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1 Review of Basic Notions and Definitions in

Probability Theory

This chapter consists of a short survey of the basic tools in Probability theory
used throughout the course. Those readers wishing to have a deeper insight
on the notions and results quoted here are referred to [3], [9], [12]. We do
not present here any result on convergence of random variables. There are
squeezed in other chapters when they are needed.

1.1 Probability Spaces

The nature of random experiences is such that one cannot predict exactly
their result. The main futures of this type of phenomena are captured by a
mathematical object called probability space. It consists of a triple (Ω,F , P )
where

(a) Ω is the set of possible outcomes of the experience. Is is termed the
sample space.

(b) F is a subset of P(Ω), the set of all subsets of Ω, with σ-field structure,
that is,

1. Ω ∈ F ,

2. If A ∈ F then also Ac ∈ F ,

3. F is closed under countable union. That means, if (An, n ≥ 1) is
a sequence of sets in F , then ∪n≥1An ∈ F .

F is called the set of events.

(c) P : Ω → [0, 1] satisfies the properties:

1. P (Ω) = 1,

2. for any sequence (An, n ≥ 1) ⊂ F of disjoint sets,

P (∪n≥1An) =
∑
n≥1

P (An).

This property is called σ-additivity.
The mapping P is called the probability. It tell us how likely each
event A does occur.

The triple (Ω,F , P ) is a particular case of a finite measure space with total
mass equal to one.
The following properties of P follow from the above axioms.
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(i) P (∅) = 0,

(ii) additivity If (An, n ∈ {1, · · · , m}) ⊂ F is a finite family of disjoint
events, then

P (∪m
n=1An) =

m∑
n=1

P (An),

(iii) P (Ac) = 1− P (A),

(iv) monotony If A ⊂ B, then P (A) ≤ P (B),

(v) subadditivity If (An, n ∈ {1, · · · , m}) ⊂ F is a finite family of events,
then

P (∪m
n=1An) ≤

m∑
n=1

P (An),

(vi) If (An, n ≥ 1) is an increasing sequence of events and A = ∪n≥1An,

lim
n→∞

P (An) = P (A),

(vii) If (An, n ≥ 1) is a decreasing sequence of events and A = ∩n≥1An,

lim
n→∞

P (An) = P (A),

Example 1.1 Tossing two coins simultaneously once.

The sample space is

Ω = {H1H2, H1T2, T1H2, T1T1},

where Hi (respectively, Ti), denotes outcome head (respectively, tail) of coin
i. We consider as possible events any subset of Ω, that is F = P(Ω).
We give probability 1

4
to any outcome and then P (A) = 1

4
card(A).

In this example, Ω is a finite set. Therefore P(Ω) is finite as well. It is easy
to check that for any finite subset of P(Ω), the structure of σ–field is given
equivalently by the properties

1. Ω ∈ F ,

2. If A ∈ F then also Ac ∈ F ,

3. F is closed under finite unions. That means, if (An, n = 1, . . . ,m) is a
finite family of sets in F , then ∪m

n=1An ∈ F .
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In this case, we say that F is a field. Moreover, the σ-additivity is equivalent
to additivity.

For finite sample spaces, there is a standard way to define a probability, as
follows. Let

Ω = {ω1, . . . , ωr}.
Consider positive real numbers p1, . . . , pr such that

∑r
i=1 pr = 1. Then, for

any A ⊂ Ω, define
P (A) =

∑
i:ωi∈A

pi.

Notice that P is well defined on every element of P(Ω) and satisfies the
axioms of a probability (see (c) before). The particular choice pi = 1

r
, for

any i = 1, . . . , r, leads to the formula

P (A) =
card A

card Ω
,

which is the classical definition of probability given by Laplace about 200
years ago.
This model is the finite and uniform probability space. The previous Example
1.1 belongs to this class of models. Notice that, a similar idea for associating
uniform probability to an infinite sample path does not work.

1.2 Conditional Probability and Independence

Let B ∈ F be an event of strictly positive probability. The conditional
probability given B is the mapping P (·/B) : F → [0, 1] defined by

P (A/B) =
P (A ∩B)

P (B)
.

It is easy to check that P (·/B) satisfies the axioms of a probability. Actually
(Ω,F , P (·/B)) is the probability space obtained by modification of the initial
one, after having incorporated the new information provided by B.
The next statements provide useful formulas for computations.

(A) If A1, · · · , An ∈ F and if P (A1 ∩ · · · ∩ An−1) > 0, then

P (A1∩· · ·∩An) = P (A1)P (A2/A1)P (A3/A1∩A2) · · ·P (An/A1∩· · ·∩An−1).

(B) If (An, n ≥ 1) ⊂ F is a countable partition of Ω, and A ∈ F , then

P (A) =
∑
n≥1

P (A ∩ An) =
∑
n≥1

P (A/An)P (An).
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Definition 1.1 Events of a family (Ai, i ∈ I) are said to be independent if
for each finite subset (i1, . . . , ik) ⊂ I,

P (Ai1 ∩ · · · ∩ Aik) = P (Ai1) · · ·P (Aik).

In particular, two events A, B are independent if P (A ∩B) = P (A)P (B).
Noice that if A, B are independent, then P (A/B) = P (A). That means,
knowing B does not modify the probability of the event A.

A notion related with independence is the following:

Definition 1.2 The events A, B are conditionally independent given an
event C if

P (A ∩B/C) = P (A/C)P (B/C).

As we shall see in forthcoming chapters, this notion is crucial in the formu-
lation of the Markov property.

1.3 Random Variables

It is usual to associate numerical values to the outcomes of random phe-
nomena. Formally, this can be described by a mapping X : Ω → R. The
properties of X should be such that the original structure of the probability
space is transferred to a numerical probability space.
More precisely, let B be the Borel σ–field on R that is, the minimal σ–field
containing the open sets of R with respect to the Euclidean topology. Then,
a random variable is a mapping X : Ω → R such that for any B ∈ B, the set
X−1(B) is in F (it is an event).
With this definition, the map PX : B → [0, 1] defined by

PX(B) = P (X−1(B)),

is a probability on B. It is termed the law of X. The triple (R,B, PX) is
a probability space; it can be thought as the numerical replica of (Ω,F , P )
given by X.
A notion related with the law of a random variable is that of the distribution
function, defined as follows:

FX : R → [0, 1], FX(x) = P{ω : X(ω) ≤ x}.

Thus, FX describes the values of the law of X for a particular class of sets
in B, B = (0, x]. In the sequel, we shall write F instead of FX .
The distribution function has the following properties:
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(1) F is non-decreasing,

(2) F is right-continuous,

(3) limx→−∞ F (x) = 0 and limx→∞ F (x) = 1.

Using the machinery of measure theory, it is proved that any probability
measure on (R,B) is characterized by its distribution function. That is,
given a real function F with values on [0, 1], satisfying the properties (1)-(3)
before, there exists a unique probability measure µ on B such that

µ((−∞, x]) = F (x).

Among the set of all random variables, there are two special important
classes. We next give a description and several examples.

Definition 1.3 A random variable X is discrete if it takes a countable num-
ber of values.

Such random variables have a representation like X =
∑

n∈N an1An , where
the an are different to each other and An = {X = an} are disjoint events.
The above somehow abstract writing says that, on observations ω ∈ An the
random variable X takes the values an.

Definition 1.4 1. A random variable X is continuous if its distribution
function is continuous.

2. A random variable X is absolutely continuous if its distribution func-
tion can be written as

F (x) =
∫ x

−∞
f(y)dy,

where f is a positive, Riemann integrable function, such that∫∞
−∞ f(y)dy = 1.

The function f is called the density of F and, by extension, the density of X
as well. Clearly, an absolutely continuous random variable is continuous.

Example 1.2 Fix λ > 0. A Poisson random variable with parameter λ is a
random variable taking values on Z+ such that

P{X = k} = exp(−λ)
λk

k!
. (1.1)

Poisson random variables are used for modelling rare events.
Clearly, (1.1) gives the distribution function of X and therefore its law.
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Later on, we shall see that Poisson random variables underpine an important
example of counting process -the Poisson process.
Other famous examples of discrete random variables are: Bernoulli, Binomial,
Hypergeometric, etc.

Example 1.3 Fix λ, p > 0. A Gamma random variable with parameters λ, p
is an absolutely continuous random variable with density function

f(x) =
1

Γ(p)
λpxp−1 exp(−λx)11{x≥0}, (1.2)

where Γ is the Euler Gamma function.

We denote this law by Γ(λ, p) For p ∈ N, Γ(p) = (p− 1)!.
Let p = 1 in the previous example. Then

f(x) = λ exp(−λx)11{x≥0}. (1.3)

This is the density of an exponential random variable with parameter λ,
denoted by exp(λ)
Using characteristic functions (Fourier transform), it can be checked that the
sum of n independent exponential random variables with parameter λ has
distribution Γ(λ, n).
Other important examples of absolutely continuous random variables are:
normal, uniform, chi-square, etc.

1.4 Mathematical Expectation

One of the most important notion in Probability is that of expected value,
mean value or mathematical expectation of a random variable. As it is sug-
gested by its name, this is a real number associated to the random variable,
giving a sort of average of all possible values X(ω), ω ∈ Ω.

Definition 1.5 The mathematical expectation of a random variable X is the
Lebesgue integral

E(X) =
∫
Ω

XdP.

Not every measurable function is Lebesgue integrable. Therefore, the notion
of mathematical expectation may not be defined for an arbitrary random
variable. We are not going to discuss the issue of existence; instead, we
shall concentrate on how to compute mathematical expectations of random
variables of the two types described in Section 1.3. Here are some results.
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(1) Discrete random variables. The mathematical expectation of X =∑
n∈N an11An exists if and only if∑

n∈N
|an|P (An) < ∞,

and in this case,
E(X) =

∑
n∈N

anP (An). (1.4)

(2) Absolutely continuous random variables. The mathematical expectation
of an absolutely continuous random variable X exists if and only if∫ ∞

−∞
|x|f(x)dx < ∞,

and in this case,

E(X) =
∫ ∞

−∞
xf(x)dx. (1.5)

A brief explanation for the validity of the preceding formulas follows. First,
by the image measure theorem (a sort of change of variables formula),

E(X) =
∫

R
xdPX(x).

Then, the formulas are obtained taking into account the particular form of
the measure PX in the discrete and absolutely continuous case, respectively.
Actually, (1.4) and (1.5) extend to random variables of the form g(X), where
g : Rn → R. More specifically, we have

E (g(X)) =
∑
n∈N

g(an)P (X = an),

E (g(X)) =
∫ ∞

−∞
g(x)f(x)dx.

The following spaces of random variables play an important role in proba-
bility theory. For any p ∈ [1,∞), Lp(Ω) is the space of random variables
satisfying E(|X|p) < ∞. Actually, in these spaces we identify random vari-
ables which coincide on events of probability one.

1.5 Random Vectors. Independence

A m-dimensional random vector is a mapping X : Ω → Rm, X =
(X1, . . . , Xm) such that each component Xi, i = 1, . . . ,m, is a random vari-
able.
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Similarly as in the one-dimensional case, a random vector induces a prob-
ability measure on the σ-field of Borel sets of Rm, B(Rm), by the formula
PX(B) = P (X−1(B)), B ∈ B(Rm), called the law of X. The values of PX(B)
are characterized by the distribution function of X.
The distribution function of a random vector is given as follows:

FX : Rm → [0, 1], FX(x) = P{ω : X(ω) ≤ x}. (1.6)

In (1.6), the symbol ≤ means the partial order in Rm defined coordinate
wise. Hence, if x = (x1, . . . , xm),

F (x) = P{ω : X1(ω) ≤ x1, . . . , Xm(ω) ≤ xm}.

Definitions 1.3, 1.4 can be extended to the multidimensional case with the
following notion of density:
A function f : Rm → [0,∞) is a probability density on Rm if it is Riemann
integrable and ∫ ∞

−∞
· · ·

∫ ∞

−∞
f(x1, . . . , xm)dx1 . . . dxm = 1.

A multinomial random vector -the one which gives the number of occurences
of each one of the m possible outcomes after n independent repetitions of a
random experience, like throwing a dice n times- is an example of discrete
random vector. Denote by A1, . . . , Am the outcomes and p1, . . . , pm their
respective probabilities. Notice that

∑m
i=1 p1 = 1. Then, the law of X is

concentrated in the set M = {(n1, . . . , nm) ∈ Zm
+ : n1 + · · ·+ nm = n} and

P{X1 = n1, . . . , Xm = nm} =
n!

n1! . . . nm!
pn1

1 . . . pnm
m ,

where X1, . . . , Xm denotes the number of outcomes of A1, . . . , Am, respec-
tively.
An important example of absolutely continuous multidimensional probability
distribution is the multidimensional Gaussian or normal law N(µ, Λ). Here
µ ∈ Rm and Λ is a m-dimensional symmetric, positive definite matrix. Its
density is given by

f(x1, . . . , xm) = (2π det Λ)−
n
2 exp

−1

2

n∑
i,j=1

(xi − µi)(Λ
−1)i,j(xj − µj)

 .
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Definition 1.6 The random variables X1, . . . , Xm, are said to be indepen-
dent if for any choice of Borel sets B1, . . . , Bn, the events X−1

1 (B1), . . . ,
X−1

m (Bm), are independent.

