 | 0   |
| Affymetrix  | Axiom_GW_EUR        | Axiom_EUR              | 674,996   | 674,897     | 661,452   | 13,155 | 290  | 16,634  | 64          | 0   | 99  |
| Illumina    | OmniExpress         | OmniExpress            | 715,322   | 715,322     | 695,789   | 18,166 | 1367 | 23,603  | 80          | 0   | 0   |
| Illumina    | MultiEthnic-EUR/ASN | Multi_EUR              | 1,474,463 | 1,473,819   | 1,432,449 | 39,772 | 1598 | 358,382 | 5062        | 0   | 644 |
| Illumina    | MultiEthnic-Global  | Global                 | 1,768,335 | 1,767,356   | 1,707,340 | 56,079 | 3937 | 399,721 | 10,325      | 0   | 979 |

#### A comparison of genotyping arrays

Joost A. M. Verloux, Eva Clemens, Jard H. de Vries, Oliver Zolk, Annemieke J. M. H. Verkerk, Antoinette am Zehnhoff-Dinnesen, Carolina Medina-Gomez, Claudia Lanvers-Kaminsky, Fernando Rivadeneira, Thoraten Langer, Jouce B. J. van Meurs, Marry M. van den Heuvel-Eibrink, André G. Uitterlinden & Linda Broer ☺

European Journal of Human Genetics 29, 1611–1624 (2021) | Cite this article

## Genome-wide genotyping



#### A. Box plot of 12 CYP450 genes

#### GWAS data - plink

#### \*.ped

|   |    | - |   | - | - |
|---|----|---|---|---|---|
| - | 24 | r | m | а | z |
|   |    |   |   | 0 |   |

| FID | IID | PID | MID | Sex | Ρ | rs1 | rs2 | rs3 |
|-----|-----|-----|-----|-----|---|-----|-----|-----|
| 1   | 1   | 0   | 0   | 2   | 1 | СТ  | AG  | AA  |
| 2   | 2   | 0   | 0   | 1   | 0 | CC  | AA  | AC  |
| 3   | 3   | 0   | 0   | 1   | 1 | cc  | AA  | AC  |

| Chr | SNP | GD | BPP    |
|-----|-----|----|--------|
| 1   | rs1 | 0  | 870000 |
| 1   | rs2 | 0  | 880000 |
| 1   | rs3 | 0  | 890000 |

#### \* fam

| FID | IID | PID | MID | Sex | Ρ |
|-----|-----|-----|-----|-----|---|
| 1   | 1   | 0   | 0   | 2   | 1 |
| 2   | 2   | 0   | 0   | 1   | 0 |
| 3   | 3   | 0   | 0   | 1   | 1 |

#### \*.bed

Contains binary version of the SNP info of the \*.ped file. (not in a format readable for humans)

## \*.bim

| Chr | SNP | GD | BPP    | Allele 1 | Allele 2 |
|-----|-----|----|--------|----------|----------|
| 1   | rs1 | 0  | 870000 | с        | т        |
| 1   | rs2 | 0  | 880000 | A        | G        |
| 1   | rs3 | 0  | 890000 | А        | С        |

#### Covariate file

| FID | IID | C1         | C2         | C3           |
|-----|-----|------------|------------|--------------|
| 1   | 1   | 0.00812835 | 0.00606235 | -0.000871105 |
| 2   | 2   | -0.0600943 | 0.0318994  | -0.0827743   |
| 3   | 3   | -0.0431903 | 0.00133068 | -0.000276131 |

A tutorial on conducting genome-wide association studies: Quality control and statistical analysis

Andries T. Marees 🕿 Hilde de Kluiver, Sven Stringer, Florence Vorspan, Emmanuel Curis, Cynthia Marie-Claire, Eske M. Derks

| Legend |                |       |                                                                |  |
|--------|----------------|-------|----------------------------------------------------------------|--|
| FID    | Family ID      | rs{x} | Alleles per subject per SNP                                    |  |
| IID    | Individual ID  | Chr   | Chromosome                                                     |  |
| PID    | Paternal ID    | SNP   | SNP name                                                       |  |
| MID    | Maternal ID    | GD    | Genetic distance (morgans)                                     |  |
| Sex    | Sex of subject | BPP   | Base-pair position (bp units)                                  |  |
| Ρ      | Phenotype      | C{x}  | Covariates (e.g., Multidimensiona<br>Scaling (MDS) components) |  |

