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A 2022 scientific landmark has been the launching of the new James Webb space telescope and
its journey out to the Lagrange point SE-L2 of the Sun-Earth system (SE-L2 is «1.5 ¨ 106 km away
of Earth). The JWST will not be stationed in L2 exactly, but will follow a periodic ‘Halo’ orbit
around L2, with a ‘major’ semi-amplitude of order « 0.7 ¨ 106 km and a period near half a year
relatively to the Sun-Earth line.

The name ‘Halo orbit’ was first used in 1966 by Robert W. Farquhar for a proposed parking
orbit around the L2 point of the system Earth-Moon. A communications relay station in this orbit
would have in view simultaneously and continuously the Earth and the far side of the Moon.

In 1973 R. Farquhar and A. Kamel “found that when the in-plane [i.e.,horizontal] amplitude
of a Lissajous orbit was large enough there would be a corresponding out-of-plane [i.e.,vertical]
amplitude that would have the same period, so the orbit ceased to be a Lissajous orbit and became
approximately an ellipse.” (‘Halo orbits’ English Wikipedia). These are the actual halo orbits,
and this the main idea for the present exercise. Halo orbits exists around L1 and L2 Lagrange
points of any system of two primaries, and for the Sun-Earth system have been used since 1978 for
several space missions, including ISEE-3 and SOHO in L1 and now JWST in L2. Other missions,
as PLANCK, HERSCHEL and GAIA, follow non-periodic Lissajous orbits around L2.
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A 2022 scientific landmark has been the launching of the new James Webb space telescope and its
journey out to the Lagrange point SE-L2 of the Sun-Earth system (SE-L2 is « 1.5 ¨ 106 km away of
Earth). The JWST will not be stationed in L2 exactly, but will follow a periodic orbit around L2,
with a ‘major’ semi-amplitude of order « 0.7 ¨ 106 km and a period near half a year relatively to the
Sun-Earth line. These orbits were proposed and named ‘halo’ in 1966 by R. Farquhar.

‘Never make a calculation until you know the answer’, the Wheeler’s First Moral Principle says.
The exercise should be seen under this light: get a sensible answer before a complete study.

Left: Lagrange points of the Sun-Earth system and the JWST journey out to its halo orbit around L2. (Credit, SciAm).

This is not to scale! The group L1-CK-L2 has a local scale greatly exagerated.

Right Reconstructions of the JWST journey and its Halo orbit. The position of L2 is marked in both images.

Above, lateral view, Earth at left, Below: view from Sun-Earth line away from L2. (Credit, SageMathCell)

Lets briefly recall on Lagrange points. There are five such points in the system Sun-Earth, all lying
in the Earth’s orbital plane, and three of them on the Sun-Earth line. Any small object of negligible
mass µ as compared to m ” MC, M ” M@, and initially placed at rest relatively to the Sun and
Earth in one of these points, will stay there (ignoring any other gravitational effect).

Relatively to a ‘barycentric’ inertial frame, (origin at the Sun-Earth center of mass), Sun, Earth
and the five Lagrange points rotate with the same angular frequency Ω “ 2π year´1 in the Earth’s
orbital —ecliptic— plane). In the non-inertial frame which is co-rotating with exactly this angular
frequency Ω, the Sun, the Earth and the Lagrange points have fixed positions; this is the frame we
will use.

The exercise refers to Lagrange point SE-L2, on the Sun-Earth line (see diagram). You should
assume circular orbits for Earth and Sun around the Sun-Earth center of mass and ignore gravitational
effects of Moon, Jupiter, etc. In the barycentric inertial frame, L2 follows a circular orbit, of radius
larger than that of Earth, but with the same angular frequency Ω than Earth. In the non-inertial
co-rotating frame, L2 is at rest; in this frame the total force on a body at this point should vanish.

Along the problem, please use a cartesian coordinate system px, y, zq in the co-rotating frame with
origin at the center of mass of the system Sun-Earth, Ecliptic plane (the orbital plane of the Earth) as
the xy plane, and Sun and Earth placed on the x axis, at a distance a, with x@ ă 0. Name distances
d,D, l along the x axis as per the previous diagram, and call r1, r2, r the distances from a general point
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to the Sun center, to the Earth center and to the z axis (all these distances are taken as positive).
Write the Earth mass m as α times the total mass M `m of the system Sun-Earth.

Call U “ U1 ` U2 the total gravitational potential with U1, U2 the ones due to Sun and Earth,
V the effective potential (Veff , see B4), and restrict the use of shorthands like Ux, Vyy, etc. for the
values of the evaluation at L2 of the corresponding x-derivative of U , second yy-derivative of V , etc.,
avoiding the use of these symbols to denote the derivative functions themselves.

Only the question D7b cannot be approached until D7a has been fully answered. Up to some very
basic results, all other questions can be answered independently.

A Basic results on L2 (2 points)

‚ A1) (0.5 points) List all contributions to the force on a body at rest in L2, i) in the barycentric frame,
and ii) in the non-inertial co-rotating frame. In the co-rotating frame, make a sketch (not to scale!)
of forces acting on a body at rest in L2.

‚ A2) (0.5 points) A small body sitting at L2 —at a distance to the center of mass greater than Earth’s—
rotates (in the barycentric frame) with the same angular frequency as Earth. How is this possible?

‚ A3) (1 point) In an approximation to first order of small quantities, prove that the distance l between

Earth and L2 is given by l « a
`

m
βM

˘1{3
where a is the distance Sun-Earth and β is a numerical

adimensional coefficient, which should follow from the calculation.

B Motion of a small body, negligible mass, in the Sun-Earth field (3 points)

Now we consider the possible motions a small body of mass µ negligible relatively to m and M .

‚ B4) (2.75 points, full score for any correct derivation) Using the coordinates described above, prove
that the equations of motion of the small body of negligible mass µ have the form (the gravitational
field produced by the small body is neglected):

:x “ ´
BVeff

Bx
` 2 Ω 9y, :y “ ´

BVeff

By
´ 2 Ω 9x :z “ ´

BVeff

Bz
(1)

and give the full expression of the effective potential Veff there (hereafter also denoted simply V ).

‚ B5) (0.25 points) These equations have terms linear in the velocities of the small body. To which forces
do these terms correspond?

C Some particular motions transversal to the Ecliptic plane around L2

Motions transversal to the plane of the Ecliptic are known as ‘vertical’ motions, tagging as ‘hori-
zontal’ the ones contained in the Ecliptic plane. In the approximated regime of very small vertical oscil-
lations with fixed x“xL2, y“yL2, the point z “ 0 is an equilibrium point and the z-dependence of the

gravitational potential can be approximated by Upzq « Up0q` 1
2Uzzz

2, with Uzz :“ B2U
Bz2

ˇ

ˇ

ˇ

L2
(notice the

centrifugal potential does not depend on z). Enforcing zptq “ A sinpωvtq to be a periodic solution of the
linearized problem :z “ ´Uzzz with frequency ωv leads directly to ωv “

a

Uzz. The second derivative
Uzz evaluated at L2 turns out to be Uzz « 3.9706 Ω2 thus leading to the angular frequency of these small
oscillations ωv “ 1.99263 Ω, corresponding to a period Tv « 2π{ωv “ 1{1.99263 year “ 0.501848 year,
very slightly over half a year. These results are given for use in the next questions.

D Some particular motions in the plane of the Ecliptic around L2 (2.5 points)

Now let us fix attention to ‘horizontal’ motions which remain exactly in the z “ 0 plane; actually
there are exact solutions of (1) of this type. In the regime of small oscillations, there are two types
of such motions; we restrict our attention to one of these types, which are periodic, following ellipses
centered at L2, with axes in the SunEarth line and along the perpendicular direction and traversed at
a constant angular velocity ωh.
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‚ D6) (0.5 points) A body is following one of these motions. Which forces act on it? Make a sketch
(not to scale) of these forces. Is the resultant of all forces acting on the body contained ex-
actly/approximately in the Ecliptic plane? And is this resultant exactly/approximately directed
to L2? Please choose alternative and comment the reasons of the choices.

‚ D7a) (1.5 points) Using only the info on the elliptic form of these orbits given before and the equations
of motion (1) linearized around L2, can you find the angular frequency ωh of these motions? For
this question it suffices to give an algebraic equation whose roots will determine this frequency.

‚ D7b) (0.5 points) Starting with the algebraic equation just obtained, can you find the value of the
frequency ωh of these ‘horizontal motions’ as a numerical dimensionless factor times Ω? Tip: In
the co-rotating frame the gravitational potential of Sun and Earth has axial symmetry and satisfies
Laplace equation. Then use the results stated in C. Hint: The period Th is a bit above half a year.

E From motions in the linear approximation to the true Halo orbits (2.5 points)

Halo are three-dimensional orbits, which in the co-rotating frame remain ‘confined’ to a region
around L2, and which are periodic. The aim of this exercise is to understand how these orbits appear.

As seen before, in the linear regime of small oscillations there are confined periodic orbits in the
Ecliptic plane, with some frequency ωh and confined periodic orbits in the ‘vertical’ direction with
angular frequency ωv. These two frequencies are not exactly equal, yet they are close; the data given
in C and the calculation in D7 lead in the linear approximation to periods Th for the horizontal elliptic
orbits and Tv for the ‘vertical’ ones differing only in about 3.5%.

‚ E8) (0.5 points) Which kind of orbits would arise from superposing an horizontal elliptic orbit and a
‘vertical’ one, both in the regime of small oscillations? Is this superposition periodic?

As amplitudes of each of these types of orbits increase, linear approximation is going poorer and
poorer. The frequencies of the individual periodic ‘horizontal’ and ‘vertical’ motions are expected to
change when amplitude increases. Tip: This is what happens with the ordinary pendulum, whose
isochrony is only very approximate for very small amplitudes, it isn’t?

‚ E9) (1 point) Elaborate on the clues suggested in the preceding paragraph and explain how it contains
the key to make plausible the appearance of tridimensional periodic Halo orbits. In particular,
do help the previous explanation to understand i) why these Halo orbits do not exist below some
minimum amplitude? and ii) why these orbits were so lately discovered?

The periodic JWST Halo orbit sits approximately
on a plane, slanted relatively to the Sun-Earth direc-
tion, and its shape in this plane is approximately an
ellipse, with center in a point near to L2 on the Sun-
Earth line. In the diagram, Earth is the point at the
left and L2 the one at right side, both on the thin line
Sun-Earth-L2.

‚ E10) (1 point) Assume a body is following the Halo orbit of the JSWT as given approximately in the
diagram. Which are the forces acting on the body, in the co-rotating frame? Sketch them. Is the
resultant permanently directed, exactly/loosely, to L2? Why?

Numerical data
Sun Mass M@ ”M « 2ˆ 1030 kg. Earth mass MC ” m « 6ˆ 1024 kg.
Angular frequency of the Sun-Earth motion in the barycentric frame Ω “ 2π year´1.
Other useful data (actually not needed here)
Sun-Earth (mean) distance (AU, astronomical unit) a@C ” a « 150ˆ 106 km
1 year « π ˆ 107s,
Newton gravitational constant: G « 6.67ˆ 10´11 m3s´2kg´1

Question 1. In orbit with the James Webb space telescope Page 4



Solution

A Basic results on L2

‚ A1) List all contributions to the force on a body at rest in L2, i) in the barycentric frame, and ii) in
the non-inertial co-rotating frame. In the co-rotating frame, make a sketch (not to scale!) of forces
acting on a body at rest in L2.

i) The gravitational attraction of the Sun and of the Earth, both radial and pointing inwards.

ii) As the frame is not inertial, further to the ‘actual’ attraction of Sun and Earth, both radial and
pointing inwards along the x axis, there are inertial forces. The rotation is uniform and the body is at
rest in the frame so there are no Euler nor Coriolis forces. Centrifugal is the only remaining inertial
force, which is exactly radial and points outwards
with modulus µpD` lqΩ2. The resultant is zero.

‚ A2) A small body sitting at L2 —at a distance to the center of mass greater than Earth’s— rotates (in
the barycentric frame) with the same angular frequency as Earth. How is this possible?

For this body to follow a circular orbit with the same angular frequency as Earth’s, the inward
radial force exerted on it should be larger than the one which the Sun alone would produce at this
radial position. Of course, the extra amount of force to make the total force that large is the one
provided by the Earth, which in L2 adds to the one produced by the Sun.

‚ A3) In an approximation to first order of small quantities, prove that the distance l between Earth and

L2 is given by l « a
`

m
βM

˘1{3
where a is the distance Sun-Earth and β is a numerical adimensional

coefficient, which should follow from the calculation.

With m written as α times the total Sun-Earth mass, m “ αpM ` mq, then α « 3 ¨ 10´6 and
M “ p1 ´ αqpM ` mq. With the suggested notation for distances along the line Sun-Earth, the
(positive) distances from the center of mass to the Sun and to Earth centers, d,D are determined by
the conditions d`D “ a and Md´mD “ 0, leading to d “ αa, D “ p1´ αq a.