The independence of the random variables X1, . . . , Xm is equivalent to the
fact that the distribution function of the random vector X = (X1, . . . , Xm)
is given by

FX(x) = Πm
i=1FXi

(xi),

for any x = (xi, . . . , xm). Moreover, if the random variables Xi, i = 1, . . . ,m,
have finite expectation then the product X1×· · ·×Xm has also finite expec-
tation and

E(X1 × · · · ×Xm) = Πm
i=1E(Xi). (1.7)

Throughout the course we shall be mainly interested in families of random
variables which are not independent. For random variables X and Y with
finite second order moments, that is with X, Y ∈ L2(Ω), a parameter cap-
turing the degree of dependence is the covariance, defined by

Cov(X, Y ) = E ((X − EX)(Y − EY )) .

Notice that, as a consequence of (1.7), if X and Y are independent,
Cov(X, Y ) = 0.
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2 Introduction to Stochastic Processes

This chapter is devoted to introduce the notion of stochastic processes and
some general definitions related with this notion. For a more complete ac-
count on the topic, we refer the reader to [13]. Let us start with a definition.

Definition 2.1 A stochastic process with state space S is a family {Xi, i ∈
I} of random variables Xi : Ω → S indexed by a set I.

For a successful progress in the analysis of such object, one needs to put
some structure on the index set I and on the state space S. In this course,
we shall mainly deal with the particular cases: I = N, Z+, R+ and S either a
countable set or a subset of R.
The basic problem statisticians are interested in, is the analysis of the prob-
ability law (mostly described by some parameters) of characters exhibited by
populations. For a fixed character described by a random variable X, they
use a finite number of independent copies of X -a sample of X. For many
purposes, it is interesting to have samples of any size and therefore to con-
sider sequences Xn, n ≥ 1. It is important here to insist on the word copies,
meaning that the circumstances around the different outcomes of X do not
change. It is a static world. Hence, they deal with stochastic processes
{Xn, n ≥ 1} consisting of independent and identically distributed random
variables.
However, this is not the setting we are interested in here. Instead, we would
like to give stochastic models for phenomena of the real world which evolve as
time passes by. Stochasticity is a choice in front of a complete knowledge and
extreme complexity. Evolution, in contrast with statics, is what we observe
in most phenomena in Physics, Chemistry, Biology, Economics, Life Sciences,
etc.
Stochastic processes are well suited for modeling stochastic evolution phe-
nomena. The interesting cases correspond to families of random variables Xi

which are not independent. In fact, the famous classes of stochastic processes
are described by means of types of dependence between the variables of the
process.

2.1 The Law of a Stochastic Process

The probabilistic features of a stochastic process are gathered in the joint
distributions of their variables, as given in the next definition.

Definition 2.2 The finite-dimensional joint distributions of the process
{Xi, i ∈ I} consists of the multi-dimensional probability laws of any finite
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family of random vectors Xi1 , . . . , Xim, where i1, . . . , im ∈ I and m ≥ 1 is
arbitrary.

Let us give an important example.

Example 2.1 A stochastic process {Xt, t ≥ 0} is said to be Gaussian if its
finite-dimensional joint distributions are Gaussian laws.
Remember that in this case, the law of the random vector (Xt1 , . . . , Xtm) is
characterized by two parameters:

µ(t1, . . . , tm) = E (Xt1 , . . . , Xtm) = (E(Xt1), . . . , E(Xtm))

Λ(t1, . . . , tm) =
(
Cov(Xti , Xtj)

)
1≤i,j≤m

.

In the sequel we shall assume that I ⊂ R+ and S ⊂ R, either countable or
uncountable, and denote by RI the set of real-valued functions defined on I.
A stochastic process {Xt, t ≥ 0} can be viewed as a random vector

X : Ω → RI .

Putting the appropriate σ-field of events in RI , say B(RI), one can define,
as for random variables, the law of the process as the mapping

PX(B) = P (X−1(B)), B ∈ B.

Mathematical results from measure theory tell us that PX is defined by means
of a procedure of extension of measures on cylinder sets given by the family
of all possible finite-dimensional joint distributions. This is a deep result.
In Example 2.1, we have defined a class of stochastic processes by means of
the type of its finite-dimensional joint distributions. But, does such an object
exist? In other words, could one define stochastic processes giving only its
finite-dimensional joint distributions? Roughly speaking, the answer is yes,
adding some extra condition. The precise statement is a famous result by
Kolmogorov that we now quote.

Theorem 2.1 Consider a family

{Pt1,...,tn , t1 < . . . < tn, n ≥ 1, ti ∈ I} (2.1)

where:

1. Pt1,...,tn is a probability on Rn,
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2. if {ti1 < . . . < tim} ⊂ {t1 < . . . < tn}, the probability law Pti1 ...tim
is the

marginal distribution of Pt1...tn.

There exists a stochastic process {Xt, t ∈ I} defined in some probability space,
such that its finite-dimensional joint distributions are given by (2.1). That
is, the law of the random vector (Xt1 , . . . , Xtn) is Pt1,...,tn.

One can apply this theorem to Example 2.1 to show the existence of Gaussian
processes, as follows.
Let K : I × I → R be a symmetric, positive definite function. That means:

• for any s, t ∈ I, K(t, s) = K(s, t);

• for any natural number n and arbitrary t1, . . . , tn ∈ I, and x1, . . . , xn ∈
R,

n∑
i,j=1

K(ti, tj)xixj > 0.

Then there exists a Gaussian process {Xt, t ≥ 0} such that E(Xt) = 0 for
any t ∈ I and Cov (Xti , Xtj) = K(ti, tj), for any ti, tj ∈ I.
To prove this result, fix t1, . . . , tn ∈ I and set µ = (0, . . . , 0) ∈ Rn, Λ =
(K(ti, tj))1≤i,j≤n and

Pt1,...,tn = N(0, Λ).

We denote by (Xt1 , . . . , Xtn) a random vector with law Pt1,...,tn . For any
subset {ti1 , . . . , tim} of {t1, . . . , tn}, it holds that

A(Xt1 , . . . , Xtn) = (Xti1
, . . . , Xtim

),

with

A =

δt1,ti1
· · · δtn,ti1

· · · · · · · · ·
δt1,tim

· · · δtn,tim

 ,

where δs,t denotes the Kronecker Delta function.
By the properties of Gaussian vectors, the random vector (Xti1

, . . . , Xtim
)

has an m-dimensional normal distribution, zero mean, and covariance matrix
AΛAt. By the definition of A, it is trivial to check that

AΛAt = (K(til , tik))1≤l,k≤m .

Hence, the assumptions of Theorem 2.1 hold true and the result follows.
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2.2 Sample Paths

In the previous discussion, stochastic processes are considered as random
vectors. In the context of modeling, what matters are observed values of the
process. Observations correspond to fixed values of ω ∈ Ω. This new point
of view leads to the next definition.

Definition 2.3 The sample paths of a stochastic process {Xt, t ∈ I} are the
family of functions indexed by ω ∈ Ω, X(ω) : I → S, defined by X(ω)(t) =
Xt(ω).

Example 2.2 Consider random arrivals of customers at a store. We set our
clock at zero and measure the time between two consecutive arrivals. They
are random variables X1, X2, . . . . Set S0 = 0 and Sn =

∑n
j=1 Xj, n ≥ 1. Sn

is the time of the n-th arrival. The process we would like to introduce is Nt,
giving the number of customers who have visited the store during the time
interval [0, t], t ≥ 0.
Clearly, N0 = 0 and for t > 0, Nt = k if and only if

Sk ≤ t < Sk+1.

The stochastic process {Nt, t ≥ 0} takes values on Z+. Its sample paths are
increasing right continuous functions, with jumps at the random times Sn,
n ≥ 1, of size one.
Later on in the course, we are going to study these kind of processes. For
instance, the Poisson process is obtained when assuming the random variables
X1, X2, . . . to be independent and identically distributed with exponential
law. We shall see that each random variable Nt has a Poisson distribution
with parameter λt (see Example 1.2).
The preceding example is a particular case of a counting process. Sample
paths of counting processes are always increasing right continuous functions,
their jumps are natural numbers.

Example 2.3 Evolution of prices of risky assets can be described by real-
valued stochastic processes {Xt, t ≥ 0} with continuous, although very rough,
sample paths. They are generalizations of the Brownian motion.
The Brownian motion, also called Wiener process, is a Gaussian process
{Bt, t ≥ 0} with the following parameters:

E(Bt) = 0

E(BsBt) = s ∧ t,
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This defines the finite dimensional distributions and therefore the existence
of the process via Kolmogorov’s theorem (see Theorem 2.1).

Before giving a heuristic motivation for the preceding definition of Brownian
motion we introduce two further notions.

A stochastic process {Xt, t ∈ I} has independent increments if for any
t1 < t2 < . . . < tk the random variables Xt2 − Xt1 , . . . , Xtk − Xtk−1

are
independent.

A stochastic process {Xt, t ∈ I} has stationary increments if for any t1 < t2,
the law of the random variable Xt2 −Xt1 is the same as that of Xt2−t1 .

Brownian motion is termed after Robert Brown, an British botanist who
observed and reported in 1827 the irregular movements of pollen particles
suspended in a liquid. Assume that, when starting the observation, the
pollen particle is at position x = 0. Denote by Bt the position of (one
coordinate) of the particle at time t > 0. By physical reasons, the trajectories
must be continuous functions and because of the erratic movement, it seems
reasonable to say that {Bt, t ≥ 0} is a stochastic process. It also seems
reasonable to assume that the change in position of the particle during the
time interval [t, t + s] is independent of its previous positions at times τ < t
and therefore, to assume that the process has independent increments. The
fact that such an increment must be stationary is explained by kinetic theory,
assuming that the temperature during the experience remains constant.
The model for the law of Bt has been given by Einstein in 1905. More
precisely, Einstein’s definition of Brownian motion is that of a stochastic
processes with independent and stationary increments such that the law of
an increment Bt−Bs, s < t is Gaussian, zero mean and E(Bt−Bs)

2 = t− s.
This definition is equivalent to the one given before.
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3 Discrete Time Martingales

In this chapter, we study a very popular class of stochastic processes: mar-
tingales and their relatives, submartingales and supermartingales. We shall
keep to the simplest case of discrete time processes. As references for the
topics we are reporting here, we cite [3], [4].
From the theoretical point of view, martingales represent a first generaliza-
tion of sequences of independent random variables. In fact, if {Xn, n ≥ 1}
denotes such a sequence, then {Sn =

∑n
i=1 Xi, n ≥ 1} provides an example

of martingale. From an applied perspective, martingales are on the basis of
modeling games and gambler’s strategies. More recently, they are showing
its performance in the analysis of financial markets.

3.1 Conditional Expectation

The mathematical tool for studying martingales is the notion of conditional
expectation and its properties. Roughly speaking, a conditional expectation
of a random variable is the mean value with respect to a modified probabil-
ity after having incorporated some a priori information. The simplest case
corresponds to conditioning with respect to an event B ∈ F . In this case,
the conditional expectation is the mathematical expectation computed on
the modified probability space (Ω,F , P (·/B)).
However, in general, additional information cannot be described so easily.
Assuming that we know about some events B1, . . . , Bn we also know about
those that can be derived from them, like unions, intersections, complemen-
taries. This explains the election of a σ-field to keep known information and
to deal with it.
In the sequel, we denote by G an arbitrary σ-field included in F and by X
a random variable with finite expectation (X ∈ L1(Ω)). Our final aim is to
give a definition of the conditional expectation of X given G. However, in
order to motivate this notion, we shall start with more simple situations.

Conditional expectation given an event

Let B ∈ F be such that P (B) 6= 0. The conditional expectation of X given
B is the real number defined by the formula

E(X/B) =
1

P (B)
E(11BX). (3.1)

It immediately follows that

• E(X/Ω) = E(X),
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• E(11A/B) = P (A/B).

With the definition (3.1), the conditional expectation coincides with the ex-
pectation with respect to the conditional probability P (·/B). We check this
fact with a discrete random variable X =

∑∞
i=1 ai11Ai

. Indeed,

E(X/B) =
1

P (B)
E

( ∞∑
i=1

ai11Ai∩B

)
=

∞∑
i=1

ai
P (Ai ∩B)

P (B)

=
∞∑
i=1

aiP (Ai/B).

Conditional expectation given a discrete random variable

Let Y =
∑∞

i=1 yi11Ai
, Ai = {Y = yi}. The conditional expectation of X given

Y is the random variable defined by

E(X/Y ) =
∞∑
i=1

E(X/Y = yi)11Ai
. (3.2)

Notice that, knowing Y means knowing all the events that can be described
in terms of Y . Since Y is discrete, they can be described in terms of the
basic events {Y = yi}. This may explain the formula (3.2).
The following properties hold:

(a) E (E(X/Y )) = E(X);

(b) if the random variables X and Y are independent, then E(X/Y ) =
E(X).

For the proof of (a) we notice that, since E(X/Y ) is a discrete random
variable

E (E(X/Y )) =
∞∑
i=1

E(X/Y = yi)P (Y = yi)

= E

(
X

∞∑
i=1

11{Y =yi}

)
= E(X).

Let us now prove (b). The independence of X and Y yields

E(X/Y ) =
∞∑
i=1

E(X11{Y =yi})

P (Y = yi)
11Ai

=
∞∑
i=1

E(X)11Ai
= E(X).