## Quality control



#### Association testing





cases (n=1,000) people with heart disease



controls (n=1,000) people without heart disease

Genome Research Limited



controls 49% C 51% T

#### GWAS summary data

SNP Chr Pos A1 A2 EA EAF N OR SE Test\_statistic P beta [rs4702 15 91426560 G A G 0.452981 297647 1.0723 0.0121202 5.75976 8.42352e-09 0.0698058742439629 rs4129585 8 143312933 A C A 0.442012 297647 1.07877 0.0121024 6.265 3.72819e-10 0.0758215032204624 rs13262595 8 143316970 A G A 0.451084 297647 1.08078 0.0123011 6.31525 2.69723e-10 0.0776830026813851 rs9635513 16 61631362 C T T 0.248969 297647 1.07926 0.013937 5.47258 4.43523e-08 0.0762756211042925 rs1799971 6 154360797 A G G 0.126383 297647 0.872239 0.0190161 -7.18824 6.56308e-13 -0.136691810058116 rs9478503 6 154392675 T C C 0.17157 297647 1.08972 0.0157191 5.46608 4.60103e-08 0.0859207825076003 rs3778153 6 154393884 C A A 0.170748 297647 1.09074 0.0157265 5.52271 3.33801e-08 0.0868563649758884 rs9478504 6 154395159 A G G 0.172576 297647 1.09015 0.0156579 5.51263 3.53508e-08 0.0863153014519201 rs17209711 6 154396455 T A A 0.170745 297647 1.09074 0.0157256 5.52305 3.33168e-08 0.0868563649758884



**Genomic Position** 

## Meta-analysis

#### ADVANTAGES

≻Greater statistical power.

Confirmatory data analysis.

Meta-analyses are used by researchers to review large and sometimes complex research.

≻Greater ability to extrapolate to general population affected.

Considered an evidence-based resource.

#### **DISADVANTAGES**

>Difficult and time consuming to identify appropriate studies.

>Not all studies provide adequate data for inclusion and analysis.

>Requires advanced statistical techniques.

>Heterogeneity of study populations.









**b** 1,500

Nature Reviews | Drug Discovery

#### Clinical application of GWAS



## Post-GWAS analyses



## Heritability

#### Heritability

Estimates the degree of variation in a phenotypic trait in a population that is due to genetic variation between individuals in that population. With other words, how well genetic differences among individuals account for differences in their complex traits.

#### SNP heritability

The fraction of the phenotypic variance explained by additive effects of a given set of genetic variants.



Baselmans et al., Biol. Psy., 2020.



## Heritability of complex traits

SNP heritability

The fraction of the phenotypic variance explained by additive effects of a given set of genetic variants.



Baselmans et al., Biol. Psy., 2020.



Missing heritability

## Linkage disequilibrium score regression

#### nature genetics

#### LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nick Patterson, Mark J Daly, Alkes L Price & Benjamin M Neale ⊠ The approach involves using regression analysis to examine the relationship between LD scores and the test statistics of SNPs from the GWAS. The lowest LD Score of a SNP is one, which is obtained when a SNP is in perfect linkage equilibrium with all other SNPs.

#### 

Aggregate p-values and association data for every variant analyzed in a GWAS

#### GWAS summary statistics

#### LD scores

Sum of LD r2 between a variant and all the variants in a region

#### Estimating SNP heritability (h2)

The fraction of the phenotypic variance explained by additive effects of a given set of genetic variants



Baselmans et al., Biol. Psy., 2020.

## Linkage disequilibrium score regression

genetically

than the

Population stratification arises

when cases and controls are

different underlying populations,

thus causing any associations

found to be due to sampling

differences rather

disease of interest.

from

sampled

#### nature genetics

#### LD Score regression distinguishes confounding from polygenicity in genome-wide association studies

Brendan K Bulik-Sullivan, Po-Ru Loh, Hilary K Finucane, Stephan Ripke, Jian Yang, Schizophrenia Working Group of the Psychiatric Genomics Consortium, Nick Patterson, Mark J Daly, Alkes L Price & Benjamin M Neale ⊠ Aims to quantify the separate contributions of polygenic effects and various confounding factors, such as population stratification, based on summary statistics from genome-wide association studies (GWASs).

# Polygenicity

one characteristic is controlled by two or more genes

#### **Population stratification**

Case Control

Balding, Nature Reviews Genetics 2010

### Genetic correlation







Only SNPs with a GWAS association *P*-value below a certain threshold (e.g. *P* < 0.01) are included in the calculation of the PRS, while all other SNPs are excluded

**R<sup>2</sup>:** how the PRS at a given threshold explains the difference between cases and controls

**Optimal threshold:** Number of SNPs are not too large Subset of SNPs that are predictive of the target trait



| Schizophrenia, Nature, 2022    | PRS analysis explained a median of 0.073 of variance in liability (SNPs with GWAS <i>P</i> < 0.05), and 0.024 when restricted to genome-wide significant SNPs |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | 7.3%                                                                                                                                                          |
| Depression, Nature Neuro, 2019 | PRS analysis explained a median of 0.015 of variance in liability (SNPs with GWAS <i>P</i> < 0.05)                                                            |
|                                | 1.5%                                                                                                                                                          |
| ADHD, Nature Genetics, 2019    | PRS analysis explained a median of 0.055 of variance in liability (SNPs with GWAS <i>P</i> < 0.05)                                                            |
|                                | 5.5%                                                                                                                                                          |
|                                |                                                                                                                                                               |
|                                |                                                                                                                                                               |