The gravitational forces exerted on the small body at L2 by the Sun and the Earth are on the
x axis, pointing inwards, and with respective values ´GMµ{pa ` lq2 and ´Gmµ{l2. The centrifugal
force is outwards, with modulus µpD ` lqΩ2. The condition determining the position of L2 is:

GMµ

pa` lq2
`
Gmµ

l2
´ µpD ` lqΩ2 “ 0 (2)

For the system Sun-Earth, the mutual orbital angular frequency Ω of the system and the distance
a between the Sun and the Earth are related by the 123 Kepler law: GpM ` mq “ Ω2a3, so that

Ω2 “
GpM`mq

a3 . If we first replace this expression of Ω2 in (2), then recall d “ αa, D “ p1 ´ αqa
and finally write l “ λa, where λ is adimensional, we find that G and a disappear and the successive
equations determining the position of L2 are

GM

pa` lq2
`
Gm

l2
´
GpM `mqpD ` lq

a3
“ 0 ñ

M

p1` λq2
`
m

λ2
´ pM `mqp1´ α` λq “ 0

Up to now everything is exact. Make now some approximations. We know α « 3 ¨ 10´6 ăă 1, and
assume λ is also small in front of 1. Hence terms in α2, αλ, λ2 can be neglected against terms linear in
α, λ. Thus we can approximate M

p1`λq2
successively by Mp1´ λq2 and then by Mp1´ 2λq. In the last

term, to the same order, p1´α`λq can be approximated as p1´αqp1`λq. Using pM`mqp1´αq “M ,
the equation reduces to:

Mp1´ 2λq `
m

λ2
´Mp1` λq « 0 ñ

m

λ2
« 3Mλ ñ λ «

´ m

3M

¯1{3
ñ l « a

´ m

3M

¯1{3
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so the value of β is β “ 3. As the quotient m{M « 3 ¨ 10´6, the factor λ « 10´2, so the distance
l “ λa is around one percent of the astronomical unit; as expected, λ is actually small against 1.

Alternatively, should the approximation had been made writing pa ` lq instead of pD ` lq in (2),
then after replacing l by λa we should have arrived directly to Mp1´ 2λq` m

λ2 ´pM `mqp1`λq « 0,
and neglecting mp1` λq versus m{λ2 we would have obtained the same result.

B Motion of a small body, negligible mass, in the Sun-Earth field

‚ B4) Using the coordinates described above, prove that the equations of motion of the small body of
negligible mass µ have the form (the gravitational field produced by the small body is neglected):

:x “ ´
BVeff

Bx
` 2 Ω 9y, :y “ ´

BVeff

By
´ 2 Ω 9x :z “ ´

BVeff

Bz
(3)

and give the full expression of the effective potential Veff there (hereafter also denoted simply V ).

The most elementary derivation uses Newtonian mechanics. A more elegant derivation is through
Lagrangian formulation.

In the Newtonian way, one needs to know the forces acting on the small body. Within the co-
rotating inertial frame, which is rotating with constant angular velocity Ω, further to the gravitational
forces due to the Sun and to the Earth on the body, there are inertial forces.

The gravitational force due to the Sun is attractive, directed to the Sun, and at each possible
position px, y, zq of the body its absolute value is GMµ{pr1q

2, where r1 is the distance from the
point px, y, zq to the fixed Sun position p´d, 0, 0q. This force is well known to be minus the gradient
of a potential energy µU1 “ ´GMµ{r1, and thus the force components are µ

`

´ BU1
Bx ,´

BU1
By ,´

BU1
Bz

˘

.
Likewise, the force due to Earth comes as minus the gradient of the potential energy µU2 “ ´Gmµ{r2,
with components µ

`

´ BU2
Bx ,´

BU2
By ,´

BU2
Bz

˘

, where now r2 is the distance from px, y, zq to the fixed Earth
position pD, 0, 0q.

Further to these, there are inertial forces. As the angular velocity of the rotating frame is constant,
both in direction and in absolute value, the Euler inertial force which comes from a variable angular
velocity is absent. There remain only the centrifugal and Coriolis forces.

The centrifugal force is directed outwards from the rotation axis, with absolute value µ rΩ2, where
now r is the distance from the actual position of the body px, y, zq to the rotation axis, hence r “
a

x2 ` y2. The components of this centrifugal force are µΩ2
`

x, y, 0
˘

. Clearly this is also minus the
gradient of the so-called centrifugal potential energy µΦ “ ´1

2µ r
2 Ω2 “ ´1

2µ px
2 ` y2qΩ2.

Finally there are the Coriolis forces, given in the standard vector language as (minus twice) the
mass of the body times the vector product of the angular velocity of the frame by the velocity vector
of the body in the rotating frame. These vectors are respectively p0, 0,Ωq and p 9x, 9y, 9zq, thus leading
to µ pΩ 9y,´Ω 9x, 0q for the Coriolis force components.

Collecting all terms the Newton equations read (of course µ disappears)

:x “ ´
BU1

Bx
´
BU2

Bx
´
BΦ

Bx
` 2Ω 9y, :y “ ´

BU1

By
´
BU2

By
´
BΦ

By
´ 2Ω 9x :z “ ´

BU1

Bz
´
BU2

Bz

where after dividing by the µ factor in the potential energies, the functions U1, U2,Φ are the true
potentials; the effective potential Veff can be read from these equations and is explicitly given by

Veff “ U1`U2`Φ, Veffpx, y, zq “ ´
GM

a

px` dq2 ` y2 ` z2
´

Gm
a

px´Dq2 ` y2 ` z2
´ 1

2px
2`y2qΩ2 (4)

Other possible approach is via the Lagrangian formulation. All one needs there is the correct
Lagrangian of this system in the non inertial co-rotating frame. While one is not supposed to know
this beforehand, obtaining it is easy. The starting points are the scalar character of the classical
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Lagrangian under any change of coordinates (even depending on time) and the well known form of the
Lagrangian in an inertial frame, in presence of forces coming from the external Sun-Earth gravitational
potential U “ U1`U2. Naming X,Y, Z a set of cartesian coordinates in this barycentric inertial frame,
the Lagrangian is: LpX,Y, Z, 9X, 9Y , 9Zq “ 1

2 µ p
9X2 ` 9Y 2 ` 9Z2q ´ µUpX,Y, Zq.

The gravitational potential is a scalar, so that relatively to the co-rotating frame, the potential
Upx, y, zq will simply follow by changing the variables from pX,Y, Zq to px, y, zq in U . (The distances
between any actual position of the small body and the Sun and Earth are geometric quantities, so the
potentials, when expressed in terms of r1, r2 are the same as in the non-inertial frame, but of course
their expressions as functions of the new coordinates will differ).

Now we perform the change of coordinates. Choosing the new Z direction to coincide with the old
z, these are given by a simple rotation with angular velocity ´Ω around the z axis:

X “ x cospΩtq ´ y sinpΩtq, Y “ x sinpΩtq ` y cospΩtq, Z “ z

Taking the total time derivative in the these expressions and grouping terms, one obtains

9X “ p 9x´ Ωyq cospΩtq ´ p 9y ` Ωxq sinpΩtq, 9Y “ p 9x´ Ωyq sinpΩtq ` p 9y ` Ωxq cospΩtq, 9Z “ 9z

A straightforward computation leads to 9X2 ` 9Y 2 “
`

9x2 ` 9y2
˘

´ 2Ω
`

9xy ´ 9yxq ` Ω2px2 ` y2q.

As the Lagrangian itself should be also a scalar, we get its correct form in the co-rotating frame
by simple substitution, which leads to:

Lpx, y, z, 9x, 9y, 9zq “ 1
2 µ p 9x2 ` 9y2 ` 9z2q ´ µΩ

`

9x y ´ 9y xq ` 1
2 µΩ2px2 ` y2q ´ µUpx, y, zq

where the third term in the r.h.s., being a function only of coordinates, can be incorporated into an
effective potential energy µVeffpx, y, zq “ µUpx, y, zq ´ 1

2µΩ2 px2 ` y2q, so the Lagrangian is:

Lpx, y, z, 9x, 9y, 9zq “ 1
2 µ p 9x2 ` 9y2 ` 9z2q ´ µΩ

`

9x y ´ 9y xq ´ µVeffpx, y, zq

and the three Euler-Lagrange equations of motion are:

BL
B 9x
“ µ 9x´ µΩ y ñ

d

dt

BL
B 9x
“ µ p:x´ Ω 9yq

BL
Bx
“ ´µ

BVeff

Bx
` µΩ 9y

,

/

.

/

-

:x´ Ω 9y “ ´
BVeff

Bx
` Ω 9y

BL
B 9y
“ µ 9y ` µΩx ñ

d

dt

BL
B 9y
“ µ p:y ` Ω 9xq

BL
By
“ ´µ

BVeff

By
´ µΩ 9x

,

/

/

.

/

/

-

:y ` Ω 9x “ ´
BVeff

By
´ Ω 9x

BL
B 9z
“ µ 9z ñ

d

dt

BL
B 9z
“ µ :z

BL
Bz
“ ´µ

BVeff

Bz

,

/

.

/

-

:z “ ´
BVeff

Bz

which are the equations we were looking for. Of course, µ turns out to be irrelevant, and as this should
have been clear from the beginning we could/should have taken µ “ 1 to start with.

The effective potential is Veffpx, y, zq “ Upx, y, zq ´ 1
2Ω2 px2 ` y2q which of course coincides with

the one (4) obtained in the newtonian derivation.

‚ B5) These equations have terms linear in the velocities of the small body. To which forces do these
terms correspond?

These are the Coriolis forces.
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C Some particular motions around L2 transversal to the Ecliptic plane

There was no any question on these motions, but only some final results were given in the formu-
lation. It is worth to discuss how these results can be obtained, referring to the text in C.

‚ C) Calculate explicitly the derivative appearing in the previous expression of ωv “
a

Uzz and transform
that expression by using the third Kepler law in the form GpM `mq “ Ω2a3 so that the frequency
ωv is finally given by a relation ωv “ fv Ω with a dimensionless numerical factor fv which should
be calculated. Hint: The result for the period Tv is a bit below half a year.

This second z derivative of the gravitational potential can be calculated as follows. First, U is
a sum of two potentials created by bodies placed on the x axis. Each such summand has a form
U “ ´GM

ρ , where ρ “
a

px´ fq2 ` y2 ` z2 ” p ¨ ¨ ¨ ` z2q1{2 is the distance to the source body of mass
M. The potential and its first and second z derivatives are:

U “ ´ GM
?
¨ ¨ ¨ ` z2

,
BU
Bz
“ GM z

p ¨ ¨ ¨ ` z2q3{2
,

B2U
Bz2

“ GMp ¨ ¨ ¨ ` z2q3{2 ´ 3 z2p ¨ ¨ ¨ ` z2q1{2

p ¨ ¨ ¨ ` z2q3

which, using the notations Uz, Uzz for the derivatives evaluated at L2, where x “ xL2, y “ 0, z “ 0,
then p ¨ ¨ ¨ ` z2q “ pxL2 ´ fq

2 “ pρ|L2q
2 and gives:

Uz :“
BU
Bz

ˇ

ˇ

ˇ

ˇ

L2

“ 0, Uzz :“
B2U
Bz2

ˇ

ˇ

ˇ

ˇ

L2

“
GM

pxL2 ´ fq3
“

GM
pρ|L2q

3

In our case there are two attracting masses, the Sun, of mass M and at a distance pa` lq from
L2, and the Earth, of mass m and at a distance l. Thus for the second z derivative of the total
gravitational potential U evaluated at the Lagrange point L2 one has

Uzz “
GM

pa` lq3
`
Gm

l3

If now we use M “ p1´ αqpM `mq, m “ αpM `mq and l “ λa, we can factor the common term
GpM`mq

a3 which by the 123 Kepler law is equal to Ω2, so that we finally get an expression of Uzz as a
multiple of Ω2, with a dimensionless factor depending on α and λ:

Uzz “

"

1´ α

p1` λq3
`
α

λ3

*

Ω2, which is of the form Uzz “ f2
v Ω2 with f2

v “

"

1´ α

p1` λq3
`
α

λ3

*

.

As we already know α “ m{pM`mq « 3 ¨10´6, and λ « 10´2, the numerical value of the adimensional
factor in brackets is:

f2
v “

"

1´ α

p1` λq3
`
α

λ3

*

«
1´ 3 ¨ 10´6

p1` 10´2q3
`

3 ¨ 10´6

10´6
« 4

`

1´ 2.94
4 ¨ 10´2

˘

“ 3.9706

Thus the precise value of Uzz and of the frequency ωv of the small vertical oscillations are

Uzz « 3.9706 Ω2, ωv «
?

3.9706 Ω “ 1.99263 Ω

corresponding to a period Tv “ 2π{ωv « 1{1.99263 year “ 0.501848 year, very slightly over half a year,
as said in the C paragraph of the formulation.