The next proposition states two properties of the conditional expectation
that motivates the Definition 3.1
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Proposition 3.1 1. The random variable Z := E(X/Y ) is σ(Y )-
measurable; that is, for any Borel set B ∈ B, Z−1(B) ∈ σ(Y ),

2. for any A ∈ σ(Y ), E (11AE(X/Y )) = E(11AX).

Proof: Set ci = E(X/{Y = yi}) and let B ∈ B. Then

Z−1(B) = ∪i:ci∈B{Y = yi} ∈ σ(Y ),

proving the first property.
To prove the second one, it suffices to take A = {Y = yk}. In this case

E
(
11{Y =yk}E(X/Y )

)
= E

(
11{Y =yk}E(X/Y = yk)

)
= E

(
11{Y =yk}

E(X11{Y =yk})

P (Y = yk)

)
= E(X11{Y =yk}).

�

Conditional expectation given a σ-field

Definition 3.1 The conditional expectation of X given G is a random vari-
able Z satisfying the properties

1. Z is G-measurable; that is, for any Borel set B ∈ B, Z−1(B) ∈ G,

2. for any G ∈ G,

E(Z11G) = E(X11G).

We will denote the conditional expectation Z by E(X/G).
Notice that the conditional expectation is not a number but a random vari-
able. There is nothing strange in this, since conditioning depends on the
observations.
Condition (1) tell us that events that can be described by means of E(X/G)
are in G. Whereas condition (2) tell us that on events in G the random vari-
ables X and E(X/G) have the same mean value.

The existence of E(X/G) is not a trivial issue. You should trust mathe-
maticians and believe that there is a theorem in measure theory -the Radon-
Nikodym Theorem- which ensures its existence.
Before stating properties of the conditional expectation, we are going to
explain how to compute it in two particular situations.

20



Example 3.1 Let G be the σ-field (actually, the field) generated by a finite
partition G1, . . . , Gm. Then

E(X/G) =
m∑

j=1

E(X11Gj
)

P (Gj)
11Gj

. (3.3)

Formula (3.3) tell us that, on each generator of G, the conditional expectation
is constant; this constant is weighted by the mass of the generator (P (Gj)).
It can be checked using Definition 3.1. Indeed, it suffices to consider G in
the set of generators of G, for instance let us fix G := Gk. Then

E (11Gk
E(X/G)) = E

11Gk

m∑
j=1

E(X11Gj
)

P (Gj)
11Gj


= E

(
11Gk

E(X11Gk
)

P (Gk)

)
= E (11Gk

X) .

Example 3.2 Let G be the σ-field generated by random variables Y1, . . . , Ym,
that is, the σ-field generated by events of the form Y −1

1 (B1), . . . , Y
−1
1 (Bm),

with B1, . . . , Bm arbitrary Borel sets. Assume in addition that the joint dis-
tribution of the random vector (X, Y1, . . . , Ym) has a density f . Then

E(X/Y1, . . . , Ym) =
∫ ∞

−∞
xf(x/Y1, . . . , Ym)dx, (3.4)

with

f(x/y1, . . . , ym) =
f(x, y1, . . . , ym)∫∞

−∞ f(x, y1, . . . , ym)dx
. (3.5)

In (3.5), we recognize the conditional density of X given Y1 = y1, . . . , Ym =
ym. Hence, in (3.4) we first compute the conditional expectation E(X/Y1 =
y1, . . . , Ym = ym) and finally, replace the real values y1, . . . , ym by the random
variables Y1, . . . , Ym.

We now list some important properties of the conditional expectation.

(a) Linearity: for any random variables X, Y and real numbers a, b

E(aX + bY/G) = aE(X/G) + bE(Y/G).

(b) Monotony: If X ≤ Y then E(X/G) ≤ E(Y/G).
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(c) The mean value of a random variable is the same as that of its conditional
expectation: E(E(X/G)) = E(X).

(d) If X is a G-measurable random variable, then E(X/G) = X

(e) Let X be independent of G, meaning that any set of the form X−1(B),
B ∈ B is independent of G. Then E(X/G) = E(X).

(f) Factorization: If Y is a bounded, G-measurable random variable,

E(Y X/G) = Y E(X/G).

(g) If Gi, i = 1, 2 are σ-fields with G1 ⊂ G2,

E(E(X/G1)/G2) = E(E(X/G2)/G1) = E(X/G1).

(h) Assume that X is a random variable independent of G and Z another
G-measurable random variable. For any measurable function h(x, z)
such that the random variable h(X, Z) is in L1(Ω),

E(h(X, Z)/G) = E(h(X, z))|Z=z.

We give some proofs.
Property (a) follows from the definition of the conditional expectation and
the linearity of the operator E. Indeed, the candidate aE(X/G)+bE(Y/G) is
G-measurable. By property 2 of the conditional expectation and the linearity
of E,

E (11G[aE(X/G) + bE(Y/G)]) = aE(11GX) + bE(11GY )

= E(11G[aX + bY ]).

Property (b) is a consequence of the monotony property of the operator E and
a result in measure theory telling that, for G-measurable random variables
Z1 and Z2, satisfying

E(Z111G) ≤ E(Z211G),

for any G ∈ G, we have Z1 ≤ Z2. Indeed, for any G ∈ G we have E(11GX) ≤
E(11GY ). Then, by property 2 of the conditional expectation,

E(11GE(X/G)) = E(11GX) ≤ E(11GY ) = E(11GE(Y/G)).

By applying the above mentioned property to Z1 = E(X/G), Z2 = E(Y/G),
we get the result.
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Taking G = Ω in condition (2) above, we prove (c). Property (d) is obvious.
Constant random variables are measurable with respect to any σ-field. Ther-
fore E(X) is G-measurable. Assuming that X is independent of G, yields

E(X11G) = E(X)E(11G) = E(E(X)11G).

This proves (e).
For the proof of (f), we first consider the case Y = 11G̃, G̃ ∈ G. Claiming
(f) means that we propose as candidate for E(Y X/G) = 11G̃E(X/G). Clearly
11G̃E(X/G) is G-measurable. Moreover,

E (11G11G̃E(X/G)) = E (11G∩G̃E(X/G)) = E (11G∩G̃X) .

The validity of the property extends by linearity to simple random variables.
Then, by monotone convergence to positive random variables and, finally, to
random variables in L1(Ω), by the usual decomposition X = X+ −X−.
For the proof of (g), we notice that since E(X/G1) is G1-measurable, it is
G2-measurable as well. Then, by the very definition of the conditional expec-
tation,

E(E(X/G1)/G2) = E(X/G1).

Next, we prove that E(X/G1) = E(E(X/G2)/G1). For this, we fix G ∈ G1

and apply the definition of the conditional expectation. This yields

E (11GE(E(X/G2)/G1)) = E (11GE(X/G2)) = E (11GX) .

Properety (h) is very intuitive: Since X is independent of G in does not enter
the game of conditioning. Moreover, the measurability of Z means that by
conditioning one can suppose it is a constant.

3.2 Martingales, Submartingales, Supermartingales

An increasing sequence of sub σ-fields of F ,

F0 ⊂ F1 ⊂ · · · ⊂ Fn−1 ⊂ Fn ⊂ · · · ,

is termed a filtration.
Given a stochastic process {Xn, n ≥ 0}, there is a natural way to define a
filtration associated to it, as follows. Set F0 the trivial σ-field generated
by the constants and Fn the one generated by the random variables Xi,
0 ≤ i ≤ n, for any n ≥ 1.

Definition 3.2 A stochastic process {Xn, n ≥ 0} ⊂ L1(Ω) is said to be a
martingale with respect to {Fn, n ≥ 0} if
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(i) Xn is Fn-measurable, for any n ≥ 0,

(ii) E(Xn+1/Fn) = Xn.

Stochastic processes satisfying condition (i) are called adapted to the filtration
{Fn, n ≥ 0}.
Replacing in condition (ii) the equality sign by ≥ (respectively, ≤) gives the
definition of submartingale (respectively, supermartingale).
By property (d) of the conditional expectation, condition (ii) can be equiva-
lently written as

E(Xn+1 −Xn/Fn) = 0.

In this form, we can attach a meaning to the martingale property in the
following way. Assume that Xn gives the capital at time n owned by a
gambler. Then Xn+1 −Xn is the amount he wins at the n + 1-th game. The
martingale condition means that the game is fair. Similarly, a submartingale
is a favorable game and a supermartingale a non-favorable one.

Lemma 3.1 Let {Xn, n ≥ 0} be a martingale (respectively, a submartingale,
a supermartingale). Then, E(Xn) = E(X0) (respectively E(Xn) ≥ E(X0),
E(Xn) ≤ E(X0)), for any n ≥ 1.

The result follows immediately from property (c) of the conditional expecta-
tion.

Example 3.3 Let ξ = {ξn, n ≥ 1} be a sequence of independent random
variables with E(ξn) = 0. Set

X0 = 0 (3.6)

Xn =
n∑

i=1

ξi. (3.7)

The stochastic process X = {Xn, n ≥ 0} is a martingale with respect to the
natural filtration (Fn, n ≥ 0) associated with {ξn, n ≥ 1}.

Indeed, owing to property (e) of the conditional expectation,

E(Xn+1 −Xn/Fn) = E(ξn+1/Fn)

= E(ξn+1) = 0.

If in this example, we assume in addition that the random variables ξn are
identically distributed, with common mean µ, by the previous computations
we see that X is a martingale (respectively, a submartingale, a supermartin-
gale) if µ = 0 (respectively, µ > 0, µ < 0.
Notice that (Fn, n ≥ 0) coincides with the natural filtration associated with
{Xn, n ≥ 0} as well.
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Example 3.4 Let ξ = {ξn, n ≥ 1} be a sequence of i.i.d. positive random
variables. Fix a positive random variable X0 and set Xn = X0 · ξ1 · · · ξn,
n ≥ 1. If µ := Eξ1 = 1 (respectively, µ > 1, µ < 1), then X = {Xn, n ≥ 0} is
a martingale (respectively, a submartingale, a supermartingales) with respect
to the natural filtration (Fn, n ≥ 0) associated with {Xn, n ≥ 0}.

Notice that (Fn, n ≥ 0) coincides with the filtration generated by X0, ξn, n ≥
1.
To see that X defines a martingale, we apply property (f) and then (e) of
the conditional expectation to obtain

E(Xn+1 −Xn/Fn) = E((ξn+1 − 1)X0ξ1 · · · ξn/Fn)

= X0ξ1 · · · ξnE(ξn+1 − 1/Fn)

= X0ξ1 · · · ξnE(ξn+1 − 1)

= XnE(ξn+1 − 1).

This example is applied in modeling stock prices. In fact, the following
particular cases appear in the financial literature.

1. Discrete Black-Scholes model. ξn = exp(Z), with Z =(d) N (µ, σ2).

2. Binomial model. ξn = (1 + a) exp(−r), with probability p and ξn =
(1+a)−1 exp(−r), with probability 1−p. Here, the parameter r means
the interest rate by which we discount future rewards. At time n ≥ 1,
the price would have the form X0(1 + a)k exp(−nr), k ≤ n.

In applications, we shall often deal with two filtrations associated in some
way to the process. Property (g) of the conditional expectation tells us when
the martingale property is preserved. More precisely, we have the following
result.

Proposition 3.2 Let X = {Xn, n ≥ 0} be a martingale with respect to a
filtration {Fn, n ≥ 0}. Assume that the natural filtration of X, {Gn, n ≥ 0}
satisfies Gn ⊂ Fn, for any n ≥ 0. Then, X is also a martingale with respect
to {Gn, n ≥ 0}.

Proof: The process X is clearly adapted to {Gn, n ≥ 0}. By property (g) of
the conditional expectation,

E(Xn+1/Gn) = E(E(Xn+1/Fn)/Gn) = E(Xn/Gn) = Xn,

where in the last equality we have applied property (d). �
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3.3 Martingale Transforms

Let {ξn, n ≥ 1} be a i.i.d. sequence such that P (ξn = 1) = p, P (ξn = −1) =
1 − p, representing the amount a gambler wins by flipping a coin. Assume
he starts with a capital X0 = C0 > 0. His capital at the n-th flipping would
be Xn = X0 +

∑n
i=1 ξi. Suppose he decides to bet, that means, in view of the

evolution of the game, he brings some amount of money Hi at each flipping.
For example, he could decide to bet Hi on heads. His capital at time n would
be now given by

Wn = X0 +
n∑

i=1

Hiξi.

Notice that Hn depends on what happened at the flippings i = 1, · · · , n− 1.
This example lead to the following notions.

Definition 3.3 A stochastic process H = {Hn, n ≥ 1} is predictable with
respect to a filtration {Fn, n ≥ 0} if Hn is Fn−1-measurable, for any n ≥ 1.

If {Fn, n ≥ 0} is the natural filtration associated with some stochastic process
X = {Xn, n ≥ 0}, predictability means that Hn is described by knowledge
on X0, · · · , Xn−1, that is, on the past of X.

Definition 3.4 Fix a filtration {Fn, n ≥ 0} for further reference. Let H =
{Hn, n ≥ 1} be a predictable process and X = {Xn, n ≥ 0} be a martingale.
The martingale transform of X by H is the stochastic process denoted by
{(H ·X)n, n ≥ 0} defined as

(H ·X)0 = X0

(H ·X)n = X0 +
n∑

i=1

Hi(Xi −Xi−1), n ≥ 1.