Q

## Annotation of SNPs to genes - positional mapping

|                                                                                                                                         | ) |
|-----------------------------------------------------------------------------------------------------------------------------------------|---|
| ZFHX3 Arrhythmia Atrial fibrillation                                                                                                    |   |
| KCNQ1<br>LINC01153Type 2 diabetesType 2 diabetes                                                                                        |   |
| IP6K3       Rheumatoid       Platelet crit       Joint         arthritis       Testicular       Joint         carcinoma       Carcinoma |   |
| GLB1 Atopic dermatitis Atopic dermatitis                                                                                                |   |
|                                                                                                                                         |   |

#### Annotation of SNPs to genes – eQTLs



# Enrichment for biological processes, cellular components, molecular functions

| 0                                                         | ) 2                                | umber of Genes<br>4 | 6 | ShinvGO v0.741                            |
|-----------------------------------------------------------|------------------------------------|---------------------|---|-------------------------------------------|
| Epithelium development                                    | WWC1, NOSTRIN, HNF4A               |                     |   |                                           |
| Epithelial cell development                               | NOSTRIN, HNF4A                     |                     |   |                                           |
| Developmental process                                     | GOLGA3, PDGFC, WWC1, NOSTRIN, HNF4 | IA, SURF6           |   | kidney function                           |
| System development                                        | PDGFC, WWC1, NOSTRIN, HNF4A, SURF6 | ;                   |   |                                           |
| Tissue development                                        | WWC1, NOSTRIN, HNF4A               |                     |   |                                           |
| Epithelial cell differentiation                           | NOSTRIN, HNF4A                     |                     |   |                                           |
| Multicellular organismal process                          | GOLGA3, PDGFC, WWC1, NOSTRIN, HNF4 | IA, SURF6           |   |                                           |
| Multicellular organism development                        | PDGFC, WWC1, NOSTRIN, HNF4A, SURF6 | ;                   |   |                                           |
| Glandular epithelial cell development                     | HNF4A                              |                     |   |                                           |
| Otolith formation                                         | WWC1                               |                     |   |                                           |
| elial cell differentiation involved in kidney development | NOSTRIN                            |                     |   |                                           |
| Embryonic organ development                               | PDGFC, WWC1                        |                     |   |                                           |
| Endothelium development                                   | NOSTRIN                            |                     |   |                                           |
| Anatomical structure development                          | PDGFC, WWC1, NOSTRIN, HNF4A, SURF6 | ;                   |   |                                           |
| Type B pancreatic cell development                        | HNF4A                              |                     |   |                                           |
| Regulation of filopodium assembly                         | NOSTRIN                            |                     |   |                                           |
| Cell differentiation involved in kidney development       | NOSTRIN                            |                     |   |                                           |
| Renal filtration cell differentiation                     | NOSTRIN                            |                     |   | (Nitric Oxide Synthase Trafficking)       |
| Renal system vasculature development                      | NOSTRIN                            |                     |   |                                           |
| Kidney vasculature development                            | NOSTRIN                            |                     |   |                                           |
| Hepatocyte differentiation                                | HNF4A                              |                     |   | <ul> <li>neurotransmission</li> </ul>     |
| Glomerular epithelium development                         | NOSTRIN                            |                     |   |                                           |
| Glomerulus vasculature development                        | NOSTRIN                            |                     |   | <ul> <li>inflammatory response</li> </ul> |
| Glomerular visceral epithelial cell development           | NOSTRIN                            |                     |   |                                           |
| Glomerular visceral epithelial cell differentiation       | NOSTRIN                            |                     |   | <ul> <li>vascular homeostasis</li> </ul>  |
| Glomerular epithelial cell development                    | NOSTRIN                            |                     |   |                                           |
| Glomerular epithelial cell differentiation                | NOSTRIN                            |                     |   |                                           |
| Renal filtration                                          | NOSTRIN                            |                     |   |                                           |
|                                                           |                                    |                     |   |                                           |

Functional category

#### In vivo and in vitro follow-up of GWAS results



## Take-home message

- Genome-Wide Association Study: whole-genome SNP genotyping data analyzed without prior hypothesis
- GWAS follow-up analysis: do these SNPs have any functional consequence, causality, etc.?
- Computational analysis vs in vitro and in vivo studies



## Thank you for your attention!



E-mail: dorakoller@ub.edu

#### **Personal website**