D Some particular motions around L2 in the plane of the Ecliptic

‚ D6) A body is following one of these motions. Which forces act on it? Make a sketch (not to scale)
of these forces. Is the resultant of all forces acting on the body contained exactly/approximately
in the Ecliptic plane? And is this resultant exactly/approximately directed to L2? Please choose
alternative and comment the reasons of the choices.
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Now, to the Sun and Earth attraction and to the cen-
trifugal forces, which are present even when the body is
at rest in L2 and which are contained in the xy plane, we
should add the Coriolis force, which appears only when the
body moves in the non-inertial co-rotating frame. As this
force is (minus twice) the vector product of the angular fre-
quency (directed along the z axis) and the velocity vector of
the body (contained in the xy plane), this vector product is
always contained in the xy plane, which gives again another
argument for the existence of solutions with z “ 0.

Thus, the resultant of all forces is contained exactly in the xy plane (otherwise the z component
of the motion could not be zptq “ 0). But as these orbits are not circles traversed at a uniform speed,
one should not expect this resultant to point exactly to L2.

‚ D7a) Using only the info on the elliptic form of these orbits given before and the equations of motion
(1) linearized around L2, can you find the angular frequency ωh of these motions? For this question
it suffices to give an algebraic equation whose roots will determine this frequency.

As the statement says that the orbit should be an ellipse around L2, with one axis in the Sun-Earth
direction, and traversed with constant angular velocity, we should try with an ansatz:

xptq “ xL2 `A cospωtq, yptq “ yL2 `B sinpωtq, zptq “ 0 (5)

with unknown quantities A,B, ω, where here ω stands for ωh. But this should be a solution of
the (linearized) equations of motion, where potentials are approximated up to second order terms,

V « V |L2 `
1
2Vxxpx´ xL2q

2 ` 1
2Vyypy ´ yL2q

2, (recall Vxx :“ B2Veff
Bx2

ˇ

ˇ

ˇ

L2
, etc.)

The velocities and accelerations along this motion are

9xptq “ ´Aω sinpωtq, :xptq “ ´Aω2 cospωtq

9yptq “ B ω cospωtq, :yptq “ ´B ω2 sinpωtq

Enforcing (5) to be actually a solution of the linearized equations of motion and grouping terms:

cospωtq
 `

ω2 ´ Vxx
˘

A`
`

2Ωω
˘

B
(

` sinpωtq tVxyBu “ 0

cospωtq t´VxyAu ` sinpωtq
 `

2 Ωω
˘

A`
`

ω2 ´ Vyy
˘

B
(

“ 0

Now, as the functions cospωtq and cospωtq are linearly independent, all the groups in brackets should

vanish. Were the crossed second derivatives Vxy ”
B2Veff
BxBy

ˇ

ˇ

ˇ

L2
different from 0, this would imply A “

B “ 0, and this solution, staying at L2 forever, should not be considered periodic. Hence, (5) could
only be a truly periodic solution if Vxy “ 0. Of course, this is what occurs because the ellipse axes are
exactly in the principal directions of the matrix of the second derivatives of the potential at L2, which
is a consequence of the symmetry indicated in the problem formulation.

Hence the conditions ensuring (5) is a solution are:
`

ω2 ´ Vxx
˘

A`
`

2 Ωω
˘

B “ 0

`

2 Ωω
˘

A`
`

ω2 ´ Vyy
˘

B “ 0

which is simply a linear system for A,B. There is a non-trivial solution for A,B if the determinant of
the matrix of coefficients vanish. This condition, when expanded:

ˇ

ˇ

ˇ

ˇ

ˇ

ω2 ´ Vxx 2Ωω

2Ωω ω2 ´ Vyy

ˇ

ˇ

ˇ

ˇ

ˇ

“ 0 ñ
`

ω2 ´ Vxx
˘`

ω2 ´ Vyy
˘

´ 4Ω2ω2 “ 0
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leads to a biquadratic equation, whose roots determine the frequency ω. Setting Λ :“ ω2, Λ should
satisfy a quadratic equation

Λ2 ´
`

4Ω2 ` Vxx ` Vyy
˘

Λ` VxxVyy “ 0

The knowledgeable reader will have noticed that this approach is an example of ‘speaking prose
without realising it’, as Mr. Jourdain did. The prose here is the general theory of linearisation of a
dynamical system around a critical point.

‚ D7b) Starting with the algebraic equation just obtained, can you find the value of the frequency ωh of
these ‘horizontal motions’ as a numerical dimensionless factor times Ω? Tip: In the co-rotating
frame the gravitational potential of Sun and Earth has axial symmetry and satisfies Laplace equa-
tion. Then use the results stated in C. Hint: The period Th is a bit above half a year.

The two roots of the previous equation are

Λ “ 1
2

´

p4Ω2 ` Vxx ` Vyyq ˘
b

p4Ω2 ` Vxx ` Vyyq2 ´ 4VxxVyy

¯

(6)

(but as ω “
?

Λ, only the positive roots for Λ will be relevant here). For the second derivatives of
V ” Veff evaluated at L2, we have

Vxx “ Uxx ´ Ω2, Vyy “ Uyy ´ Ω2

(Uxx, Uyy are the quantities analogous to Vxx, Vyy but referred to the purely gravitational potential).
There is no need (!) of blindly calculating these second derivatives, as there are some general relations
which using the results in C allow bypassing the calculations completely (nevertheless, if wanted,
these computations can be made ab initio). The second x derivative of the gravitational potential can
be calculated as follows. First, as outside the two attracting bodies U is a solution of the Laplace
equation, at L2 we should have

Uxx ` Uyy ` Uzz “ 0 ñ Uxx “ ´Uyy ´ Uzz

Furthermore, the gravitational potential U has (in the co-rotating frame) axial symmetry around the
x axis, so that we should have as well

Uyy “ Uzz ñ Uxx “ ´2Uzz

These relations lead finally to

Vxx “ ´2Uzz ´ Ω2, Uyy “ Uzz ´ Ω2

As previously we mentioned in C that Uzz « 3.9706 Ω2, we get directly

Vxx « ´8.9412 Ω2, Vyy « 2.9706 Ω2

and by replacing in (6) above we get the two roots

Λ «

#

4.26174 Ω2 ñ ωh “ ω « 2.0644 Ω

´6.23233 Ω2 ñ as Λ ă 0, this is not an acceptable root here

Hence, the angular frequency of the horizontal elliptic trajectories around L2 in the Ecliptic plane is
ωh « 2.0644 Ω, which corresponds to a period Th « 0.48440 year, slightly under half a year.

Marginal note: The pure imaginary value ˘
?
´6.23233 Ω “ ˘2.4964 i Ω which would follow for

the frequency ωh from the discarded root correspond to the other ‘small oscillation’ mode near L2
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with motion along proper outgoing and ingoing eigendirections given by a time dependence e˘2.4964 t;
in dynamical systems lenguaje this is a saddle, making the point L2 globally unstable.

E From motions in the linear approximation to the true Halo orbits

‚ E8) Which kind of orbits would arise from superposing an horizontal elliptic orbit and a ‘vertical’ one,
both in the regime of small oscillations? Is this superposition periodic?

As the two angular frequencies are slightly different, these superpositions, called Lissajous orbits,
will not be ‘simply’ periodic, i.e., with horizontal and vertical motions completing a full period in the
same time.

‚ E9) Elaborate on the clues suggested in the preceding paragraph and explain how it contains the key
to make plausible the appearance of tridimensional periodic Halo orbits. In particular, do help the
previous explanation to understand i) why these Halo orbits do not exist below some minimum
amplitude? and ii) why these orbits were so lately discovered?

If at the small oscillations level the two frequencies are nearby, and if they are expected to change
when the amplitudes increase, it is possible that once the amplitude of horizontal orbits increases
enough, its angular frequency will coincide with the angular frequency of a suitable ‘vertical mate’
(also of not small amplitude). Should this happen, the corresponding common period will likely be
some value near to both Th “ 0.4844 year and Tv “ 0.5018 year, this is, near half a year, as mentioned
in the introduction. If we were in the linear superposition regime this would mean directly a periodic
superposition. Even far from this linear regime, when the involved superposition is not linear, this
reasoning suggests —albeit only heuristically—, the existence of these expected periodic orbits.

i) These require a minimum amplitude because in the limit of small amplitudes (small oscillations)
their angular frequencies are not equal, so these periodic three-dimensional orbits cannot exist in the
(linear) small oscillations regime.

ii) They were not easy to discover; as they have a essentially non-linear character, they cannot be
discovered while using only linear tools.

‚ E10) Assume a body is following the Halo orbit of the JSWT as given approximately in the diagram.
Which are the forces acting on the body, in the co-rotating frame? Sketch them. Is the resultant
permanently directed, exactly/loosely, to L2? Why?

In addition to the gravitational pulls
of Sun and Earth and the centrifugal force,
which would cancel exactly at L2, and
which acts also at any point of the Halo
orbit (though with a non-zero partial re-
sultant), as the body is moving with a
velocity v tangent to the trajectory at
each point, there is an extra Coriolis force
perpendicular to Ω and to v which is rep-
resented also in the sketch.

The global resultant should point always grosso modo to the Sun-Earth-L2 line (as the orbit is
around this line), but as the halo orbit is not a circle traversed at constant velocity, this force will
not point exactly to any fixed location. However, the diagram makes it clear that the global resultant
is always directed ‘inwards’. While we are used to orbits similar to these when the dominant force
is the attraction of a large body placed at its center, here the absence of any ‘attracting mass at
the center’ make these orbits a bit puzzling at the first sight. This apparently puzzling character is
disentangled when we realize that the net force, always directed inwards, is actually the resultant of
the gravitational attractions of Sun and Earth, the centrifugal force and the Coriolis force.
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“LevitronTM” is a magnetic toy consisting of a spinning top
hovering above a base formed by a block of magnetized mate-
rial. The top is made of a magnetic ceramic and stays in the
air due to the repulsion of the powerful magnet at the base,
since the equal poles of the magnet and the base are facing
each other.
The set consists of a magnetized top, a thin (lifting) plastic
plate, and a magnetized square base plate (base). To operate
the top, one should set it spinning on the plastic plate that
covers the base. The plastic plate is then raised slowly with
the top until a point is reached in which the top leaves the
plate and continues to spin in midair above the base for a few
minutes.

The spin of the top has the function of keeping it oriented in such a way that the magnetic poles
of the top and the base repel each other. Without rotation the top overturns, subjected to the couple
of forces of the magnetic field of the base, and falls attracted by it. For the top to float freely, it is
necessary that its weight and turning speed are finely tuned. In this problem we are going to study
the conditions under which the levitron maintains stable levitation.

1. Expansion of the magnetic field around the levitation point (1 point)

The magnetic field that levitates the spinning top is the one created by the base. Set the origin of the
coordinates at the point where the levitron floats in equilibrium. There are no field sources at this
point. Therefore, the following equations are satisfied:

∇ �B � 0 and ∇�B � 0 (1)

Assuming that the field created by the base has symmetry of revolution around the z axis, show that
the field in the neighborhood of the equilibrium point can be expressed as:

Bz � B0 � Sz �Kz2 � 1

2
Kr2 (2)

Br � �1

2
Sr �Krz (3)

where pr, ϕ, zq are cylindrical coordinates whose origin is the equilibrium point and B0, S, and K are
constants.

2. Equilibrium condition in the vertical direction (1 point)

The top is a rotationally symmetric body with mass m whose center of mass is located at r. Due to
rotation, it has an angular momentum relative to the center of mass S. In addition, it can be regarded
as a magnetic dipole with a fixed magnetic moment µµµ of magnitude µ located at the center of mass r
and directed along the axis of symmetry of the top. The gradients of the magnetic field compensate
for the weight of the top, providing a repulsive force that acts on µµµ. The top would overturn and fall
if it weren’t for the gyroscopic effect of B on S that provides the mechanism for the top to spin stably
above the base.

The total force on the dipole is:

F � �mgez �∇pµµµ �Bq (4)

where B is the magnetic field due to the base and ez the unit vector in the z direction.

Question 2. The stability of the LevitronTM Page 2



Since the field decreases in absolute value as we move away from the base, the equilibrium condition
can only be satisfied if the field and the dipole moment µµµ point in the opposite direction. Only in that
case does the base repel the spinning top.

Express the equilibrium condition in the z direction in terms of the parameters that model the
magnetic field: B0, S and K.

3. Earnshaw’s theorem (1 point)

The equilibrium condition in the z direction does not ensure that the spinning top is in stable equilib-
rium. In fact, Earnshaw’s theorem ensures that a stable mechanical equilibrium cannot be achieved
only by electrostatic or magnetostatic forces.

Show that regardless of the alignment of the top, any possible equilibrium point is a saddle point.
That is, if the equilibrium position is stable on the z axis is unstable transversely, and vice versa.

4. Approximate top rotations (1 point)

As written above, to operate the Levitron one should set the top spinning on the plastic plate that
covers the base. In addition, the magnetic field exerts a torque µµµ�B on the top in such a way that:

dS

dt
� µµµ�B (5)

where S is the angular momentum of the top relative to the center of mass.
Experience shows that for the top to lift one has to put it spinning very fast on the plastic plate.