In the sequel, to simplify the notation we shall write ∆iX = Xi −Xi−1.
A martingale transform is in fact an integral operator: The integrand is the
process H and the integrator X. One of its most important properties is
that the martingale property is preserved under some special conditions, as
is made explicit in the next proposition.

Proposition 3.3 Let X = {Xn, n ≥ 0} be a martingale (respectively, a sub-
martingale, a supermartingale) and H = {Hn, n ≥ 1} be a bounded positive
predictable process. Then, the martingale transform process {(H ·X)n, n ≥ 0}
is a martingale (respectively, a submartingale, a supermartingale).
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Proof: Since {Xn, n ≥ 0} ⊂ L1(Ω) and H is a bounded sequence, we have
{(H · X)n, n ≥ 0} ⊂ L1(Ω). Clearly, (H · X) is adapted to the reference
filtration {Fn, n ≥ 0}. It remains to prove the martingale property. For this,
we apply property (f) of the conditional expectation, yielding

E ((H ·X)n+1 − (H ·X)n/Fn) = E (Hn+1∆n+1X/Fn)

= Hn+1E (∆n+1X/Fn) .

The conclusion follows from the properties of X.

Remark The hypothesis of H being positive in the preceding proposition
is only necessary to state the result for sub and supermartingales.

With a bit more sophisticated technique, the boundedness of H in the pre-
vious proposition can be removed.

Proposition 3.4 Let X = {Xn, 0 ≤ n ≤ n0} be a martingale and H =

{Hn, 1 ≤ n ≤ n0} be a predictable process. Assume that E
(
(H ·X)−n0

)
<

∞. Then, the martingale transform process {(H · X)n, 0 ≤ n ≤ n0} is a
martingale.

Proof: We go to the bounded case by means of a stopping procedure. We
define a random variable

τk : Ω → {0, 1, · · · , n0}

by

τk = 0, if H1 > k

= sup{i : |Hi| ≤ k} ∧ n0.

Set Z = (H ·X). Then, the sequence

Zn∧τk
= X0 +

n∑
i=1

Hi11{τk≥i}∆iX

is a martingale. In fact, the random variables Hi11{τk≥i} are bounded and
Fi−1-measurable, since

{τk ≥ i} = {|H1| ≤ k, · · · , |Hi| ≤ k} ∈ Fi−1.

Hence,

E
(
Z(n+1)∧τk

/Fn

)
= Zn∧τk

.
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Notice that limk→∞ τk = n0. The result follows letting k → ∞ in the pre-
ceding inequality. However, for making the argument rigourous, one needs
the variable Zn to be integrable. For this, it suffices to prove recursively that
E(Z−

n ) and E(Z+
n ) are finite.

Jensen’s inequality applied to the convex function ϕ(x) = x−, yields

Z−
n 1(τk≥n+1) = Z−

n∧τk
1(τk≥n+1)

=
(
E
(
Z(n+1)∧τk

/Fn

))−
1(τk≥n+1)

≤ E
(
Z−

(n+1)∧τk
/Fn

)
1(τk≥n+1)

= E
(
Z−

(n+1)∧τk
1(τk≥n+1)/Fn

)
= E

(
Z−

(n+1)1(τk≥n+1)/Fn

)
.

Taking expectations in both sides of the preceeding inequality yields

E
(
Z−

n 1(τk≥n+1)

)
≤ E

(
Z−

(n+1)1(τk≥n+1)

)
.

Since the random variables involved are positive, one can let k tend to infinity
to obtain

E
(
Z−

n

)
≤ E

(
Z−

(n+1)

)
≤ E

(
Z−

n0

)
,

where in the last inequality we have used that (Z−
n , n ≥ 0) is a submartingale.

The boundedness of the positive part is proved as follows:

E(Z+
n ) = E

(
lim inf

k→∞
Z+

n∧τk

)
≤ lim inf

k→∞
E
(
Z+

n∧τk

)
= lim inf

k→∞

(
E (Zn∧τk

) + E
(
Z−

n∧τk

))
= E(Z0) + lim inf

k→∞
E
(
Z−

n∧τk

)
≤ |E(Z0)|+

n0∑
i=1

E(Z−
i ) < ∞.

�

Remark 3.1 The random variable τk defined in the proof of the previous
theorem is an example of stopping time. We shall introduce this notion in
the next section.
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3.4 Stopping Times and Martingales

The purpose of this section is to prove that when observing a martingale
at random times, the martingale property is preserved. We have to make
precise what random times are allowed.

Definition 3.5 A random variable T : Ω → Z+ ∪ {∞} is a stopping time
with respect to a given filtration (Fn, n ≥ 0} if, for any n ∈ Z+, the event
{T = n} belongs to Fn.

The above definition is equivalent to say that for any n ∈ Z+ the event
{T ≤ n} belongs to Fn. Indeed, this follows trivially from the set of equalities

{T ≤ n} = ∪n
i=1{T = i}

{T = n} = {T ≤ n} ∩ ({T ≤ n− 1})c .

Let us mention some of the basic properties of stopping times. In the sequel
we assume that the reference filtration is always the same.

1. A constant random variable is a stopping time. In fact, if T = c, a.s.,
the event {T = n} is either Ω or the empty set.

2. Any linear combination of stopping times is also a stopping time.

3. The supremum and the infimum of two stopping times is a stopping
time. More generally, let Tj, j ≥ 1, be a sequence of stopping times.
Then the random variables S = supj≥1 Tj and I = infj≥1 Tj are stop-
ping times.

Proof: It is a consequence of the following set of equalities and the
structure of a σ-field.

{S ≤ n} = ∩j≥1{Tj ≤ n}
{I > n} = ∩j≥1{Tj > n}.

The random variable τk of the proof of Proposition 3.4 is a stopping time.
Indeed,

{τk = 0} = {H1 > k} = {H1 ≤ k}c ∈ F0.

and, for 1 ≤ n ≤ n0 − 1,

{τk = n} = {|H1| ≤ k, . . . , |Hn| ≤ k, |Hn+1| > k} ∈ Fn.
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Example 3.5 Hitting times. Let B ∈ B. The hitting time of a stochastic
process X = {Xn, n ≥ 0} to B is defined as

TB = inf {n ≥ 0 : Xn ∈ B},

if this last set is nonempty, and TB = ∞, otherwise.
We check that TB is a stopping time with respect to the natural filtration
associated with X. Indeed, for any n ≥ 1,

{TB = n} = {X0 /∈ B, . . . , Xn−1 /∈ B, Xn ∈ B} ∈ Fn,

while for n = 0,

{TB = 0} = {X0 ∈ B} ∈ F0.

Given a stochastic process {Zn, n ≥ 0} and a stopping time T , the random
variable ZT is defined as

ZT (ω) = ZT (ω)(ω).

Example 3.6 In connection with the proof of Proposition 3.4, we give an
example of predictable process.
Let T be a stopping time. Set Hn = 11{T≥n}, n ≥ 1. This defines a predictable
process. Indeed

{T ≥ n} = {T ≤ n− 1}c ∈ Fn−1.

For any stochastic process X = {Xn, n ≥ 0}, we have

(H ·X)n = X0 +
n∑

i=1

11{T≥i}∆iX

= X0 +
T∧n∑
i=1

∆iX = XT∧n.

By Proposition 3.3, assuming that X is a martingale (respectively, a sub-
martingale, supermartingale), the stochastic process {XT∧n, n ≥ 0} is again
a martingale (respectively, a submartingale, supermartingale).

Consider an (Fn, n ≥ 0)-adapted stochastic process X = {Xn, n ≥ 0}; we
may wonder what kind of measurability the process has when observed at
random times. To give an answer to this question, we introduce a σ-algebra
associated with the stopping time T .

30



Definition 3.6 The σ-field of events prior to T , FT is given by

FT = {A ∈ F : A ∩ {T ≤ n} ∈ Fn, for all n ≥ 0}.

Let us check that FT is actually a σ-field. Indeed, the equalities

Ac ∩ {T ≤ n} = (A ∪ {T > n})c = ((A ∩ {T ≤ n}) ∪ {T > n})c ,

shows that, if A ∈ FT then Ac ∈ FT .
On the other hand, by its very definition, FT is closed by countable intersec-
tions.
Let us now prove that the random variable XT is FT -measurable. For this,
we fix a Borel set B ∈ B and check that {XT ∈ B}∩ {T ≤ n} ∈ Fn. Indeed,

{XT ∈ B} ∩ {T ≤ n} = ∪n
i=0 ({XT ∈ B} ∩ {T = i})

= ∪n
i=0 ({Xi ∈ B} ∩ {T = i}) ∈ Fn.

Theorem 3.1 (Stopping Theorem) Let {Xn, n ≥ 0} be a martingale
(respectively, a submartingale) and S, T be two stopping times satisfying
S ≤ T ≤ c, for some c ∈ N. Then

E(XT /FS) = XS,

(respectively, E(XT /FS) ≥ XS).

Proof: Since T is bounded, |XT | ≤
∑c

n=0 |Xn| ∈ L1(Ω).
We will prove that, for any A ∈ FS,

E (11A(XT −XS)) = 0. (3.8)

For this, we consider the predictable bounded process defined by Hn =
11{S<n≤T}∩A, n ≥ 1 and notice that

(H ·X)0 = X0,

(H ·X)c = X0 + 11A(XT −XS)

The martingale property of {(H ·X)m, m ≥ 0} yields

E ((H ·X)0) = E ((H ·X)c) = E (X0 + 11A(XT −XS))

(see Lemma 3.1). Consequently, we obtain (3.8). �
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3.5 The Snell Envelope

Let {Zn, 0 ≤ n ≤ N} be a sequence of integrable positive random variables,
defined on a probability space (Ω,F , P ), adapted to some filtration {Fn, 0 ≤
n ≤ N}. The Snell envelope is a sequence of random variables {Un, 0 ≤ n ≤
N} defined recursively as follows:

UN = ZN

Un = max(Zn, E(Un+1/Fn)), n = 0, . . . , N − 1. (3.9)

(3.10)

We shall see in the next chapter that such notion plays an important role in
option pricing. For the moment, keeping at a theoretical framework, let us
state an optimal property of the Snell envelope.

Proposition 3.5 The Snell envelope is the smallest supermartingale such
that Un ≥ Zn, for any 0 ≤ n ≤ N .

Proof: The supermartingale property is obvious, since by its very definition

Un ≥ E(Un+1/Fn), n = 0, . . . , N − 1.

Let {Tn, 0 ≤ n ≤ N} be another supermartingale satisfying Tn ≥ Zn for any
0 ≤ n ≤ N . We have TN ≥ ZN = UN . Assuming that Tm ≥ Um, for any
n ≤ m ≤ N , we obtain

Tn−1 ≥ E(Tn/Fn−1) ≥ E(Un/Fn−1).

Hence,
Tn−1 ≥ max (Zn−1, E(Un/Fn−1)) = Un−1.

This finishes the proof. �

The next result is related with the martingale property of the stopped Snell
envelope.

Proposition 3.6 The random variable

ν0 = inf{n ≥ 0 : Un = Zn} ∧N (3.11)

is a stopping time with respect to the filtration (Fn, 0 ≤ n ≤ N), and the
process

{Un∧ν0 , 0 ≤ n ≤ N}

is a martingale with respect to the same filtration.
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Proof: First, we prove that ν0 is a stopping time. Indeed,

{ν0 = 0} = {U0 = Z0} ∈ F0.

Moreover,

{ν0 = k} = {U0 > Z0, . . . , Uk−1 > Zk−1, Uk = Zk} ∈ Fk,

for any k ≥ 1.
Let us next prove the martingale property. By definition

Un∧ν0 = U0 +
n∑

j=1

11{ν0≥j}∆jU.

Thus, for any 0 ≤ n ≤ N − 1,

U(n+1)∧ν0 − Un∧ν0 = 11{ν0≥n+1}(Un+1 − Un).

On the set {ν0 ≥ n + 1}, we have that Un > Zn and consequently,

Un = max(Zn, E(Un+1/Fn)) = E(Un+1/Fn).

Therefore,

E
(
U(n+1)∧ν0 − Un∧ν0/Fn

)
= E

(
11{ν0≥n+1}(Un+1 − Un)/Fn

)
= E

(
11{ν0≥n+1}(Un+1 − E(Un+1/Fn))/Fn

)
= 1{ν0≥n+1}E (Un+1 − E(Un+1/Fn)/Fn)

= 0.

�

3.6 Optimal Stopping

We keep in this section the same notation as in the previous one. We shall
define the notion of optimal stopping time and explain some relation with
the Snell envelope.

Definition 3.7 A stopping time T with respect to the filtration (Fn, 0 ≤ n ≤
N) is optimal for the adapted sequence (Zn, 0 ≤ n ≤ N) if

E (ZT /F0) = sup
ν∈T0,N

E (Zν/F0) ,

where T0,N is the family of all stopping times taking values in {0, 1, 2, . . . , N}.
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Proposition 3.7 The stopping time ν0 defined in (3.11) is optimal. In ad-
dition,

U0 = E(Zν0/F0) = sup
ν∈T0,N

E(Zν/F0).

Proof: We already know by Proposition 3.6 that {Un∧ν0 , 0 ≤ n ≤ N} is a
martingale. Thus,

U0 = U0∧ν0 = E (UN∧ν0/F0) = E (Uν0/F0) = E (Zν0/F0) .