In these conditions, the top angular momentum S can be considered parallel to its angular velocity
vector and its symmetry axis, so its initial angular momentum is S � I3ωωω, where I3 and ωωω are the
moment of inertia and angular velocity about its symmetry axis. Besides, the magnetic moment is
parallel to the symmetry axis.

Transform Eq. (5) for the angular momentum into an equation for the magnetic moment.
In the regime where Levitron works, the top precession is faster than the center-of-mass motion.

In these conditions we can consider pxptq, yptq, zptqq, and so Bptq, as constant in the time interval while
the top is precessing an angle 2π.

Solve the motion of the magnetic moment, Eq. (5), with B frozen. To do this, call ez the direction
of B and consider an arbitrarily oriented dipole1

µµµ � �pµxptq ex � µyptq ey � µzptq ezq, B � B ez, whereB � |Bpx, y, zq| and µ � |µµµptq|, (6)

Make a sketch showing the motion of the top. Identify the quantities that remain constant during
the motion.

5. Stable equilibrium condition (1 point)

The key for the levitron to work is that the top precesses around the local direction of the field,
maintaining, on average, the projection of the dipole moment onto the direction of the field. In the
fast precession regime of the top, where the magnetic field can be considered frozen during the course
of a period T � 2π{Ω, the product µµµptq �Bptq can be approximated by its average:

µµµptq �Bptq � 1

T

» T

0
dtµµµptq �B (7)

1The minus sign ensures that µµµ and B are antiparallel when aligned.
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Calculate µµµptq �Bptq.
Assume that the energy of the top can be approximated by

U � mgz �µµµ �B � mgz � µBB (8)

with µB a constant.
Determine the new equilibrium conditions. Show that stable equilibrium is possible and give the

conditions for it to hold.

Section 6. Equations of motion in the linear approximation (2 points)

The top motion is described by the three Cartesian coordinates of the center of mass px, y, zq and
three angles that determine the orientation of the top. Instead of the standard Euler angles, we will
use the angles in the convention referred to as xyz2. In this convention, the orientation of the spinning
top in space is determined by three angles: ψ, θ and φ. The angle ψ represents a rotation around
the z axis. For an object with axial symmetry, such as the spinning top, it denotes a rotation of the
object around its axis of symmetry. The angle θ is a rotation about the y axis. The third angle, φ, is
a rotation about the x axis. The figures Fig.1 to Fig. 4 illustrate the three successive rotations.

The angular velocity of the top has the values 9θ and cos θ 9φ along the two axes perpendicular to
the axis of symmetry, and the value 9ψ � sin θ 9φ along the axis of symmetry. The Lagrangian function
is (we neglect air friction):

Lpx, y, z, ψ, θ, φq � 1

2
mp 9x2 � 9y2 � 9z2q

�1

2
I1p 9θ2 � cos2 θ 9φ2q � 1

2
I3p 9ψ � sin θ 9φq2 � Upx, y, z, ψ, θ, φq (9)

where m is the mass of the spinning top, I3 the moment of inertia about the axis of symmetry, and
I1 the moment of inertia about an axis perpendicular to the axis of symmetry.

The axis of the spinning top is oriented along the vector n � sin θex� cos θ sinφey � cos θ cosφez,
and the potential energy is:

U � mgz � µpBx sin θ �By cos θ sinφ�Bz cos θ cosφq (10)

The equations of motion have an exact solution when the top spins with constant velocity, at the
equilibrium point, and vertically oriented. That is:

x � 0, y � 0, z � 0, φ � 0, θ � 0, ψ � ωt, (11)

where ω is the spinning angular velocity.
The equations of motion corresponding to the above Lagrangian constitute a set of nonlinear

ordinary differential equations. Because of this non-linear character, an analytical solution of the
complete set for any initial conditions is not possible, in general. However, some important features
of the levitron dynamics may be obtained from the linear approximation of these equations.

To obtain the linear equations, we can proceed in two ways. A first procedure consists in linearizing
the corresponding Euler-Lagrange equations to the Lagrangian obtained above. The second procedure,
which is the one we recommend, consists in expanding the Lagrangian retaining the quadratic terms
in the perturbations and obtaining, from there, the equations of motion.

Taking all of the above into account, show that the equations of motion of the spinning top in the
linear approximation are:

2These angles are known in aeronautics as yaw, pitch, and roll.
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Fig.1 Angle ψ: rotation around OZ.

Fig.2 Angle θ: rotation around OY .

Fig. 3 Angle φ: rotation around OX.

Fig. 4 Vector n and its corresponding angles.

m:x �1

2
µSθ � µKx (12a)

m:y �1

2
µSφ� µKy (12b)

m:z �� 2µKz (12c)

I1:θ �I3ω 9φ� 1

2
µSx� µB0θ (12d)

I1 :φ �� I3ω 9θ � 1

2
µSy � µB0φ (12e)

I3 :δψ � 0 (12f)

(Note: except for the variable ψ, the disturbances and the unknowns are the same, for example,
δx � x.)

7. Solutions in simple cases (1 point)

1.- The vertical motion equation (z axis) is uncoupled and corresponds to a harmonic oscillator.
Find the frequency of the corresponding vertical oscillations (this oscillatory motion is quite visible in
practice).

2.- Analyze the solutions in the absence of a magnetic field. This corresponds to the precession of
a free top.

3.- Assume a constant magnetic field. This case is analogous to the spin precession around a mag-
netic field (Larmor precession). Find the solution of the above set of differential equations neglecting
the inertial terms (the second derivative of the unknowns).3

8. Dispersion relation and lower limit of rotational speed (2 points)

The set of equations (12a-12f) governs the evolution of the perturbations of (11). The levitron will
hover stably if these perturbations do not grow exponentially in time.

Propose solutions of the form eiαt for the four unknowns x, y, θ, and φ, and find the equation
that must satisfy α (dispersion relation). This equation provides α as a function of ω. The range of
values of ω for which α is real determines the limits of the rotation speed that allow a stable flight.

3The calculations in 7 and 8 become easier using the variables u � x� iy and v � θ � iφ.
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The resulting equation is of fourth order and must be solved graphically or numerically. However, the
lower limit of the speed of rotation corresponds to a uniform field and can be found analytically.

Set S � 0 and K � 0 in the dispersion relation and find the minimum value of ω for α to be real.
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Solutions

Section 1. Expansion of the magnetic field around the levitation point

Expanding Bz up to terms of order 2 we have:

Bz � B0 � Sz �Kz2 �Mr2 � . . . (13)

From the curl of B we obtain: BBr

Bz � BBz

Br � 2Mr (14)

integrating:
Br � 2Mrz � Lr �Nr2 � . . . (15)

We now apply the null divergence condition:
1

r

BprBrq
Br � BBz

Bz � 0 (16)

which yields:
4Mz � 2L� 3Nr � �S � 2Kz (17)

Identifying the coefficients of z, r, and the independent term, the result is obtained.

Section 2. Equilibrium condition in the vertical direction

The force is:
Fz � �mg � µ

BBz

Bz (18)

using the expression for the magnetic field obtained in the previous section:

Fz � �mg � µpS � 2Kzq (19)

taking the equilibrium point as the origin of coordinates:

µS �mg � 0 (20)

That the value of S is negative indicates that the field must be decreasing.

Section 3. Earnshaw’s theorem

The energy of the top is
U � mgz �µµµ �B (21)

With the dipole oriented antiparallel near r � 0 and z � 0, we have:

U � mgz � µzpB0 � Sz �Kz2 � 1

2
Kr2q � µrp1

2
Sr �Krzq (22)

The equilibrium conditions are:
Uz � 0 and Ur � 0 (23)

that gives:
mg � µS � 0 and µr � 0 (24)

where we have taking into account that z � 0 corresponds to the equilibrium point. This leads to

Uzz � 2µK, Urr � �µK, Uzr � Urz � µrK � 0,

∣∣∣∣Uzz Uzr

Uzr Urr

∣∣∣∣ � �2pµKq2   0 (25)

Regardless of the values of the parameters involved, we have a saddle point. Therefore, there is
no stable equilibrium point. This is a direct consequence of the fact that Bz satisfies the Laplace
equation.
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Section 4. Approximate top rotations

Here we make the assumption that the top is fast, in the sense that its angular momentum can be
regarded as parallel to both its angular velocity vector and the symmetry axis .

With the simplifying assumption that S is aligned with the axis of symmetry of the top, S �
pI3ω{µqµµµ, we can write

9S � µ

I3ω
S�B or, alternatively 9µµµ � µ

I3ω
µµµ�B. (26)

The equation of motion for a freely spinning top precessing with angular velocity ΩΩΩ is:

9S � ΩΩΩ� S (27)

Comparing this with Eq.(26) we conclude that

ΩΩΩ � � µ

I3ω
B (28)

Finally, while the top rotates around its symmetry axis with angular velocity ωe, it is precessing
around B with angular velocity Ω � � µB

I3ω
. That the angular momentum of the top S is parallel to the

angular velocity and to the axis of the top is untenable unless the angular velocity along the symmetry
axis is much larger than precession angular velocity, ω " |Ω|.

On the other hand, in the regime where Levitron works, Ω is so large that the top precession is
faster than the center of mass motion. In these conditions we can consider pxptq, yptq, zptqq, and so
Bptq, as constant in the time interval while the top is precessing 2π.

We will solve the motion of the magnetic moment, Eq. (26), with B frozen. To do this, call ez the
direction of B and consider an arbitrarily oriented dipole4

µµµ � �pµxptq ex � µyptq ey � µzptq ezq, B � B ez, whereB � |Bpx, y, zq| and µ � |µµµptq|, (29)

Plugging these into Eq. (26) gives

9µx � Ωµy (30)
9µy � �Ωµx (31)
9µz � 0 (32)

which gives
µµµ � �pµK cospΩt� βq ex � µK sinpΩt� βq ey � µ‖ ezq, B � B ez (33)

where the phase β is determined by the initial conditions. The angle γ between µµµ and B remains
constant, so µ‖ � µ cos γ and µK � µ sin γ.

Section 5. Stable equilibrium condition

In the fast precession regime of the top, where the magnetic field can be considered frozen during the
course of a period T � 2π{Ω, the product µµµ �B can be substituted by its average:

µµµptq �Bptq � 1

T

» T

0
dtµµµptq �B � � 1

T

» T

0
dtµ cos γ B � �µ cos γ B � �µBB, (34)

i. e., a constant, µB, times the absolute value of the field.
4The minus sign ensures that µµµ and B are antiparallel when aligned.
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In this case, the energy of the top is:

U � mgz �µµµptq �Bptq � mgz � µB
a
B2

r �B2
z (35)

To study the equilibrium, it is enough to expand B to second order in r and z

a
B2

r �B2
z �

d
B2

0 � 2B0Sz � p2B0K � S2qz2 �
�
S2

4
�KB0



r2 (36)

� B0

#
1� S

B0
z � 1

2

�
2K

B0
�
�
S

B0


2
�
z2 �

��
S

2B0


2

� K

B0

�
r2 � 1

8

�
2S

B0


2

z2

+

where the last term in z2 comes from p1 � xq1{2 � 1 � x{2 � x2{8 � . . . . The equilibrium conditions
are now

mg � µB
BB
Bz � mg � µBpS � 2Kzq � 0 with z � 0ñ mg � S � 0 (37)

µB
BB
Br � µB

��
S

2B0


2

� K

B0

�
r � 0ñ r � 0 (38)

The condition that U is a minimum at z � 0 requires

µB
B2B
Bz2 � 2µBK ¡ 0 (39)

µB
B2B
Br2 � µB

��
S

2B0


2

� K

B0

�
¡ 0 (40)

which is possible with the appropriate choice of the parameters.

Section 6. Equations of motion in the linear approximation

The Lagrangian up to the second order in the unknowns is:

Lpx, y, z, ψ, θ, φq � 1

2
mp 9x2 � 9y2 � 9z2q

�1

2
I1p 9θ2 � 9φ2q � 1

2
I3pω � δ 9ψ � θ 9φq2 � Upx, y, z, δψ, θ, φq (41)

with
U � �mgz � µpBxθ �Byφ�Bzp1� 1

2
θ2qp1� 1

2
φ2q (42)

Using the expressions for Bx, By, and Bz and retaining only the cuadratic terms:

U � �mgz � µp1
2
Sxθ � 1

2
Syφ� 1

2
B0pθ2 � φ2q (43)

�Sz �Kz2 � 1

2
Kpx2 � y2qq (44)

The Euler-Lagrange equations
d

dt

BL
B 9q

� BL
Bq � 0 (45)

with q � px, y, z, ψ, θ, φq, give:

m:x �1

2
µSθ � µKx (46a)

m:y �1

2
µSφ� µKy (46b)

m:z �� 2µKz (46c)

I1:θ �I3ω 9φ� 1

2
µSx� µB0θ (46d)

I1 :φ �� I3ω 9θ � 1

2
µSy � µB0φ (46e)

I3 :δψ � 0 (46f)
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Section 7. Solutions in simple cases

1.- The vertical motion is governed by the equation

m:z � �2µKz (47)

which is the equation of a harmonic oscillator of frequency

ωz �
a
2µK{m (48)

2.- Without magnetic field the non-trivial equations are:

I1:θ � I3ω 9φ (49)
I1 :φ � �I3ω 9θ (50)

Introducing v � θ � iφ we get
I1:v � �iI3ω 9v (51)

The solution of this equation is of the form eiαt. Substituting gives α � pI3{I1qω. The functions θ
and φ have the form:

θ � A cospαt� δq (52)
φ � A sinpαt� δq (53)

In the linear approximation, the vector n is n � θex�φey�ez. Therefore, this solution represents
a precession of the top axis with angular velocity pI3{I1qω, which corresponds to a free top.