Moreover, for any stopping time ν ∈ T0,N , the process {Un∧ν , 0 ≤ n ≤ N} is
a supermartingale. Hence,

U0 = U0∧ν ≥ E (UN∧ν/F0) ≥ E (Zν/F0) .

�

It is easy to check the following extension of the previous result: Fix n ∈
{0, 1, . . . , N − 1}. Denote by Tn,N the set of all stopping times taking values
on {n, n + 1, . . . , N}. Then

Un = sup
ν∈Tn,N

E (Zν/Fn) = E (Zνn/Fn) ,

where νn = inf{j ≥ n : Uj = Zj}.
In terms of the Snell envelope, optimal stopping times are characterized as
follows.

Theorem 3.2 A stopping time ν is optimal for the sequence (Zn, 0 ≤ n ≤
N) if and only if Zν = Uν and the process

{Un∧ν , 0 ≤ n ≤ N}

is a martingale.

Proof: Let us first prove that, under the stated conditions, ν is optimal.
Clearly, U0 = E(Uν/F0) = E(Zν/F0) and

U0 = E(Zν/F0) = sup
σ∈T0,N

E(Zσ/F0).

Thus, ν is optimal.
Conversely, assume that ν is optimal. Owing to Proposition 3.7, since Zν ≤
Uν and {Uν∧n, 0 ≤ n ≤ N} is a supermartingale, we obtain

U0 = sup
σ∈T0,N

E(Zσ/F0) = E(Zν/F0) ≤ E(Uν/F0) ≤ U0. (3.12)
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Thus, we have an equality in (3.12)

E(Zν/F0) = E(Uν/F0),

and E(Zν) = E(Uν).This yields Zν = Uν , because Zν ≤ Uν .
By the supermartingale property of {Un∧ν , 0 ≤ n ≤ N}, we have

U0 = U0∧ν ≥ E(Un∧ν/F0) ≥ E(UN∧ν/F0) = E(Uν/F0). (3.13)

The fact that in (3.12) we have equalities, implies U0 = E(Uν/F0). Conse-
quently, in (3.13) we also have equalities. Taking expectations yields

E(Un∧ν) = E(Uν) = E(E(Uν/Fn)).

By the supermartingale property,

Un∧ν ≥ E(UN∧ν/Fn) = E(Uν/Fn).

This implies that {Un∧ν , 0 ≤ n ≤ N} is a martingale and ends the proof of
the Theorem. �

Remark 3.2 The stopping time ν0 is the smallest optimal time. Indeed, if
ν1 is another optimal time, by the preceding theorem Zν1 = Uν1 and, by the
definition of ν0, ν0 ≤ ν1.

According to Theorem 3.2, in order to give an optimal stopping time we
have to find the first time when the sequence (Un, 0 ≤ n ≤ N) fails to be
a martingale. A useful tool to solve this question is the decomposition of a
generic supermartingale given in the next proposition.

Proposition 3.8 (Doob Decomposition) Let (Un, 0 ≤ n ≤ N) be a su-
permartingale. For any 0 ≤ n ≤ N ,

Un = Mn − An,

where the sequence M = (Mn, 0 ≤ n ≤ N) is a martingale, A = (An, 0 ≤
n ≤ N) is increasing, predictable and A0 = 0.
There is a unique decomposition of this type.

Proof: The sequences M and A are constructed as follows. Set M0 = U0,
and for n ≥ 1,

Mn = U0 +
n∑

j=1

(Uj − E(Uj/Fj−1)) ,

An = Mn − Un.
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It is very easy to check that the sequence M defined before is a martingale.
It is also clear that A0 = 0. Moreover,

An − An−1 = Mn −Mn−1 − (Un − Un−1)

= Un − E(Un/Fn−1)− (Un − Un−1)

= Un−1 − E(Un/Fn−1) ≥ 0.

Thus, A is increasing.
From the previous equalities, we have

An =
n∑

j=1

(Uj−1 − E(Uj/Fj−1)) ,

and from this expression, it is obvious that A is a predictable sequence.
Let us prove the uniqueness of this decomposition. Assume that we have
two sequences M ′ and A′ with the same properties as M and A, respectively,
such that

Un = Mn − An = M ′
n − A′

n.

Since A0 = A′
0, we have that M0 = M ′

0 = U0. Consider the algebraic relation

Mn − An − (Mn−1 − An−1) = M ′
n − A′

n − (M ′
n−1 − A′

n−1),

and apply the conditional expectation operator with respect to Fn−1. We
obtain

An−1 − An = A′
n−1 − A′

n.

Since A0 = A′
0 = 0 = 0, this implies the identity of the sequences A and A′

and therefore the same holds true for M and M ′. �

We can now give the optimal stopping time of a sequence Z = (Zn, 0 ≤ n ≤
N) via the Doob decomposition of its Snell envelope.

Proposition 3.9 Let (An, 0 ≤ n ≤ N) be the increasing sequence in the
Doob decomposition of the Snell envelope of Z, which we denote by (Un, 0 ≤
n ≤ N). The stopping time defined by

νm =

N, ifAN = 0,

inf{n ≥ 0 : An+1 6= 0}, ifAN > 0,
(3.14)

is optimal.
Moreover, νm is the largest optimal stopping time for Z.
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Proof: Let us first check that νm is a stopping time. Indeed,

{νm = n} = ∩j≤n{Aj = 0} ∩ {An+1 > 0} ∈ Fn.

Let us now prove that {Uνm∧n, 0 ≤ n ≤ N} is a martingale. Indeed, Un =
Mn − An and Aj = 0 if j ≤ νm; thus, Uνm∧n = Mνm∧n, and the statement
follows.
We now check that Uνm = Zνm . In fact, by the definition of U ,

Uνm =
N−1∑
j=0

11{νm=j}Uj + 11{νm=N}UN

=
N−1∑
j=0

11{νm=j} max(Zj, E(Uj+1/Fj)) + 11{νm=N}ZN . (3.15)

By the Doob decomposition,

E(Uj+1/Fj) = E(Mj+1 − Aj+1/Fj) = Mj − Aj+1.

On the set (νm = j), we have Aj = 0 and Aj+1 > 0. Therefore, on (νm = j),
Mj = Uj and

E(Uj+1/Fj) = Mj − Aj+1 = Uj − Aj+1 < Uj.

Thus, on (νm = j), Uj = max(Zj, E(Uj+1/Fj)) = Zj. Plugging this equality
in (3.15), we obtain the announced result. According to Theorem 3.2, the
stopping time νm is optimal.
We finally prove that νm is the largest stopping time satisfying the optimality
property. For this, consider a stopping time ν such that P (ν > νm) > 0.
Then

E(Uν) = E(Mν)− E(Aν)

= E(M0)− E(Aν) = E(U0)− E(Aν)

< E(U0).

This inequality tell us that the sequence (Uν∧n, 0 ≤ n ≤ N) is not a martin-
gale and therefore, ν is not optimal. �
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3.7 Convergence Results

We end this chapter on discrete time martingale theory with a result on
convergence of a matingale sequence when n →∞. For its proof, we need a
refinement of Chebychev’s inequality for martingales, as follows.

Proposition 3.10 (Doob-Kolmogorov inequality) Let {Sn, n ≥ 1} be a mar-
tingale with respect to a filtration (Fn, n ≥ 1}. Then, for any ε > 0,

P
(

max
1≤i≤n

|Sn| ≥ ε
)
≤ 1

ε2
E
(
S2

n

)
.

Proof: We first consider a decomposition of the set Ω into disjoint subsets,
as follows. Set

A0 = Ω,

Ak = {|Si| < ε, for all i ≤ k},
Bk = Ak−1 ∩ {|Sk| ≥ ε}.

It holds that

Ω = An ∪ (∪n
i=1Bi) .

Hence, by the linear property of the mathematical expectation,

E
(
S2

n

)
=

n∑
i=1

E
(
S2

n11Bi

)
+ E

(
S2

n11An

)
≥

n∑
i=1

E
(
S2

n11Bi

)
.

We next notice that

E
(
S2

n11Bi

)
= E

(
(Sn − Si + Si)

211Bi

)
= α + β + γ,

with

α = E
(
(Sn − Si)

211Bi

)
,

β = 2E ((Sn − Si)Si11Bi
) ,

γ = E
(
S2

i 11Bi

)
.

We are going to give a lower bound for each one of these terms. Clearly,
α ≥ 0 and γ ≥ ε2P (Bi).
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Using property (c) of the conditional expectation and that Si11Bi
is Fi mea-

surable yield

E ((Sn − Si)Si11Bi
) = E [Si11Bi

E (Sn − Si/Fi)]

= 0.

Consequently,

E
(
S2

n

)
≥

n∑
i=1

ε2P (Bi) ≥ ε2P
(

max
1≤i≤n

|Si| ≥ ε
)

,

proving the proposition. �

The next theorem gives the behaviour of a martingale for large values of n.

Theorem 3.3 Let (Xn, n ≥ 0) be a martingale bounded in L2, that is, sat-
isfying supn E(X2

n) < M < ∞. There exists a L2–valued random variable Y
such that

lim
n→∞

Xn = Y,

almost surely and in L2.

Proof: First, we prove that {E (X2
n) , n ≥ 0} is an increasing sequence. In-

deed, using property (c) of the conditional expectation we obtain

E (Xm(Xm+n −Xm)) = E [XmE (Xm+n −Xm/Fm)] = 0.

This implies
E
(
X2

m+n

)
= E

(
X2

m

)
+ E (Xm+n −Xm)2 .

We set
M := lim

n→∞
E
(
X2

n

)
.

Next, we show that (Xn, n ≥ 0) is a Cauchy sequence, a.s. For this, we
introduce the set

C =
{
for all ε > 0, there exists m ≥ 1,

such that |Xm+i −Xm| < ε, for all i ≥ 1
}

and show that P (C) = 1.
By definition,

C = ∩ε>0 ∪m≥1 {|Xm+i −Xm| < ε, for all i ≥ 1} .
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Otherwise stated,
Cc = ∪ε>0 ∩m≥1 Am(ε),

where Am(ε) = {|Xm+i −Xm| ≥ ε, for some i ≥ 1}. Since Am(ε) decreases in
ε,

P (Cc) ≤ lim
ε→0

lim
m→∞

P (Am(ε)) .

We next prove that for each ε > 0,

lim
m→∞

P (Am(ε)) = 0,

using Doob-Kolomogorov’s inequality.
Set Yn = Xm+n −Xm. The σ-fields of the natural filtration associated with
Yn, n ≥ 1, say Gn, are included in Fm+n, for each n. Thus,

E (Yn+1/Gn) = E (E (Yn+1/Fm+n) /Gn)

= E (Yn/Gn) = Yn.

Hence, {Yn, n ≥ 1} is a martingale with respect to (Gn, n ≥ 1) and by
applying Proposition 3.10 we obtain

P (Am(ε)) = P (|Xm+i −Xm| ≥ ε, for some i ≥ 1 )

= lim
n→∞

P

(
sup

1≤i≤n
|Xm+i −Xm| ≥ ε

)

≤ 1

ε2
lim

n→∞
E
(
(Xm+n −Xm)2

)
=

1

ε2
lim

n→∞

(
E
(
X2

m+n

)
− E

(
X2

m

))
.

Thus,

P (Am(ε)) ≤ 1

ε2

(
M − E

(
X2

m

))
.

From this, it follows that

lim
m→∞

P (Am(ε)) = 0.

finishing the proof of the a.s. convergence.

The proof of the L2 convergence follows from Fatou’s lemma. Indeed,

E
(
(Xn − Y )2

)
= E

(
lim inf
m→∞

(Xn −Xm)2
)

≤ lim inf
m→∞

E
(
(Xn −Xm)2

)
= M − E

(
X2

n

)
.

This last expression tends to zero as n → ∞. This finishes the proof of the
theorem. �
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4 Applications of Martingale Theory to Fi-

nance

In this chapter, we shall apply martingale theory to some mathematical mod-
els for financial markets. We follow the approach of [4].

4.1 Basic Notions and Definitions

We consider a fixed probability framework consisting of a probability space
(Ω,F , P ) and a finite filtration, that is, a family of σ-algebras F0 ⊂ F1 ⊂
· · · ⊂ FN = F , where F0 is the σ-field consisting of sets A with either
P (A) = 0 or P (A) = 1.

Definition 4.1 A finite mathematical market is a sequence of d + 1-
dimensional random vectors {(S0

n, S
1
n, · · · , Sd

n), 0 ≤ n ≤ N} such that each
Si

n is positive (0 ≤ n ≤ N , 0 ≤ i ≤ d) is Fn-measurable.

The random variable Si
n represent the value at time n of some financial asset

labeled by i. The condition about measurability tell us that the value of
assets at time n may be known on the basis of what has been the evolution
until time n. That means, there is no insight into the future. The value of
N represents a fixed time horizon.
The 0-asset is assumed to be riskless and with initial value 1, i.e. S0

0 = 1.
That means, its associated return over a unity of time is constant and equal
to r. Thus S0

n = (1 + r)n. It is deterministic.

Definition 4.2 A portfolio, or a trading strategy, in the market
{(S0

n, · · · , Sd
n), n ≥ 0} is a sequence of d + 1-dimensional random vectors

{(Φ0
n, Φ

1
n, · · · , Φd

n)}, with Φ0
n constant and Φi

n is Fn−1-measurable for each
n ≥ 1 and 1 ≤ i ≤ d.