3.- For a constant field, following the same procedure as in point 2, we have:

I1:v � �iI3ω 9v � µB0v (54)

Neglecting the term on the left and assuming v � v0e
iαt we obtain for α

α � µB0

I3ω
(55)

This is the precession velocity of the spinning top obtained in Section 5.

Section 8.Dispersion relation and lower limit of rotational speed

Introducing the variables u � x� iy and v � θ � iφ, the equations of motion are:

m:u � 1

2
µSv � µKu (56)

I1:v � �iI3ω 9v � 1

2
µSu� µB0v (57)

We search for solutions of the form u � u0e
iαt and v � v0e

iαt. The system of equations is
transformed into a homogeneous system of algebraic equations for u0 and v0. For there to be a
solution, the determinant of the coefficient matrix must be zero. This is:���� α2 � µK{m 1

2µS{m
1
2µS{m α2 � αI3ω{I1 � µB0{I1

���� � 0 (58)

The equation for α is:

pα2 � µK{mqpα2 � αI3ω{I1 � µB0{I1q � p1
2
µS{mq2 (59)
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For a uniform magnetic field:

α2 � αI3ω{I1 � µB0{I1 � 0 (60)

whose solution is:
α � 1

2
p�I3ω{I1 �

a
pI3ω{I1q2 � 4µB0{I1q (61)

For the roots to be real ω must satisfy:

ω ¥ 2

?
µI1B0

I3
(62)

For values smaller than this, there will be complex solutions of α with negative imaginary part,
and small disturbances will grow exponentially, moving the top away from equilibrium.

Calculating the maximum speed for stability requires a more detailed analysis of the dispersion
relationship.
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Nanomaterials in general, and nanoparticles and thin films in particular, are of extended use
nowadays and among the most active research fields in materials sciences. In Physics, the interest in
nanoscale systems lies in the new physical properties that emerge at small length scales. Moreover,
these properties will be strongly dependent on size, surface-to-volume ratio, and shape. In the following
exercises we will work on the physics behind the preparation of these nanomaterials and we will have
a look at some of their special properties.

1. (1p.) Quantum dots (QDs) are solid crystalline particles with sizes in the order of the nanome-
ter. When UV light hits these semiconducting nanoparticles, they can emit light of various colors.
Some current applications for these nanoparticles are found in composites, solar cells and fluorescent
biological labels. One of the methods for obtaining QDs is by controlled solidification from the liquid
phase. When a liquid that is taken out of equilibrium (lowering the temperature, increasing pressure
or increasing the amount of solute in case of more than one component), it will have an excess free
energy per unit volume of ∆g that will favour the phase transition. However, the apparition of clus-
ters of the new phase, the solid crystal in this case, will involve the creation of an interface between
the two phases, which has an energetic cost of σ (surface tension, units of energy per unit surface
or Newton per metre). Imagine the situation in which the liquid is taken out of equilibrium and, by
thermal fluctuations, an embryo of a crystal assembles in the liquid. Considering the interplay
between volume and surface energies and the embryo as spherical, which is the minimum
radius that it must have so it is more energetically favourable for the system that the
embryo continues growing instead of disappearing once it has already formed? (Note: do
not consider the change in configuration entropy in your calculations).

2. (1p.) Once the new particle has appeared it must grow up to a desired size, which will depend
on the application. In multi-component systems usually the growth is diffusion controlled, since the
new particle consumes part of the available solute at its nearby surroundings. Consider a 2D system
where a single circular nanoparticle of radius r1 with constant concentration cS (see figure 1) grows
consuming part of the solute it has at its surroundings. At a certain distance r1� δ the concentration

Figure 1: Concentration profile of a section of the nanoparticle and its surroundings. cS denotes de
concentration of the nanoparticle, cL the concentration at the interface with the liquid and co the initial
concentration of the liquid. The particle has radius r1 and circular symmetry, so the concentration
only depends on the distance from the center of the particle (no angular dependence).

recovers its overall concentration co. Just at the interface, the solid is in equilibrium with the liquid,
so the liquid has a concentration cL. Considering this concentration profile as stationary
(Bc{Bt � 0), use the two Fick’s laws to calculate the growth rate, dr{dt. Note: Consider the
atoms that form the particle to have sat as atomic surface (m2/atom).
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Fick’s laws for diffusion: J � �D∇c and Bc
Bt � D∆c, where J is the atomic flux (in units

of atoms/ps � mq, since we are in 2D), D is the diffusion coefficient (m2{s), c is the concentration
(atoms/m2 in 2D) and ∆ is the Laplace operator.

3. (1p.) Due to curvature effects, the size of the nanoparticle has a strong influence on its melting
point. In order to evaluate this effect, we can start by evaluating the difference in chemical potential
when moving a differential of particles, dn from a flat surface (r � 8) to the surface of a spherical
particle of radius r. This difference in chemical potential for a spherical particle will increase the
Gibbs free energy of the solid shifting the equilibrium temperature between the solid and the liquid.
Remember that this temperature can be obtained from the Gibbs free energy from the difference in
enthalpy and entropy between the liquid and the solid, ∆g � ∆h � T∆s, where ∆g is the difference
in Gibbs free energy per unit volume between the liquid and the solid and ∆h and ∆s are the
difference in enthalpy and entropy per unit volume between the liquid and the solid. In particular,
at the melting point of a bulk system, Tm, liquid and solid are in thermodynamic equilibrium and
∆g � ∆hm � Tm∆sm � 0, where ∆hm and ∆sm are, respectively, the melting enthalpy and entropy.

Evaluate the melting temperature shift of a spherical nanoparticle of radius r with
respect to the bulk melting temperature (r � 8). Consider that the system is not far away
from the equilibrium point between liquid and solid, so the difference in enthalpy and entropy between
the liquid and the solid can be assumed as constant, hence independent of temperature and equal to
the melting enthalpy and entropy, ∆hm and ∆sm. Express the result as a function of the
melting entropy per unit volume, the surface tension and the radius of the particle.

4. (1p.) In Nanotechnology, the most extended nanomaterials are thin films, where only one of
the 3 dimensions is reduced to the nanoscale. Thin films have already been used for more than half
a century in making electronic devices or optical coatings among other applications. When built thin
enough, thin films behave as confined 2D systems. They are fabricated by the deposition of material
atoms on a substrate. In this regard, molecular beam epitaxy (MBE) is a well established technique to
obtain thin films with the appropriate morphological characteristics. In this technique, a material is
evaporated and introduced into an ultra-high vacuum chamber. The flux of atoms/molecules arrives
to a substrate, where they get adhered allowing the growth of the thin film following the crystal
structure of the substrate. The flux of atoms that reach a surface (number of atoms/molecules hitting
per unit time and surface) can be calculated from F � 1

4nva where va is the average speed of the gas
molecules and n is the number of molecules per unit volume. Consider an ideal gas with a velocity
that follows the Maxwell-Boltzmann distribution:

ρpvq � 4π
� m

2πkT

	 3
2
v2 exp

�
�mv

2

2kt




where m is the mass of one molecule, k is the Boltzmann constant and T stands for thermodynamic
temperature. Calculate the flux of molecules that arrive to the substrate as a function of
pressure, temperature and mass of the molecules.
Hint:

³8
0 xn exp p�axq dx � n!

an�1 pn � 0, 1, 2, ...Repaq ¡ 0q
5. (1p.) When the gas molecules/atoms arrive to the substrate, some of them will lose part of

their energy and will start forming a solid on the substrate surface (heterogeneous nucleation). As in
exercise 1, the conditions must be energetically favorable for this phase transition (gas-solid) to take
place. Moreover, instead of having just one type of surface σsg (substrate-gas), two new surfaces are
emerging (σcg (crystal-gas) and σsc (substrate-crystal)), with their corresponding energetic cost. Let’s
consider that the new crystal has the shape of a spherical cap of height h, radius a, and radius of
curvature r. The surface of the cap forms an angle θ with the surface, as shown in the figure. In the
extreme of having a self-standing droplet, this angle would be π rad and we would recover the phase
transformation studied in exercise 1 (homogeneous nucleation). Let’s define ∆G as the difference in
energy between a system that consists only of gas and substrate and one where one single droplet of
radius of curvature r has formed on the surface. ∆G must take into account both the difference in
free energy between the two phases and the energetic cost of all the different interfaces. Prove that
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Figure 2: Left: Spherical cap of radius a, height h and radius of curvature r (Extracted from Wikipedia,
author: Jhmadden. Right: Drawing of a solid droplet with the shape of a spherical cap. θ denotes the
wetting angle. The arrows indicate the direction of the forces exerted by the different surface tensions.

∆Ghet (formation of the crystal on a surface) and ∆Ghom (self standing nucleus, θ � π, as
in exercise 1) are related following ∆Ghet � fpθq∆Ghom where fpθq � 2�3 cos θ�cos3 θ

4 . (Note: do
not consider the effect of configuration entropy).
Hint: the volume and top surface of the cap from the figure can be calculated as V � π

3 r
3p2�cos θqp1�

cos θq2 and A � 2πr2p1� cos θq
6. (1p.) Either if the film grows layer by layer or by the coalescence of the droplets, from a certain

moment, a continuous film has formed. Films of several nanometers thick are of common use in the
microelectronics industry. Therefore, let’s consider we are working with a semiconductor material,
where charge carriers have an effective mass m� and can be considered as nearly free. For layers of a
few nanometers, the film behaves as a 2D system from the perspective of charge carriers, which are
quasi-free in the plane of the film (xy) and are confined in an infinite potential well of width a (the
thickness per unit volume per unit energy of the film) in the z direction. Calculate the density
of states for electrons (number of electron states per unit volume per unit energy) as
function of film thickness and of the effective mass of the electrons.

7. (1p.) Without doping, a semiconductor is defined as intrinsic and has its Fermi energy right
in the middle of the gap (typical values for a band gap in a semiconductor are around 1 eV). Still,
at room temperature the conduction band will be populated with some electrons. Calculate how
many electrons per unit surface can be found in the conduction band as a function of
the effective mass of electrons (m�), the thickness of the film (a), the Fermi energy of
the material (EF ) and the temperature (T ) for the system described in exercise 6. You
will need to make approximations to carry out the calculation, justify all of them.(Hint:
Boltzmann constant, k � 8, 617 � 10�5eV {K)

8. (1p.) Doping semiconductors allows to have more charge carriers in the material. A way to
introduce a different type of atom in the crystalline structure of the film is by depositing a film of the
doping material on top of our semiconductor film. Since the diffusion coefficient, D, has an Arrhenius
dependence with temperature, a subsequent increase of temperature would promote the diffusion of
the doping atoms into the semiconductor layer. Use Fick’s laws to calculate the concentration
profile in the semiconductor as function of time and depth. For this calculation consider
a finite source of doping atoms located at the surface, copxq � Qδpxq at t � 0 where Q denotes
the released amount of atoms per unit cross-sectional area at t � 0. You can also consider the
semiconductor film is infinitely thick to simplify the calculation and thus limxÑ8 c � 0 for t   8.
D can be considered constant since the experiment is carried on at constant temperature. Hint: You
can try a function of the type cpx, tq � taF px2{tbq since limtÑ0

�
t�1{2 exp

��x2{t�� � ?
πδpxq

9. (1p.) A way to further confine the carriers in our 2D semiconductor is applying a strong
magnetic field, B, perpendicular to the plane of the sample. You can use the Landau Gauge
A � p0, Bx, 0q as the vector potential for a magnetic field applied in the z direction to
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calculate the energy of the fundamental state considering that electrons are confined in
the z direction in an infinite potential square well. Express the result as function of m�,
a (the thickness of the film), and B. (Obviously, other constants such as the Planck’s constant
or the charge of the electron can be present in the result).

10. (1p.) Let’s give some numbers to the previous exercise. The application of the magnetic field
gives raise to a quantification of the energy of the carriers, in what are called Landau energy levels. If
we go to a temperature close to 0 K and apply a magnetic field of 10 T perpendicular to
our film, the carrier with the highest energy will have an energy of 12Eo, where Eo � π2~2

2m�a2
,

with a � 10 nm. How many Landau levels will be filled under these conditions? Consider
spin degeneration. (~ � 1, 054 � 10�34J � s, m� � 0.067mo, mo � 9, 1 � 10�31kg).
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Solution
1. (1p.) We have to calculate in first place the difference in energy between the liquid, which has

been taken out of equilibrium, and the liquid in which a cluster has formed by a statistical fluctuation.
This difference in energy can written as:

∆G � 4

3
πr3∆g � 4πr2σ

The cluster is in equilibrium, so ∆g is negative. Since σ is always positive, ∆G will present a maximum
for a certain value of r. For smaller r, the growth of the cluster would mean an increase of ∆G, so
the cluster will shrink until disappearing. On the other hand, for clusters with larger r, it will be
energetically favourable for the cluster to grow. This critical r can be found from the derivative of
∆G:

rc � � 2σ

∆g

2. (1p.) Since we are in 2D and the particle is circular, it is convenient to work in polar coordinates.
We can rewrite Fick’s laws in the following way:

Jmatter � 2πrD
Bc
Br

Bc
Bt � D

1

r

B
Br

�
r
Bc
Br



where the derivatives in the polar angle are zero due to circular symmetry and the flux is calculated
as the amount of matter (atoms) that crosses the interface of a circular particle of radius r. Thus, the
initial flux from Fick’s law has been multiplied by the length of the circumference (2πr) and the minus
sign has been removed to have the number of atoms per unit time that arrive to the nanoparticle.

Considering stationary state, circular symmetry and that r must be different from zero, r BcBr � B
must be constant. This constant can be found by integrating and imposing the boundary conditions
from the exercise: c � cL for r equal to the actual radius of the particle and c � co for r � r � δ. In
this way, we find B � co�cL

ln
�
r�δ
r

	 . The flux of matter is, therefore:

Jmatter � 2πD
co � cL

ln
�
r�δ
r

�
To calculate the growth rate we can make an estimation of the number of atoms in the particle by
N � πr2

sat
. Considering that matter is preserved, the amount of atoms that will arrive to the particle

Jmatter must be equal to the variation of N as a function of time, Jmatter � dN
dt . From the derivative

of N we get dr{dt and finally:
dr

dt
� Dsatpco � cLq

r ln
�
r�δ
r

�
3.(1p.) The difference in chemical potential between a spherical particle of radius r and the bulk

can be estimated from the difference in free energy when moving a differential of atoms, dn, from a
flat to a spherical surface with radius of curvature r:

∆µ � µr � µ8 � σ
dA

dn

where µr and µ8 are the chemical potential of the equilibrium phase (the crystal) for a spherical drop
of radius r and for a crystal with no curvature, respectively. Since both systems are in equilibrium,
the only difference comes from building extra surface, dA, in the case of the spherical droplet with an
associated surface tension σ. dn will increase the volume of the droplet by dV � dn{Ω, where Ω is
the atomic volume. We can assume that this volume will get distributed homogeneously along all the
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surface, so dV � 4πr2dr. On the other hand, the variation of the area when increasing the radius a
dr can be written as dA{dr � 8πr. Using these relations we find that dA{dn � 2Ω{r for a spherical
particle. Therefore, the difference in chemical potential can be written as ∆µ � 2σΩ{r.

A spherical particle will have this extra energy term that depends on the size of the particle
through the radius of curvature. This extra energy shifts the equilibrium free energy of the solid, and
therefore, the crossover between the equilibrium lines of solid and liquid (in the Gibbs free energy
phase diagram) will occur at a different temperature, shifting the melting temperature of the system.
In a single component system, the chemical potential and the Gibbs free energy per unit volume,∆g,
can be related by ∆µ � Ω∆g. Then, from the previous calculation we get ∆g � 2σ{r. We can
calculate the new melting temperature, Tr from ∆g � ∆h� Tr∆s, where ∆h and ∆s are respectively
the enthalpy and entropy difference between the liquid and the solid per unit volume at Tr. In this
way, we can finally write

2σ

r
� ∆h� Tr∆s (1)

which will give us the new melting temperature, Tr for a particle of radius r.
According to the exercise, we are not far from equilibrium, so we can consider that both enthalpy

and entropy differences do not differ considerably from the ones at the equilibrium melting temper-
ature, Tm, i.e. when the radius of curvature is infinite (flat surface). So ∆h � ∆hm, ∆s � ∆sm
and ∆g � ∆hm � Tm∆sm � 0 defines the melting temperature of a system with an infinite radius of
curvature. Isolating Deltahm from the last expression, we get ∆hm � Tm∆sm. Using this expression
in equation 1 and rearranging the different terms, we finally get:

Tm � Tr � 2σ

r∆sm

4.(1p.) To calculate the flux, we first need the average speed of the gas molecules, va, which can
be obtained from the velocity distribution ρpvq:

va �
» 8
0
vρpvq dv �

» 8
0

4π
� m

2πkT

	3{2
v3 exp

�
�mv

2

2kT



dv

To simplify the integral we can write a � 4π
�

m
2πkT

�3{2 and b � m{2KT . In this way:

va � a

» 8
0
v3e�bv2 dv

We can apply the following substitution: u � v2, du � 2vdv

va � a

2

» 8
0
ue�bu du

Integrating, we get v � a
2b2

, so va �
b

8kT
πm

Once we have va, we need to obtain an expression for n. We can use the ideal gas law, written as
P � nkT , where n is the number of atoms per unit volume. According to the exercise, the flux could
be written as F � 1

4nva, so we can finally write

F �
c

P 2

8KTπm

5. We have to demonstrate that ∆Ghet � fpθq∆Ghom for a spherical cap with a radius of curvature
r and a wetting angle θ as indicated in the figure. We calculate ∆Ghet in the first place. Taking into
account the geometry of the problem and the considerations of exercise 1:

∆Ghet � Vcap∆g �Acapσcg �Aspσcs � σsgq
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where Vcap is the volume of the spherical cap, Acap is the surface of the cap, which corresponds to the
interface crystal-gas, and As is the contact surface of the cap with the substrate. These volumes and
areas can be written as a function of the radius of curvature and the wetting angle as:

Vcap � πr3

3
p2� 3 cos θ � cos3 θq

Acap � 2πr2p1� cos θq
As � πa2 � πr2p1� cos2 θq

From the surface tension drawing, if the system is in dynamic equilibrium, one can also see that
σcs � σcg cos θ � σsg, so σcs � σsg � �σcg cos θ.

We can rewrite now the ∆Ghet as

∆Ghet � πr3

3
p2� 3 cos θ � cos3 θq∆g � σcgp�πr2 cos θp1� cos2 θq � 2πr2p1� cos θqq

By rearranging the different terms, one can obtain:

∆Ghet � 1

4
p2� 3 cos θ � cos3 θq

�
4πr3

3
∆g � 4πr2σcg

�

which is precisely ∆Ghet � fpθq∆Ghom

6.(1p.) The density of states, gpEq can be obtained from the number of states per unit volume (or
surface, in 2D) up to a certain energy E, npEq, as gpEq � BnpEq

BE . To calculate the number of states
one can start working in the reciprocal space. Since we are in 2D and in the quasi-free electron model,
we can work in polar coordinates and calculate the number of states contained in a circle of radius k,
where k is the momentum.

Npkq � 2
πk2

p2πq2
S

where 2 accounts for the spin, and p2πq2
S is the area occupied by each k state. Therefore, the number

of k states per unit surface will be npkq � k2

2π . Introducing here the energy dispersion relation for
quasi-free electrons, E � ~2k2

2m� , one obtains npEq � m�E
π~2 . By deriving the number of states we get the

density of states for a 2D system gpEq � m�

π~2 .
However, the carriers only behave as free in the xy plane. In the z direction the carriers are

confined in an infinite square well potential. In this direction, we will have discrete energy levels.
Thus, the density of states we have just calculated is the one associated to each of the energy levels
in the z direction. Therefore, the final energy of states is

gpEq � m�

π~2
8̧

n�1

ΘpE � Enq

where ΘpE � Enq is the Heaviside step function and En are the discrete energy levels of the infinite
square well, En � n2π2~2

2m�a2
.

7.(1p.) Without doping, the Fermi energy, EF , is located at the middle of the gap. Thermal
energy, kT , will provide enough energy for some of the carriers to transit into the conduction band.
The total number of carriers per unit surface in the conduction band can be calculated by

n �
» 8
Ec

gpEqfFDpE,EF q dE

where Ec is the bottom of the conduction band, fFDpE,EF q is the Fermi-Dirac distribution function
and gpEq is the density of states. Considering that at room temperature kT � 25meV is much smaller
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than the distance between the Fermi energy and the bottom of the conduction band, the Fermi-
Dirac distribution function for energies above Ec can be approximated to the Maxwell-Boltzmann
distribution function

fFDpE,EF q � 1

e
E�EF

kT � 1
� e�

E�EF
kT if E � EF

kT
¡¡ 1

Thus, the number of states above Ec can be written as

n �
» 8
Ec

gpEq exp
�
�E � EF

kT



dE

Since we have discrete energy levels in the z direction, the carriers won’t be allowed to have energies
starting from Ec but from E1, the first energy level of the infinite square well. Moreover, we have to
calculate the amount of carriers for each of these discrete levels. So, for level i,

ni �
» 8
Ei

gpEq exp
�
�E � EF

kT



dE

with gpEq � m�

π~2 .
This integral yields

ni � m�kT
π~2

e�
Ei�EF

kT

The total number of carriers in the conduction band will be, therefore

n �
8̧

i�1

m�kT
π~2

e�
Ei�EF

kT

with Ei � i2π2~2
2m�a2

.
8.(1p.) This is a 1D problem, since the net flux will be towards the inside of the film. Therefore,

to solve this problem we will use Fick’s second law in one dimension:

Bc
Bt � D

B2c
Bx2

where x � 0 will be located at the surface of the film and x will increase with depth. For simplicity,
it is better to solve the differential equation considering an infinite domain, that goes from �8 to 8.
So we will consider an initial load of atoms of 2Q instead of Q that will diffuse towards �x and �x.

The boundary conditions are as follows:

c � copxq � 2Qδpxq at t � 0

lim
xÑ8 c � lim

xÑ�8 c � 0 for t   8

where Q is the released amount of atoms per unit cross-sectional area and δpxq is the Dirac delta
function.

The solution must be symmetric in the �x and �x directions and must have a peak shape with
constant area (equal to the total amount of released atoms) but with a maximum that decreases with
time. Using the function suggested in the exercise:

cpx, tq � t�αF pφq with φ � x2

BDt

where α ¡ 0 is the size factor and F pφq is the shape factor, which will provide a similar peak profile @t.
In φ, B is a constant and D is the diffusion coefficient, which makes φ dimensionless and contributes
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by spreading the peak faster if D is higher. The fact of having x2 and t is an educated guess, based
on the second and first derivatives for x and t, respectively.

In this way, we can calculate the partial derivatives:

Bc
Bt � �αt�α�1F pφq � t�α�1φ

dF pφq
dφ

B2c
Bx2 �

2t�α�1

BD

dF

dφ
� t�α�1 4

BD
φ
d2F

dφ2

Applying them to Fick’s second law we finally get:

φ
d

dφ

�
F � dF

dφ



� 1

2

�
dF

dφ
� 2αF



� 0

where we can take the constant B � 4 for convenience. Since α is still free, we can take it as 1{2 and
the solution will be of the type:

F � dF

dφ
� 0

which has the solution F pφq � A exp p�φq.
Therefore, the concentration can be written as

cpx, tq � At�1{2 exp
�
� x2

4Dt




To calculate A, we must go back to the original boundary conditions and impose that the total amount
of atoms must be equal to 2Q:» 8

�8
cpx, tq dx �

» 8
�8

co dx �
» 8
�8

2Qδpxq dx � 2Q

With this condition we get A � 2Q?
4πD

.

Going back to a problem that goes from x � 0 to 8, the final solution is:

cpx, tq � Q?
4πDt

exp

��x2
4Dt




9.(1p.) To find the energy after confining with a magnetic field we need to introduce the magnetic
field as a potential in Schrödinger’s equation. We can do that by using the Landau Gauge:

ÝÑ
A � p0, Bx, 0q where ÝÑ

B � ∇�ÝÑA

We can now introduce in Schrödinger’s equation this vector potential and the confinement potential
in the z direction: �

1

2m� pp̂� q
ÝÑ
A q2 � V pzq

�
Ψpx, y, zq � ExyzΨpx, y, zq

where p̂ � �i~∇ is the canonical momentum. By using the Landau Gauge, we get��~2
2m�∇

2 � ie~Bx
m�

B
By �

peBxq2
2m� � V pzq

�
Ψpx, y, zq � ExyzΨpx, y, zq

since movement in the z direction is not affected by the field, we can consider

Ψpx, y, zq � ψpx, yqupzq and, therefore, Exyz � Exy � Ez
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In the z direction we have the solutions for upzq and Ez of the infinite square well. In the xy plane,
we have �

� ~2

2m�
B2
Bx2 �

~2

2m�
B2
By2 �

ie~Bx
m�

B
By �

peBxq2
2m�

�
ψpx, yq � Exyψpx, yq

Since the vector potential does not depend on y, the solution is of the type ψpx, yq � φpxqeiky and
Schrödinger’s equation can be written as a function of x only:�

� ~2

2m�
B2
Bx2 �

1

2
m�ω2

c

�
x� ~k

eB


2
�
φpxq � Exyφpxq

with ωc � eB
m� . This is the equation of a harmonic oscillator, where φpxq are the Hermite polynomials

and the energy takes discrete values, corresponding to the Landau energy levels

Exy � ~ωc

�
n� 1

2



with n � 1, 2, 3...