Here, the random variables Φi
n mean the number of shares of asset i at time

n. The measurability condition in definition 4.2 means that the composition
of the portfolio a time n is decided taking into account the evolution until
time n− 1.

Definition 4.3 The value of a portfolio at time n is defined by

Vn(Φ) =
d∑

j=0

Φj
nS

j
n = Φn · Sn, (4.1)

where the symbol ”·” means the scalar product on Rd+1.

41



Definition 4.4 A portfolio is self-financing if for any n ∈ {0, 1, · · · , N−1},

Φn · Sn = Φn+1 · Sn. (4.2)

The meaning of this notion is as follows: A time n + 1, the investor fixes his
strategy Φn+1 by readjusting the composition of the portfolio in such a way
that neither extra money is needed, nor extra money is left.
With this property, the value has the structure of a martingale transform.
More precisely,

Proposition 4.1 A portfolio is self-financing if and only if

Vn(Φ) = V0(Φ) +
n∑

i=1

Φi ·∆iS. (4.3)

Proof: Assume that the portfolio is self-financing. Then ∆iΦ · Si−1 = 0, for
any i = 1, · · · , N . Simple computations yield

∆iV (Φ) = Φi · Si − Φi−1 · Si−1

= Φi · Si − Φi · Si−1 + Φi · Si−1 − Φi−1 · Si−1

= Φi ·∆iS + ∆iΦ · Si−1. (4.4)

Consequently, we should have ∆iV (Φ) = Φi ·∆iS. This is equivalent to (4.3).
Conversely, assume that (4.3) holds. As just mentioned, this is equivalent to
∆iV (Φ) = Φi ·∆iS. Owing to (4.4) we must have ∆iΦ · Si−1 = 0 and this is
equivalent to the self-financing property. �

The next proposition provides a way to obtain a self-financing portfolio.

Proposition 4.2 Fix a real number x (initial capital) and a predictable fam-
ily of random vectors {(Φ1

n, · · · , Φd
n), 0 ≤ n ≤ N}. There exists a unique

family of predictable random vectors, Φ̃ = {Φ̃0
n, 0 ≤ n ≤ N}, such that

Φ = {(Φ̃0
n, Φ

1
n, . . . , Φ

d
n), 0 ≤ n ≤ N, 0 ≤ i ≤ d} is self-financing and with

initial value V0(Φ) = x.

Proof: Set
Φ̃0

0 = x− Φ1
0S

1
0 − · · · − Φd

0S
d
0 .

We define recursively Φ̃0
i by means of the formula (4.2). Then

Vn(Φ) = Φ̃0
n+1S

0
n + Φ1

n+1S
1
n + · · ·+ Φd

n+1S
d
n.

Since S0
n = (1 + r)−n, this equation gives the value of Φ̃0

n+1. Predictability
follows easily. �
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Definition 4.5 For a given market {Sn, 0 ≤ n ≤ N}, the normalized market
{S̃n, 0 ≤ n ≤ N} is defined by setting

S̃n = (1 + r)−nSn.

Obviously, for a normalized market, S̃0
n = 1 at any time n. Moreover, the

normalized value of the portfolio is

Ṽn(Φ) = (1 + r)−nVn(Φ) = Φn · S̃n.

The self-financing property reads

Φn · S̃n = Φn+1 · S̃n,

for each n = 0, 1, . . . , N − 1. Equivalently,

Ṽn+1(Φ)− Ṽn(Φ) = Φn+1 · (S̃n+1 − S̃n).

Clearly, Ṽ0(Φ) = V0(Φ) and summing up both terms of this identity yields

Ṽn(Φ) = V0(Φ) +
n∑

i=1

Φi ·∆iS̃,

for n = 1, . . . , N .

4.2 Admisible Strategies and Arbitrage

In the definition of a trading strategy, we allow the values of the process Φ
to be negative. However, we are interested in markets with positive value.
This leads to the following definition.

Definition 4.6 A trading strategy is admissible if it is self-financing and
Vn(Φ) ≥ 0 for any n ∈ {0, 1, . . . , N}.

We now introduce the notion of arbitrage which is a sort of possibility of
riskless profit.

Definition 4.7 An arbitrage strategy is an admissible strategy with zero ini-
tial value (V0(Φ) = 0, VN(Φ) ≥ 0) and P{VN(Φ) > 0} > 0.

Definition 4.8 A market is viable if there is no arbitrage opportunity.

Viability of financial markets can be characterized in probabilistic terms using
the martingale property, as is shown in Theorem 4.1. Let’s first give an
additional definition.
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Definition 4.9 A probability Q defined on the σ-field F is neutral if

1. Q is equivalent to P , that is, P (A) = 0 if and only if Q(A) = 0, for
any A ∈ F .

2. On the new probability space (Ω,F , Q), the discounted prices {S̃i
n, 0 ≤

n ≤ N} are martingales for each i = 1, . . . , d.

Theorem 4.1 The following statements concerning a finite, admisible mar-
ket are equivalent.

(a) The market is viable

(b) There exists a neutral probability.

Proof: Asume first (b). There exists a self-financing strategy Φ with V0(Φ) =
0, VN(Φ) ≥ 0. The sequence {Ṽn(Φ), 0 ≤ n ≤ N} is a martingale transform
in the probability space (Ω,F , Q). By assumption, (ṼN(Φ))− = 0. Hence,
the hypotheses of Proposition 3.4 are satisfied and consequently, {Ṽn(Φ), 0 ≤
n ≤ N} is a martingale on (Ω,F , Q), null at n = 0. Thus,

EQ(ṼN(Φ)) = EQ(Ṽ0(Φ)) = 0.

Since VN(Φ) ≥ 0, this implies VN(Φ) = 0, Q-a.s. and, by the equivalence of
P and Q, we conclude VN(Φ) = 0, P-a.s.

Conversely, let us assume that there is no arbitrage strategy and prove the ex-
istence of a neutral probability. This part of the proof is rather difficult. For
the sake of illustration, we shall fix the particular framework which consists
of a finite sample space Ω, F = P(Ω) and P ({ω}) > 0, for any ω ∈ Ω.

Let C be the set of positive random variables with mean value equal to one.
Denote by M the cardinal of Ω. The set C is a convex, compact subset of
RM . Denote by Γ the set of random variables of the form VN(Φ), where Φ is
a self-financing strategy, Φ0 = 0. The set Γ is also a subset of RM . Since we
are assuming that there is no arbitrage, C and Γ are disjoint. By the convex
sets separation theorem, there exists a linear map L : RM → R such that
L > 0 on C and L ≡ 0 on Γ. Hence, there exists a random variable Y such
that

(i)
∑

ω X(ω)Y (ω) > 0, for each X ∈ C,

(ii)
∑

ω VN(Φ)(ω)Y (ω) = 0, for each self-financing strategy with Φ0 = 0.
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Property (i) implies Y (ω) > 0, for any ω ∈ Ω. Set

Q({ω}) =
Y (ω)

Λ
,

with Λ =
∑

ω Y (ω).
The probabilities P and Q are equivalent. Let (Φ1

n, . . . , Φ
d
n), n ≥ 1 be a

sequence of predictable processes. There exists a self-financing trading strat-
egy with null initial value such that (Φ1

n, . . . , Φ
d
n) corresponds to the number

of assets at time n.
By virtue of (ii),

EQ(ṼN(Φ)) =
1

Λ

∑
ω

ṼN(Φ)(ω)Y (ω) = 0,

and consequently EQ

(∑N
i=1 Φi ·∆iS̃

)
= 0. Set Φj

i = 0 for j 6= j0 and i 6= i0,

and Φj0
i0 = 11A, with A ∈ Fi0−1, we obtain

EQ

(
∆i0S̃

j011A

)
= 0.

Thus,
EQ

(
∆i0S̃

j0/Fi0−1

)
= 0.

This proves that the discounted prices process, {S̃j
n, 0 ≤ n ≤ N}, are mar-

tingales with respect to Q. �

4.3 Options. Notions and Definitions

A derivative is a contract on some assets of the financial market. Here, we
shall deal with a special case of derivatives: the options. An option gives the
holder the right, but not the obligation, to buy or sell a certain amount of a
financial asset at a certain date, at a certain price.
An option is defined by the following ingredients

(i) Its type: a call is an option to buy, a put is an option to sell

(ii) The kind and quantity of assets concerned, for example, stocks, bonds,
currency, etc.

(iii) The maturity time or expiration date

(iv) The exercise price, which fixes the price at which the transaction is
done when the option is exercised.

45



If options are traded by established markets, their prices are fixed by the
market.

Example 4.1 An European call option on a stock is defined by the price of
the stock at any time, St, the expiration date T > 0 and the exercise price
K. The option is exercised at T .

Assume that ST > K. In this case, the holder makes a profit by exercising
the option, because he will buy the option at a price K but sell at price
ST . If ST ≤ K, he does not make any profit by exercising the option at the
maturity time. The value of the option at T is given by

(ST −K)+ := max(ST −K, 0).

In a similar way, for put options, the value at time T is (K − ST )+.
Comming back to call options, if the holder exercises the option, the writer
has to generate the amount (ST−K)+. This yields to the following questions:

1. How much should the potential option holder pay for the asset at time
t = 0, when the deal starts? This problem is called option pricing.

2. How should the writer design an strategy assuring that it will be pos-
sible to generate the amount (ST −K)+, to avoid losing money? This
problem is called hedging the option.

In these examples of options, the contingent claim H by the holder (H :=
(ST −K)+), depends only of ST , and therefore it is measurable with respect
to FT , the σ-field generated by S0, . . . , ST . There are more complex options.
For instance, Asian options fix as value of the contingent claim

H =

(
1

T + 1

T∑
n=0

(Sn −K)

)+

.

Notice that H is still FT -measurable.

4.4 Complete Markets. Option Pricing

We introduce and study in this section the notion of completeness, which
allows basically to develop a simple theory.

Definition 4.10 A random variable H ≥ 0 is an attainable contingent claim
if there exists an admissible trading strategy Φ such that VT (Φ) = H.

We shall say that such strategy replicates the option.
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Definition 4.11 A viable market (see Definition 4.8) is complete if every
contingent claim is attainable.

Notice that in a viable, complete market, hedging is always possible. In this
case, we shall fix as price of the option the initial value V0(Φ) of a replicating
strategy and as contingent claim VT (Φ). By the next proposition, this makes
sense.

Proposition 4.3 Fix a contingent claim H at time T in a viable market.
Then H characterizes the value sequence {Vn(Φ), 0 ≤ n ≤ T} of any repli-
cating portfolio.

Proof: Let Φ1, Φ2 be two self-financing strategies, with

VT (Φ1) = VT (Φ2) = H

but such that the sequences {Vn(Φ1), 0 ≤ n ≤ T}, {Vn(Φ2), 0 ≤ n ≤ T} do
not coincide. Set n = inf{k = 0, . . . , T : Vk(Φ1) 6= Vk(Φ2)}.
Assume first that n = 0 and V0(Φ1) < V0(Φ2). Let Ψ be a self-financing
strategy with null initial value and Ψj

n = Φj
1,n − Φj

2,n, j = 1, . . . , d, n =
0, . . . , T . Then,

VT (Ψ) = VT (Ψ− Φ1 + Φ2) + VT (Φ1)− VT (Φ2)

= (1 + r)NV0(Ψ− Φ1 + Φ2).

Indeed, Ψ− Φ1 + Φ2 is a riskless portfolio. This yields

VT (Ψ) = (1 + r)T (V0(−Φ1) + V0(Φ2)) > 0.

Hence, there is arbitrage, contradicting the fact that the market is viable
(there is no arbitrage opportunity).

Assume now n ≥ 1 and thus, V0(Φ1) = V0(Φ2). We may assume P (A) > 0,
where

A = {Vn(Φ1) < Vn(Φ2)}.

Let us define a self-financing strategy Ψ as follows:

(i) If either ω ∈ Ac or ω ∈ A but k ≤ n, set Ψk(ω) = Φ2,k(ω)− Φ1,k(ω).

(ii) If ω ∈ A and k > n, set Ψ0
k(ω) = Ṽn(Φ2) − Ṽn(Φ1), and Ψi

k = 0, for
i = 1, . . . , d.
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Clearly, Ψ is predictable. Moreover, for either k < n or for ω ∈ Ac, the
self-financing equation holds, because of the same properties of Φi, i = 1, 2.
For ω ∈ A and k > n, Ψk+1 = Ψk. Finally, for k = n and ω ∈ A,

Ψn · Sn = (Φ2,n − Φ1,n) · Sn = Vn(Φ2)− Vn(Φ1),

Ψn+1 · Sn =
(
Ṽn(Φ2)− Ṽn(Φ1)

)
S0

n = Vn(Φ2)− Vn(Φ1).

On the set A, the portfolio Ψ has a null initial value and final value VT (Φ2)−
VT (Φ1) = 0, while on the set Ac,

(
Ṽn(Φ2)− ṼT (Φ1)

)
S0

n > 0. Thus, Ψ is an
arbitrage trading strategy, contradicting the assumption that the market is
viable.

�

Complete markets are characterized by the following theorem.

Theorem 4.2 A viable market is complete if and only if there exists a unique
probability Q equivalent to P such that the discounted prices are martingales,
that is, Q is neutral (see Definition 4.9).

Proof: Assume first that the market is complete. Let Pi, i = 1, 2 be two
equivalent probabilities such that the discounted prices are martingales with
respect to both probabilities. Let H = 11A, A ∈ F be a contingent claim. By
completeness, there exists a self-financing strategy Φ such that VN(Φ) = 11A.
The sequence {Ṽn(Φ), 0 ≤ n ≤ T} is a martingale with respect to both Pi,
i = 1, 2. Consequently,

EP1(ṼN(Φ)) = EP1(Ṽ0(Φ)) = V0(Φ),

EP2(ṼN(Φ)) = EP2(Ṽ0(Φ)) = V0(Φ),

which yields P1(A) = P2(A). Since A ∈ F is arbitrary, we conclude P1 = P2.

Conversely, assume that there exists a unique probability Q equivalent to P
such that the discounted prices are martingales, but that the market is not
complete. We are going to obtain a contradiction. For the sake of simplicity,
we shall assume that Ω is finite, F = P(Ω) and P ({ω}) > 0.
Let H be a non replicable contingent claim. Let V be the vector subspace of
L2(Ω,F , Q) consisting of random variables of the form

c +
T∑

n=1

Φn ·∆nS̃, c ∈ R, Φn, 0 ≤ n ≤ T, predictable.
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Since H is not replicable, H
S0

T
= H(1+r)−T /∈ V . Hence V is a strict subspace

of L2(Ω,F , Q). Let X be a non null random variable orthogonal to V .
Set

P ∗({ω}) =

(
1 +

X(ω)

2‖X‖∞

)
Q({ω}).

The following properties hold:

1. Since 1 ∈ V , EP ∗(X) = 0 and therefore P ∗ defines a probability.

2. P ∗ and Q do not coincide, because X is not identically zero.

3. Using that X is orthogonal to V in the space L2(Ω,F , Q) and that the
sequence {S̃j

n, 0 ≤ n ≤ T} is a martingale with respect to Q yields,

EP∗

(
T∑

n=1

Φn ·∆nS̃

)
= EQ

(
T∑

n=1

Φn ·∆nS̃

)
+ EQ

(
X

‖X‖∞

T∑
n=1

Φn ·∆nS̃

)

= EQ

(
T∑

n=1

Φn ·∆nS̃

)
= 0,

Therefore, {S̃n, 0 ≤ n ≤ T} is a martingale with respect to P ∗.

�

In a viable and complete market option pricing and hedging is always possi-
ble. Indeed, let H be a contingent claim, that is, a random variable H ≥ 0.
There exists a self-financing portfolio Φ such that VT (Φ) = H. Moreover,
with respect to an equivalent probability Q, the sequence of discounted values
{Ṽn(Φ), 0 ≤ n ≤ T} is a martingale. Then,

(1 + r)−T EQ(H) = EQ(ṼT (Φ)) = V0(Φ),

which says that the initial value of this portfolio is determined by H. Then,
for a contingent claim H, we price the asset by

V0(Φ) = (1 + r)−T EQ(H).

Moreover, by the martingale property, we also have

(1 + r)−nVn(Φ) = EQ

(
H(1 + r)−T /Fn

)
.

Thus,
Vn(Φ) = (1 + r)n−T EQ(H/Fn),

which says that, at any time n, the value of an admissible strategy replicating
H is completely determined by H. It seems natural to denote Vn(Φ) the price
of the option at time n (it only depends on H and not on Φ).
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4.5 Cox, Ross and Rubinstein model

We introduce here an example which is the discrete version of the Black and
Scholes model.
Assume that the market consists of a single asset: S = {(S0

n, S
1
n), n ≥ 1},

S0
n = (1+ r)n, S1

n = Sn. We assume that the value of this asset is S0 > 0 and

Sn+1 =

 either Sn(1 + a)

or Sn(1 + b),

with −1 < a < b, meaning that the relative price change between n and n+1
is either a or b. Equivalently, setting

Tn =
Sn

Sn−1

, 1 ≤ n ≤ N,

Tn ∈ {1 + a, 1 + b}.
Set Ω = {1 + a, 1 + b}N , the set of possible values of the vector (T1, . . . , TN),
F = P(Ω) and P the law of this vector. Remember that P is determined by
the probability function P{T1 = x1, . . . , TN = xN}, for any (x1, . . . , xN) ∈ Ω.
If the market has no arbitrage strategies, then r ∈ (a, b). Indeed, Assume for
instance r ≤ a. Assume we borrow S0 at t = 0 and at time N we give back
S0 and sell the asset. We make a profit of SN−S0(1+r)N ≥ 0. Indeed, SN ≥
S0(1+a)N . Moreover, with strictly positive probability SN −S0(1+a)N > 0,
hence we have arbitrage. If r ≥ b, we also reach a similar conclusion.

Assume r ∈ (a, b) and set p = r−a
b−a

. The following statements are equivalent:

(A) The discounted price sequence {S̃n, 0 ≤ n ≤ N} is a martingale with
respect to P

(B) The random variables T1, . . . , TN are independent, with the same dis-
tribution and

P{T1 = 1 + a} = 1− p

P{T1 = 1 + b} = p.

Therefore, the financial market is complete and the neutral probability is
given by the probability P such that (B) holds.
The discounted price sequence {S̃n, 0 ≤ n ≤ N} is a martingale with respect
to P if and only if E(Tn+1/Fn) = r + 1.

Indeed, EP (S̃n+1/Fn) = S̃n is equivalent to EP ( S̃n+1

S̃n
/Fn) = 1. Since S̃n is

Fn-measurable, this last equality is equivalent to E(Tn+1/Fn) = r + 1.
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Let us prove the above-mentioned equivalence between (A) and (B). Assume
first that (B) holds. Then

E(Tn+1/Fn) = E(Tn+1) = p(1 + b) + (1− p)(1 + a)

= 1 + r.

This proves (A).
Assume now (A). From the identities

(1 + a)P (Tn+1 = 1 + a/Fn) + (1 + b)P (Tn+1 = 1 + b/Fn)

= E(Tn+1/Fn) = r + 1,

P (Tn+1 = 1 + a/Fn) + P (Tn+1 = 1 + b/Fn) = 1,

we obtain

P (Tn+1 = 1 + a/Fn) = 1− p,

P (Tn+1 = 1 + b/Fn) = p,

This shows (B).

Value of an European call and put

Denote by Cn (respectively, Pn) the value at time n of an European call
(respectively, put) of one asset in the Cox, Ross and Rubinstein model with
strike (exercise) price K and maturity time N . By the definition of Tn before,
we have

Cn = (1 + r)−(N−n)E
(
(SN −K)+/Fn

)
= (1 + r)−(N−n)E

Sn

N∏
i=n+1

Ti −K

+

/Fn

 .

The random variable Sn is Fn- measurable and
∏N

i=n+1 Ti is independent
of Fn. Applying property (h) of the conditional expectation, yields Cn =
c(n, Sn), with

c(n, x) = (1 + r)−(N−n)E

x
N∏

i=n+1

Ti −K

+
= (1 + r)−(N−n)

N−n∑
j=0

(N − n)!

(N − n− j)!j!
pN−n−j(1− p)j

×
(
x(1 + a)j(1 + b)N−n−j −K

)+
.
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For Pn we have

Pn = (1 + r)−(N−n)E
(
(K − SN)+/Fn

)
.

The following simple relation between Cn and Pn allows to compute Pn ex-
plicitly:

Cn − Pn = (1 + r)−(N−n)E
(
(SN −K)+ − (K − SN)+/Fn

)
= (1 + r)−(N−n)E ((SN −K)/Fn)

= Sn −K(1 + r)−(N−n).

Let us now compute a replicating strategy (remember that in this model, the
market is complete). Such portfolio should satisfy

Φ0
n(1 + r)n + Φ1

nSn = c(n, Sn).

Substituting Sn by its two possible values yields the two next equations

Φ0
n(1 + r)n + Φ1

nSn−1(1 + a) = c(n, Sn−1(1 + a)),

Φ0
n(1 + r)n + Φ1

nSn−1(1 + b) = c(n, Sn−1(1 + b)).

Thus,

Φ1
n =

c(n, Sn−1(1 + b))− c(n, Sn−1(1 + a))

Sn−1(b− a)
.

4.6 American Options

In Section 4.3, we described an European option. In this section, we shall
introduce the notion of American options and we shall apply the results of
Chapter 3 on the Snell envelope (see Section 3.5 and 3.6) to price and hedge
such type of options.
The difference between an European and an American option is that, in the
later the option can be exercised at any time 0, 1, . . . , N, before the maturity
time N . Otherwise, we shall keep all the notions and definitions given in
Section 4.3.
Assume for simplicity that there is a single stock S1. Then, instead of the
contingent claim denoted by H in Section 4.3, we shall have a finite sequence
Zn, n = 0, 1, . . . , N , defined as follows:
For a Call American Option,

Zn = (S1
n −K)+.
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For a Put American Option,

Zn = (K − S1
n)+.

Here K denotes the exercise price and S1
n, the price of the stock at time n.

Pricing an American option

We shall assume that the market is viable and complete.
Denote by Un the price of the option at time n. We fix the value of Un by
means of a backward recursive argument.

• For n = N , we naturally set UN = ZN .

• For n = N − 1, there are two possibilities. Assume that we exercise
the option at n = N − 1. In this case, we earn ZN−1. Assume we do
not exercise the option; that is, we should exercise the option at time
N . We are now in the same situation than for an European call option
with exercise price ZN . The value at N − 1 will be

(1 + r)−1EQ(ZN/FN−1).

We are free to choose anyone of these two possibilities. Therefore,

UN−1 = max
(
ZN−1, (1 + r)−1EQ(ZN/FN−1)

)
.

• Let us now consider an arbitrary time n. There are two possibilities.
Either we exercise the option at this time, and the profit will be Zn, or
we do exercise later. In this case, it is like having an European option
with contingent claim Un+1 and a price at time n− 1 given by

(1 + r)−1EQ(Un+1/Fn).

Thus,
Un = max

(
Zn, (1 + r)−1EQ(Un+1/Fn)

)
.

Summarising the previous arguments, we fix the price of an American call
option as follows:

Un =

ZN , if n = N,

max (Zn, (1 + r)−1EQ(Un+1/Fn)) if n = 0, . . . , N − 1.

Set Z̃n = (1 + r)−nZn, Ũn = (1 + r)−nUn, for any n = 0, 1, . . . , N . Then

Ũn =

Z̃N , if n = N,

max
(
Z̃n, EQ(Ũn+1/Fn)

)
if n = 0, . . . , N − 1.
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We see that (Ũn, n = 0, . . . , N) is the Snell envelope of (Z̃n, n = 0, . . . , N).
This yields the following expression for the price (see Proposition 3.7 and its
extension):

Ũn = sup
ν∈Tn,N

EQ(Z̃ν/Fn),

Un = sup
ν∈Tn,N

EQ((1 + r)−(ν−n)Zν/Fn).

The expression EQ((1+ r)−(ν−n)Zν/Fn) represents the price of the European
option at time n in case that the owner decides to exercise it at the stopping
time ν ≥ n.

Hedging the American Option

Consider an initial capital U0 identical to the price of the stock at the initial
time. Since the market is complete, there exists a self-financing strategy Φ
such that VN(Φ) = MN , where Ũn = M̃n − Ãn is the Doob decomposition of
the supermartingale (Ũn, 0 ≤ n ≤ N) and

Mn = (1 + r)nM̃n

An = (1 + r)nÃn

Both sequences (M̃n, 0 ≤ n ≤ N) and (Ṽn(Φ), 0 ≤ n ≤ N) are martingales
and coincide at N ; therefore they must coincide. The initial value of this
financial strategy is V0(Φ) = M0 = U0. This is the price for the American
option. Moreover, Un = Mn − An = Vn(Φ)− An, which yields

Vn(Φ) ≥ Un ≥ Zn.

This means that the financial strategy Φ hedges the profit of the American
option at any time.

What is the optimal date to exercise the option? The date of exercise can be
chosen among the set T0,N of all stopping times. However, from the point
of view of the buyer of the option, there is no point in exercising at a time
n such that Un > Zn, because he would trade an asset worth Un (the price
of the option) for an amount Zn (by exercising the option). Hence, we are
looking for a stopping time τ such that Uτ = Zτ . On the other hand, using
the notation of Proposition 3.9, we would like to have τ ≤ νm, since if τ > νm,
Aτ > 0, and then Vτ (Φ) = Ur + Ar > Ur ≥ Zr. That is, Vτ (Φ) > Zr. That
is, extra wealth is generated.
A stopping time τ such that Uτ = Zτ and τ ≤ νm is optimal. Indeed, the
sequence (Un∧τ = Un∧τ∧τm , 0 ≤ n ≤ N) is a martingale, because (Un∧τm , 0 ≤
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n ≤ N) is also a martingale (see Proposition 3.9) and we can apply Theorem
3.2.
Thus, we have proved that the optimal dates to exercise are the optimal
stopping times.
Notice that, exercising at an optimal stopping time τ gives

Vτ (Φ) = Uτ + Aτ = Uτ = Zτ ,

because Aτ = 0. Hence the hedging is exact.