This is the energy associated to the xy dimension, so we still have to add the one corresponding to
the confinement in the z direction. Since in the z direction we have an infinite square well, the energy
can written as

E � Exy � Ez � ~ωc

�
n� 1

2



� i2π2~2

2m�a2
with n � 1, 2, 3... and i � 1, 2, 3...

The lowest energy state possible would have n � i � 1.
10.(1p.) First of all we need to analyze how the different discrete energy levels will be filled. We

will start filling the first energy level of the infinite square quantum well, which has an energy of Eo

according to the exercise. Then, we start filling the different Landau energy levels. For each ~ωc in
energy, we will fill another level. Therefore, for the first level of the infinite well, i � 1, we will be able
to fill

nLLpi � 1q � 12Eo � Eo

~ωc

Following the same reasoning, for the next levels of the square well we have:

nLLpi � 2q � 12Eo � 4Eo

~ωc

nLLpi � 3q � 12Eo � 9Eo

~ωc

The next level, i � 4, can not be filled, since the energy of the level is lower than the one of the
electron with the highest energy. In this calculation we are considering that each Landau level holds
both spin up and spin down. Substituting the values provided by the exercise:

nLLpi � 1q � 35, 71 nLLpi � 2q � 25, 97 nLLpi � 3q � 9, 74
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The gravity of neutron waves
Juan León

Quantum information and foundations group

Instituto de Física Fundamental, CSIC

The perfect-silicon-crystal interferometer was first developed for x rays by Bonse and Hart in 1965
(1). Ten years later, Colella, Overhauser and Werner (2) used this device to make the first obser-
vation of the gravitationally-induced quantum interference of neutron waves (questions d. and e.).
The inertial effect on the neutron phase due to the rotation of the Earth has also been detected by
Werner, Staudenmann and Colella (questions g. and h.) A delightful account of how the COW ex-
periment happened can be found in (4). A very readable description of these early stages of neutron
interferometry can be found in (5).
(1) U. Bonse and M. Hart, Appl. Phys. Lett. 69 155 (1965).
(2) R. Colella, A.W. Overhauser and S.A. Werner, Phys. Rev. Lett. 34 (1975) (3) S.A. Werner, J.-L.
Staudenmann and R. Colella, Phys. Rev. Lett. 42 (1979) 1103.
(4) R. Colella and A.W. Overhauser, Physica B 385–386 (2006) 1408–1410. Available online at
www.sciencedirect.com
(5) S. A. Werner, Physics Today 33, 12, 24 (1980).



In this problem we will consider thermal neutrons with wavelengths of the order of the spacing of
crystalline lattices (a fewÅ), propagating inside devices with sizes of the order of a few cm. These
wavelengths and sizes, are known in the experiment with three significant figures. For simplicity,
unless otherwise stated we will consider all waves here as monochromatic plane waves.

A horizontal beam of neutrons with wavelength λ is prepared. To see if the error incurred by
treating its path as a straightline path of free particles is acceptable;

a. (0.5 points) Determine pδz{xq and δθ, where δz is the vertical deflection and δθ
the angle that the beam direction forms with the horizontal after having traveled a
horizontal distance x. Determine the errors pδp{pq and pδλ{λq induced in the momentum
and wavelength of the neutrons under these conditions.

Give the answers in terms of the wavelength, λ[Å] in Amstrongs, the distance, x[cm]
in cm, and the numerical coefficients resulting from your calculation. The relevant pa-
rameters are given in the table with four significant digits.

Planck constant h 6.626 � 10�34 J Hz�1

~ 1.054 � 10�34 J s
acceleration of gravity g 9.806 m s�2

neutron mass m 1.674 � 10�27 kg
neutron velocity v � h{pmλq 3956{λrÅs m s�1

The small deviations from the horizontal have a counterpoint in the wave functions; the Schrödinger
equation is

pH0 � V qψ � Eψ, with H0ψ0 � Eψ0, ψ0 � eik0�r,

H0 � p�~2{2mq∇2 is the free Hamiltonian and V � mgz the gravitational potential.
b.1 (0.7 points) Obtain an approximate solution to the complete problem of the form

ψ � ψ0χ,E � E0, with ψ0 � eik0�r, and χ such that �∇2χ ! k20χ can be neglected. Take
k0 � kêx horizontal.

b.2 (0.3 points) Calculate the momentum ~k obtained from ψ and compare it with the
classical value.

Sketch of the interferometer used in the COW
experiment with two wide grooves between
three plates. The incident beam directed
along AC was kept horizontal throughout the
experiment.

The first observation of the phase shift of a de
Broglie neutron wave induced by Earth’s grav-
ity was made in an experiment conducted at the
University of Michigan in 1975 by Colella, Over-
hauser, and Werner. In the experiment, a colli-
mated monochromatic beam of neutrons of wave-
length λ � 1.445Å is incident under Bragg con-
ditions in a perfect silicon monocristal with two
wide grooves carved like the one shown in the fig-
ure. During the experiment the whole setup was
rotated around AC that was kept horizontal.

The incident beam at A is split by ’Bragg reflection’ in the first Si crystal plate1 producing
transmitted and reflected beams in the incident and refected directions which are coherent. These are
subsequently Bragg reflected in the middle crystal plate at points B and C. Two of the resulting beams

1The experiment uses Bragg reflection in the (220) lattice planes of the Si crystal. The Bragg angle is θ � 22.1�, the
distance between plates d � 3.5 cm. Henceforth we neglect the thickness of the plates.
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are directed towards point D in the third crystal plate, where they mix and interfere. The outgoing
beams entering the two He gas-filled proportional detectors C2 and C3 are linear combinations of the
waves traversing paths ABD and ACD.

The transmitted and reflected waves in each plate get complex transmission and reflection am-
plitudes, at � t ain, ar � r ain, with t � cosφ and r � i sinφ, where the angle φ is real. Take
the incoming wave at A to be ψ0 � aine

ik0�r with ain � 1 in arbitrary units, and set the origin of
coordinates at point A. Label the paths ACD and ABD with the subscripts I and II respectively.
Call L the side of the parallelogram ABCD. The parallelogram will be kept horizontal, ϕ � 0, in
questions c.n) below.

c.1 (0.25 points) Write the waves at the input of the final plate, ψI inD ψII inD.
c.2 (0.25 points) Write out the waves ψ2, ψ3 leaving the final plate towards the

detectors C2 and C3.
c.3 (0.5 points) Give the intensities I2 and I3 measured in the detectors in terms of

the transmission and reflection coefficients T and R.

Tilted configuration by rotating the
setup by an angle ϕ around the
horizontal input direction AC

The basic idea of the COW experiment is to tilt the interfer-
ometer about the incident beam line AC while maintaining the
Bragg condition, causing a gravitationally-induced phase shift
of the neutron deBroglie waves. So, the full parallelogram is
in a tilted plane and the path BD is at a different height than
AC. Consider the case where the interferometer is rotated by
an angle ϕ around AC.

d. (1 point) Repeat c.1,2, showing the emergence at
D of a phase shift δ when the interferometer is tilted
about the horizontal beam line AC by an angle ϕ. Cal-
culate δ. (Avoid calculating unnecesary integrals)

e. (1 point) Give I2 and I3 in terms of T and R. Determine the number of fringes that
will occur during a 180� rotation of the interferometer.

During the experiment the interferometer was at rest in the laboratory frame and therefore rotating
with the angular velocity of the Earth ΩΩΩ.

Setup for question h. The interfer-
ometer rotates around the vertical
direction AC.

f. (0.5 points) Write the momentum of the neutrons
including the term due to the rotation of the reference
frame of the interferometer.
g. (1 point) Show that δΩ can be written for any given
orientation of the parallelogram using a surface inte-
gral S, yielding

δΩ �
2m

~
ΩΩΩ � S.

Indicate the direction of the vector S and give its value
in terms of d and θ.
In an experiment, carried out in Columbia (Missouri, USA) at
latitude Φ � 38.63� with an interferometer of area S � 8.864
cm2 the incident beam was kept vertical.
h. (1 point) Determine the number of fringes regis-
tered in the detectors when the interferometer was
initially set in the local meridian plane and was ro-
tated 12� about the vertical direction AC from there.
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Finally, you are asked to analyze how it is possible for waves incident on a crystal at a certain
angle θB to emerge on the other side partly transmitted and partly reflected forming precisely an angle
2θB. The asymptotic form of the wave function at large distance r from the scattering center can be
written in the Born approximation as 2

ψkprq � eik0�r � fp∆kq
eikr

r
, with fp∆kq � �

m

2π~2

»
d3r1V pr1qe�i∆k�r1 ,

where |k| � |k0| � k. The goal here is to check if the scattering amplitude fp∆kq is only appreciable
for momentum transfers ∆k � k� k0, that fulfill the Bragg condition.

The atoms of the periodic crystal are located at rn � n1a1�n2a2�n2a2 with the ni integers. The
potential is periodic V prn � rq � V prq.

i. (1 point) Show that the scattering amplitude can be factored into an integral over
the unit cell and a sum of phase factors. Use the notation r � rn�x where x is a position
within the unit lattice.

j. (1 point) Use the Poisson summation formula

�8̧

n��8

eixan �
2π

|a|

�8̧

m��8

δpx�
2π

a
mq

to show that in the limit of infinite number of scatterers ni P p�8,�8q the scattering
amplitude would be strictly zero for momentum transfers ∆k that do not belong to the
reciprocal lattice,

k. (1 point) Use the above result to obtain the Bragg reflection formula.

2This approximation underestimates the dynamics of the neutrons within the crystal as well as the finite size of the
crystal.
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Solution
In this problem we will consider thermal neutrons with wavelengths of the order of the spacing of

crystalline lattices (a fewÅ), propagating inside devices with sizes of the order of a few cm. These
wavelengths and sizes, are known in the experiment with three significant figures. For simplicity,
unless otherwise stated we will consider all waves here as monochromatic plane waves.

A horizontal beam of neutrons with wavelength λ is prepared. To check if the error incurred by
treating its path as a straightline path of free particles is acceptable;

a. (0.5 points) Determine pδz{xq and δθ, where δz is the vertical deflection and δθ
the angle that the beam direction forms with the horizontal after having traveled a
horizontal distance x. Determine the errors pδp{pq and pδλ{λq induced in the momentum
and wavelength of the neutrons under these conditions.

Give the answers in terms of the wavelength, λ[Å] in Amstrongs, the distance, x[cm]
in cm, and the numerical coefficients resulting from your calculation. The relevant pa-
rameters are given in the table with four significant digits.

Parabolic motion kinematics gives x � vt, z � �1
2gt

2 ñ δz � 1
2g
�
x
v

�2
. Using that v � h{pmλq,

δz

x
�
g x

2v2
�
m2λ2g

2h2
x � 0.3133� 10�8 λrÅs2 xrcms; δθ � vz{vx � 2δz{x � 0.6266 � 10�8rad

From energy conservation, p12 � p2 � 2m2gpz � z1q ñ δp � m2g
p δz. Thus,

δp

p
�
δλ

λ
�

g

v2

�
δz

x



x � 0.1963� 10�16λrÅs4 xrcms2

These values indicate that the approximation of straight trajectories and constant λ or p can be
used.

Planck constant h 6.626 � 10�34 J Hz�1

~ 1.054 � 10�34 J s
acceleration of gravity g 9.806 m s�2

neutron mass m 1.674 � 10�27 kg
neutron velocity v � h{pmλq 3956{λrÅs m s�1

The small deviations from the horizontal have a counterpoint in the wave functions; the Schrödinger
equation is

pH0 � V qψ � Eψ, with H0ψ0 � Eψ0, ψ0 � eik0�r,

H0 � p�~2{2mq∇2 is the free Hamiltonian and V � mgz the gravitational potential.
b.1 (0.7 points) Obtain an approximate solution to the complete problem of the form

ψ � ψ0χ,E � E0, with ψ0 � eik0�r, and χ such that �∇2χ ! k20χ can be neglected. Take
k0 � kêx horizontal.

pH0 � V qψ0χ � Eψ0χñ i
~2

m
k0 �∇χ� i

~2

2m
∇2χ � V χ ÝÑ k0 �∇χ � �i

m

~2
V χ.

With k0 � kêx, χ � e�i m
~2k

³x
0 dxV . Note that due to the scalar product, the integral is along the x

axis. Substituting V � mgz gives χ � e�im
2g

~2k xz. Then,

ψ � eipkx�
m2g

~2k xzq

b.2 (0.3 points) Calculate the momentum ~k obtained from ψ and compare it with the
classical value. According to question a. pclassicpxq � p êx �

m2g
p x êz; question b.1 gives

ppxq � �i~p∇ψq{ψ � pp�
m4g2

2p3
x2q êx �

m2g

p
x êz � pclassicpxq �Opg2q
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Sketch of the interferometer used in the COW
experiment with two wide grooves between
three plates. The incident beam directed
along AC was kept horizontal throughout the
experiment.

The first observation of the phase shift of a de
Broglie neutron wave induced by Earth’s grav-
ity was made in an experiment conducted at the
University of Michigan in 1975 by Colella, Over-
hauser, and Werner. In the experiment, a colli-
mated monochromatic beam of neutrons of wave-
length λ � 1.445Å is incident under Bragg con-
ditions in a perfect silicon monocristal with two
wide grooves carved like the one shown in Figure 2.
During the experiment the whole setup was rotated
around AC that was kept horizontal.

The instrument is made from a large and highly perfect single-crystal block. By cutting two wide
grooves in the block, different parts of the same crystal can consecutively serve as a beam splitter, as
two transmission mirrors, and as an analyzer crystal. In this way the very important spatial lattice
coherence between all three plates can easily be maintained over long periods of time.

The incident beam at A is split by Bragg reflection in the first Si crystal plate3 producing trans-
mitted and reflected beams which are coherent. These are subsequently Bragg reflected in the middle
crystal plate at points B and C. Two of the resulting beams are directed towards point D in the
third crystal plate, where they mix and interfere. The outgoing beams entering the two He gas-filled
proportional detectors C2 and C3 are linear combinations of the waves traversing paths ABD and
ACD.

The transmitted and reflected waves in each plate get complex amplitudes, at � t ain, ar � r ain,
with t � cosφ and r � i sinφ, where the angle φ is real. Take the incoming wave at A to be4

ψ0 � aine
ik0�r with ain � 1 in arbitrary units, and set the origin of coordinates at point A. Label the

paths ACD and ABD with the subscripts I and II respectively. Call L the side of the parallelogram
ABCD. The parallelogram will be kept horizontal, ϕ � 0, in questions c.1-3 below.

c.1 (0.25 points) Write the waves at the input of the final plate, ψI inD ψII inD.
The wave along the path I has been transmitted in the first plate and then reflected towards D in

the second; the wave along path II reflected twice. Thus,

ψI inD � r t ei2kL, ψII inD � r2 ei2kL,

where we neglected the small deflections and shifts in momentum along the paths worked out before,
and used that the transmited k0 and reflected kr momenta have the same magnitude k.

c.2 (0.25 points) Write out the waves ψ2, ψ3 leaving the final plate towards the
detectors C2 and C3.

The wave ψ2 is composed of parts coming from paths I and II that after arriving at D are trans-
mitted and reflected towards detector C2. Thus,

ψ2prq �
�
t ψI inD � r ψII inD

�
eikr�pr�rDq � rpt2 � r2q eip2kL�kr�pr�rDqq

Analogously, for the wave towards C3

ψ3prq �
�
r ψI inD � t ψII inD

�
eik0�pr�rDq � 2t r2 eip2kL�k0�pr�rDqq

3The experiment uses Bragg reflection in the (220) lattice planes of the Si crystal. The Bragg angle is θ � 22.1�, the
distance between plates d � 3.5 cm. Henceforth we neglect the thickness of the plates.

4From now on, use plane waves for the neutron wave function if you think it is reasonable.
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Note that the transmitted wave vector is the incident one k0 � kêin, while the reflected kr �
kêrmakes an angle 2θ with k0. Detectors C3 and C2 are conveniently located in the path of these
waves.

c.3 (0.5 points) Give the intensities I2 and I3 measured in the detectors in terms of
the transmission and reflection coefficients T and R.

With t2 � |t|2 � T and l2 � �|l|2 � �R, and T �R � 1, after some algebra

I2 � |ψ2|
2 � R� 4TR2, I3 � |ψ3|

2 � 4TR2

Notice the destructive interference that occurs for a hypothetical 50/50 beam splitter, φ � π{2,
ψ2 � 0 � I2 and I3 � 1.

The basic idea of the COW experiment is to tilt the interferometer about the incident beam line AC
while maintaining the Bragg condition, causing a gravitationally-induced phase shift of the neutron
deBroglie waves. So, the full parallelogram is in a tilted plane and the path BD is at a different height
than AC. Consider the case where the interferometer is rotated by an angle ϕ around AC.

Tilted configuration by rotating the
setup by an angle ϕ around the
horizontal input direction AC

The difference in the phases accumulated along
path I and path II can be modified by varying
the potential energy of the neutron along either of
these two paths. These phase differences produce
intensity swapping back and forth between the two
detectors. Consider the case where the interferom-
eter is rotated by and angle ϕ around AC.

d. (1 point) Repeata c.1-3, showing the
emergence at D of a gravity-induced phase
shift δ when the interferometer is tilted
about the horizontal beam line AC by an an-
gle ϕ. Calculateδ.

aAvoid calculating unnecesary integrals

We now have to consider the effect of gravity on the phases accumulated along paths I and II.

ψI inD � treipkL�ΦCDq, ψII inD � r2eipΦAB�kHLq

Here, k and kH are the wave numbers along the lower and upper paths AC and BD respectively, and
ΦAB � ΦCD the phases accumulated along AB, CD (that we refrain from explicitly calculate). By
energy conservation

pH � p�
m2gH

p
, ñ kH � k � 2π

m2gH

h2
λ

where H is the height of BD over AC and λ the wavelength of the incident beam. Recalling that
ΦAB � ΦCDwe can write:

ψ2prDq � t2reipkL�ΦCDq � r3eipΦAB�kHLq � reipkL�ΦCDq
!
t2 � r2eiδ

)
ψ3prDq � tr2eipkL�ΦCDq � r2teipΦAB�kHLq � tr2eipkL�ΦCDq

!
1� eiδ

)
where

δ � pkH � kqL � �2π
m2gHL

h2
λ � �4πλ

m2gd2

h2
tan θ sinϕ

is the difference of phases accumulated along the horizontal paths BD and AC.
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The intensities I2 and I3 measured in the detectors can be written in the form:

I2 � A�Bp1� cos δq, I3 � Cp1� cos δq.

e. (1 point) Give A,B, and C in terms of T and R. Determine the number of fringes that
will occur during a 180� rotation of the interferometer.

I2 � |ψ2|
2 � R� 2TR2p1� cos δq; , I3 � |ψ3|

2 � 2TR2p1� cos δq

Putting in the values of m, g, ~ and the parameters used in the COW experiment λ � 1.445Å, θ �
22.1�, d � 3.5 cm gives5

δ � 56.6 sinϕ

The number of fringes during a rotation of 180� is

∆N180 �
δp90�q � δp�90�q

2π
� 18

During the experiment the interferometer was at rest in the laboratory frame and therefore rotating
with the angular velocity of the Earth ΩΩΩ.

f. (0.5 points) Write the momentum of the neutrons including the term due to the
rotation of the reference frame of the interferometer.

Neutrons are rotating with respect to the center of the Earth’s, therefore,

p � mv �m ΩΩΩ� pr�Rq,

where r and v are the neutron’s position and velocity in the rotating frame of the interferometer, and
R is the position of A with respect to the center of the Earth, which is independent of the neutron’s
instantaneous position.

The aditional term causes a phase shift δΩ to be added to δ calculated before.
g. (0.5 points) Show that δΩ can be written for any given orientation of the parallel-

ogram using a surface integral S, yielding

δΩ �
2m

~
ΩΩΩ � S.

Indicate the direction of the vector S and give its value in terms of d and θ.
The additional momentum pΩ � m ΩΩΩ � pr � Rq generates the accumulation of different phases

along paths I and II. This produces an additional phase shift:

δΩ � ΦACD � ΦABD �
1

~

»
ACD

pΩ � dr�
1

~

»
ABD

pΩ � dr �
1

~

¾
ACDBA

pΩ � dr

Now, using pa� bq � c � a � pb� cq and
¶
R� dr � R�

¶
dr � 0, we get

δΩ �
m

~

¾
ACDBA

pΩΩΩ� ppr�Rqq � dr �
m

~
ΩΩΩ �

¾
ACDBA

r� dr �
2m

~
Ω � S.

The area vector ~S is orthogonal to the parallelogram ABDC, its direcction given by the corkscrew
rule and its value is the parallelogram area S � 2d2 tan θ.

∆NΩ,12� �
δΩpα � 12�q � δΩpα � 0�q

2π
�

4m

h
ΩS cosΦ sinp12�q

5There is a small discrepancy with the theoretical value given in the experiment since here we are neglecting the plate
thickness.

Question 4. The gravity of neutron waves Page 8



Setup for question h. The interfer-
ometer rotates around the vertical
direction AC.

In an experiment, carried out in Columbia (Missouri, USA) at
latitude Φ � 38.63� with an interferometer of area S � 8.864
cm2 the incident beam was kept vertical.

h. (1 point) Determine the number of fringes regis-
tered in the detectors when the interferometer was
initially set in the local meridian plane and was ro-
tated 12� about the vertical direction AC from there.

The phase shift δ due to the gravitational field is
independent of the orientation of the interferom-
eter since it is kept in a vertical plane. In this
configuration the vector S is orthogonal to the lo-
cal vertical direction. In the coordinate system of
the figure where yz is the local meridian plane,
S � Spcosα,� sinα, 0q where α is the angle that
S makes with the East-West direction, and ΩΩΩ �
Ωp0, cosΦ, sinΦq. Thus, ΩΩΩ � S � �ΩS cosΦ sinα,
and

Numerically, 2m
~ ΩS � 117.2 deg, cosΦ � cos 38.63� � 0.7812 ñ ∆NΩ,12� � 3.03, i. e., three

fringes.
Finally, you are asked to analyze how it is possible for waves incident on a crystal at a certain angle

θB to emerge on the other side partly transmitted and partly reflected forming precisely an angle 2θB.
Here we will study this phenomenon for neutron waves. The asymptotic form of the wave function at
large distance r from the scattering center can be written in the Born approximation6 as

ψkprq � eik0�r � fp∆kq
eikr

r
, where fp∆kq � �

m

2π~2

»
d3r1V pr1qe�i∆k�r1 ,

where |k| � |k0| � k. The goal here is to check if the sacttering amplitude fp∆kq is only appreciable
for momentum transfers ∆k � k� k0, that fulfill the Bragg condition.

The atoms of the periodic crystal are located at rn � n1a1�n2a2�n2a2 with the ni integers. The
potential is periodic V prn � rq � V prq and, considering only the short range interactions of neutrons
with the atomic nuclei of the crystal, it can be written as V prq �

°
n V δpr� rnq.

i. (1 point) Show that the scattering amplitude can be factored into an integral over
the unit cell and a sum of phase factors. Use the notation r � rn�x where x is a position
within the unit lattice.

6This approximation underestimates the dynamics of the neutrons within the crystal as well as the finite size of the
crystal.
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fp∆kq � �
m

2π~2

»
d3rV prqe�i∆k�r � �

m

2π~2
¸
n

»
unit cell

d3xV prn � xq e�i∆k�prn�xq

�

�¸
n

ei∆k�rn

����� m

2π~2

»
unit cell

d3xV pxq e�i∆k�x

�
�

Where we first decomposed the integral into a sum of integrals over the cells and then used that
V prn � xq � V pxq. The sum

°
n is a shorthand notation for

°
pn1,n2,n3q

.
j. (1 point) Use the Poisson summation formula

�8̧

n��8

eixan �
2π

|a|

�8̧

m��8

δpx�
2π

a
mq

to show that in the limit of infinite number of scatterers ni P p�8,�8q the scattering
amplitude would be strictly zero for momentum transfers ∆k that do not belong to the
reciprocal lattice,

∆k � rn �
¸
n

∆ki ai ni, where ∆ki � ∆k � âi.

Thus, ¸
ni

ei∆k�aini �
2π

|ai|

�8̧

m��8

δpki �
2π

ai
mq

Collecting the results for the three lattice vectors,�¸
n

ei∆k�rn

�
�

3¹
i�1

�¸
ni

ei∆k�aini

�
�

2π3

v

�8̧

m��8

δp∆k�Kmq,

where Km, m � pm1,m2,m3q is a vector of the reciprocal lattice and v the volume of the unit cell.
k. (1 point) Use the above result to obtain the Bragg reflection formula.
We have k� k0 � K ñ 2π

λ pk̂� k̂0q � K, also k̂ � K̂ � sin θ � �k̂0 � K̂, then

2π

λ
K̂ � pk̂� k̂0q � K̂ �K ñ

2π

λ
2 sin θ � |K| Ñ 2 d sin θB � n λ.

For simplicity, we wrote in the last term d � 2π{|G| where G is reciprocal lattice vector which
corresponds to the family of lattice planes involved in the reflection. The factor n comes from simply
considering K � nG .
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