Comparing the Values of American and European Options

Let (Un, 0 ≤ n ≤ N) be the sequence of values of an American option
with associated benefits (Zn, 0 ≤ n ≤ N), and (Cn, 0 ≤ n ≤ N) the ones
corresponding to the pricing of an European option with exercise benefit ZN .
We have the following facts

• For any 0 ≤ n ≤ N , Un ≥ Cn.

• In addition, if Cn ≥ Zn for any 0 ≤ n ≤ N , then

Un = Cn.

That means: In general, the price of American options is higher than that of
European ones.
To prove these facts, consider the neutral probability Q such that (Ũn, 0 ≤
n ≤ N) is a supermartingale. Then

Ũn ≥ EQ(ŨN/Fn) = EQ(Z̃N/Fn) = C̃n.

Assume now that Cn ≥ Zn for each 0 ≤ n ≤ N . The process (C̃n, 0 ≤ n ≤ N)
is a martingale (and therefore, a supermartingale) satisfying C̃n ≥ Z̃n,
0 ≤ n ≤ N . Owing to the properties of the Snell envelope, C̃n ≥ Ũn,
0 ≤ n ≤ N , yielding Cn = Un for each 0 ≤ n ≤ N .

This finishes the proof of the above statements.

Example 4.2 Consider a call option with exercise price K. We clearly have

Cn = (1 + r)−(N−n)EQ

(
(SN −K)+/Fn

)
≥ (1 + r)−(N−n)EQ(SN −K/Fn)

= (1 + r)nEQ(S̃N/Fn)− (1 + r)−(N−n)K

= (1 + r)nS̃n − (1 + r)−(N−n)K = Sn − (1 + r)−(N−n)K

≥ Sn −K.
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Since Cn ≥ 0, for any 0 ≤ n ≤ N , the preceding inequality yields Cn ≥
(Sn −K)+ = Zn. By the previous discussion, we have that, in this case the
prices of American and European options coincide.

For a put, the value of an American option will be in general higher than for
an European option. Remember that Zn = (K − Sn)+.
We can compute the price of the American option in the binomial model as
follows: Un = un(Sn), where

un(x) =

(K − x)+ if n = N,

max ((K − x)+, (1 + r)−1fn+1(x)) , if n = 0, . . . , N − 1,

with
fn+1(x) = (1− p)un+1 (x(1 + a)) + pun+1 (x(1 + b)) ,

and p = r−a
b−a

.
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5 Discrete Time Markov Chains

This chapter is devoted to study sequences of random variables {Xn, n ≥ 0},
taking values on countable sets, such that, at any step n ≥ 1, the random
variables corresponding to the future, {Xm, m ≥ n}, and those corresponding
to the past, {Xm, 0 ≤ m ≤ n} are conditionally independent given Xn. This
is similar to say that the information about the past of the evolution is
captured by what happened at the last step. This kind of dependence is
called the Markov property.
As for martingales, Markov property was introduced as an attempt to go
beyond sequences of independent random variables and to extend classical
results of Probability Theory, like the law of large numbers.
Along this chapter, unless otherwise specified, random variables take their
values on a countable set denoted by I. We call states the elements of I.

5.1 The Markov Property

The definition of a Markov chain needs two ingredients:

(a) A probability ν on I,

(b) A matrix Π = (pi,j)i,j∈I , such that
∑

j∈I pi,j = 1, for any i ∈ I.

In the sequel, any matrix like the one described in (b) will be called a stochas-
tic matrix.

Definition 5.1 A stochastic process {Xn, n ≥ 0} is a homogeneous Markov
chain with initial distribution ν and transition probability matrix Π if the
following two properties hold:

(1) P (X0 = i) = νi, for any i ∈ I

(2) for any n ≥ 1, and i0, i1, . . . , in−1, i, j ∈ I,

P (Xn+1 = j/X0 = i0, X1 = i1, . . . , Xn = i) = pi,j. (5.1)

Condition (1) determines the probability distribution of the initial random
variable X0. Condition (2) tells us that, from the knowledge of values of the
process at time n = 0, 1, . . . , n, we only keep the one at n, since the depen-
dence on i0, . . . , in−1 is not visible at the right hand-side of 5.1. Moreover,
pi,j does not depend on n; this is why we put the word homogeneous in the
definition, meaning stationary in time.
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Example 5.1 Consider a sequence of independent, identically distributed
random variables {Yn, n ≥ 0} taking values on Z. That is, infinitely many
independent copies of a random variable Y . Set

Xn =
n∑

i=0

Yi, n ≥ 0.

The stochastic process X = {Xn, n ≥ 0} is a homogeneous Markov chain
with initial distribution the probability law of the random variable Y0 and
transition probability matrix Π given by pi,j = P (Y = j − i), i, j ∈ Z.

Indeed, fix n ≥ 1. By the definition of Xn, the formula for conditional
probabilities and the independence of the random variables Yn , we have

P (Xn+1 = j/X0 = i0, Xi = i1, . . . , Xn = i)

=
P (Xn+1 = j, X0 = i0, X1 = i1, . . . , Xn = i)

P (X0 = i0, X1 = i1, . . . , Xn = i)

=
P (Yn+1 = j − i, X0 = i0, Y1 = i1 − i0, . . . , Yn = i− in−1)

P (X0 = i0, Y1 = i1 − i0, . . . , Yn = i− in−1)

= P (Yn+1 = j − i).

With similar, but simpler computations, we show that

P (Xn+1 = j/Xn = i) = P (Yn+1 = j − i).

We see in this example that the elements of the transition probability matrix
are

pi,j = P (Xn+1 = j/Xn = i),

which justifies its name.
We shall see later that this property holds for every homogeneous Markov
chain and therefore, that condition (2) in Definition 5.1 can be written as

P (Xn+1 = j/X0 = i0, X1 = i1, . . . , Xn = i) = P (Xn+1 = j/Xn = i). (5.2)

Assume in the previous example that Y takes values on the set {−1, 1} with
probabilities 1 − p and p, respectively, p ∈]0, 1[. Then the process X is the
Bernoulli random walk on Z. The values of this process give the position
of a walker that starts at some integer position and moves either forward or
backward according to the result of coin tossing.
The initial distribution is the law of Y and the transition probability matrix
is given by

Π =

· · · · · · · · · · · · · · ·
· · · 1− p 0 p · · ·
· · · · · · · · · · · · · · ·

 (5.3)
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Conditions (1) and (2) in Definition 5.1 determine the finite dimensional
joint distributions of the process {Xn, n ≥ 0} (see Definition 2.2). This is a
consequence of formula (A) in section 1.2. Indeed, fix i0, i1, . . . , in−1, in, then

P (X0 = i0, X1 = i1, . . . , Xn = in)

P (X0 = i0)P (X1 = i1/X0 = i0)× . . .

× P (Xn = in/X0 = i0, X1 = i1, . . . , Xn−1 = in−1)

= ηi0pi0,i1 · · · pin−1,in . (5.4)

As a consequence, we obtain the probability law of each random variable Xn,
n ≥ 1. More precisely, we have the following formula

P (Xn = j) = (νΠn)j, (5.5)

Indeed, owing to property (B) in section 1.2 and (5.4) we have

P (Xn = j) =
∑

i0∈I,··· ,in−1∈I

ηi0pi0,i1 · · · pin−1,j

(νΠn)j.

We can now prove a useful formula for the transition probabilities in m steps.
For any m ≥ 0, n ≥ 1, i, j ∈ I, we define

p
(n)
i,j = P (Xn+m = j/Xm = i).

Then,
p

(n)
i,j = (Πn)i,j. (5.6)

That means, assuming that at some time m, the chain visits the state i, the
probability that after n steps, that is, at time m + n, the chain visits the
state j, is the element indexed by i, j of the n-th power of the matrix Π.
Let us prove (5.6). We apply property (B) in section 1.2 and (5.4) to obtain

p
(n)
i,j = P (Xn+m = j/Xm = i) =

P (Xn+m = j, Xm = i)

P (Xm = i)

=

∑
i0,...,im−1,im+1,··· ,in+m−1∈I ηi0pi0,i1 · · · pim−1,ipi,im+1 · · · pin+m−1,j

(νPm)i

=
∑

im+1,··· ,in+m−1∈I

pi,im+1 · · · pin+m−1,j

= (Πn)i,j.

The next proposition is a statement about the Markov property we have
mentioned at the beginning of the chapter.
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Proposition 5.1 (Markov Property) Let {Xn, n ≥ 0} be a HMC with initial
distribution ν and transition probability matrix Π. Fix m ≥ 1. Then, condi-
tionally on (Xm = i), the process {Xn+m, n ≥ 0} is a HMC, with transition
probability matrix Π and initial distribution δ{i}, independent of the random
variables X0, · · · , Xm.

Proof: For any A ∈ F , set Pi(A) = P (A/Xm = i). Clearly,

Pi(Xm = j) = δi,j,

We next prove that, for any n ≥ 0 and i1, · · · , in, in+1 ∈ I,

Pi(Xn+m+1 = in+1/Xm = i, Xm+1 = i1, . . . , Xm+n = in) = pin,in+1 . (5.7)

Indeed, using the definition of the conditional probability, we have

Pi(Xn+m+1 = in+1/Xm = i, Xm+1 = i1, . . . , Xm+n = in)

=
P (Xn+m+1 = in+1, Xm+n = in, . . . , Xm+1 = i1, Xm = i)

P (Xm = i, Xm+1 = i1, . . . , Xm+n = in)

=
pi,i1 · · · pin,in+1

pi,i1 · · · pin−1,in

= pin,in+1 .

This proves the first statement concerning the process {Xn+m, n ≥ 0}.
Let D = {X0 = i0, . . . , Xm = im}. To prove the conditional independence,
we have to check that for any set of the type

B = {Xnj+m = inj+m, nj ≥ 1, j = 1, . . . , k},

the following property holds:

Pi(B ∩D) = Pi(B)Pi(D). (5.8)

To simplify the notation and give an idea of the proof, we asume that B =
{Xn+m = in+m}. If im 6= i, both terms of the previous equality are zero.
Assume im = i. Then, by (5.5),

Pi(B ∩D) =
P (B ∩D)

P (Xm = i)

=
1

P (Xm = i)

∑
im+1,...in+m−1

πi0pi0,i1 . . . pim−1,ipi,im+1 . . . pim+n−1,in+m ,

while

Pi(D) =
1

P (Xm = i)
πi0pi0,i1 . . . pim−1,i,

Pi(B) =
∑

im+1,...in+m−1

pi,im+1 . . . pim+n−1,in+m .

60



This finishes the proof of (5.8) in this particular case.

�

There is a stronger version of the previous proposition. In fact, the deter-
ministic time m can be replaced by a stopping time (see Definition 3.5). This
is called the strong Markov property.

Using an argument based on the total probability principle and then similar
ideas as those of the proof of Proposition 5.1, we can prove the following
Proposition. In the statement, T is a stopping time with respect to the
natural filtration generated by X (see section 3.2).

Proposition 5.2 (Strong Markov Property) Let X = {Xn, n ≥ 0} be a HMC
with initial distribution ν and transition probability matrix Π. Conditionally
on T < ∞ and XT = i, the process {Xn+T , n ≥ 0} is a HMC, with transition
probability matrix Π and initial distribution δ{i}, independent of the random
variables X0, · · · , XT .

Proof: Set

P ∗(·) = P (·/T < ∞, XT = i) .

Clearly

P ∗(XT = j) = δi,j.

Fix arbitrary states i, i1, . . . , in, in+1. The definition of the conditional prob-
ability and the total probability principle yields

P ∗ (XT+n+1 = in+1/XT = i, XT+1 = i1, . . . , XT+n = in)

=
P (XT+n+1 = in+1, XT = i, XT+1 = i1, . . . , XT+n = in, T < ∞)

P (XT = i, XT+1 = i1, . . . , XT+n = in, T < ∞)

=

∑∞
m=1 P (T = m,Xm+n+1 = in+1, Xm = i, Xm+1 = i1, . . . , Xm+n = in)∑∞

m=1 P (T = m, Xm = i, Xm+1 = i1, . . . , Xm+n = in)
.
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By multiplying and dividing by P (Xm = i), using that (T = m) ∈ Fm and
owing to the previous Proposition 5.1, the previous expression is equal to∑∞

m=1 Pi(T = m)Pi (Xm+n+1 = in+1, Xm = i, Xm+1 = i1, . . . , Xm+n = in)∑∞
m=1 Pi(T = m)Pi (Xm = i, Xm+1 = i1, . . . , Xm+n = in)

=

∑∞
m=1 Pi(T = m)Pi(Xm = i)pi,i1 . . . pin,in+1∑∞
m=1 Pi(T = m)Pi(Xm = i)pi,i1 . . . pin1 ,in

= pin,in+1 .

This proves the first statement.

The proof of the statement about independence is carried out in a similar
way than the corresponding one in Proposition 5.1, by considering, as before,
all the possible values of the stopping time T .

�

5.2 A Brief Analysis of the States of a Markov Chain

In this section, we study some possibilities for the Markov chain to wandering
through the state space.

Definition 5.2 (a) Given two states i, j ∈ I, we say that j is accessible

from i if there exists a non-negative integer k such that p
(k)
i,j > 0.

We shall write i → j for j being accessible from i.

(b) Two states i, j ∈ I communicate if j is accessible from i and i is ac-
cessible from j. For two communicating states, i, j ∈ I, we shall write
i ↔ j.

(c) A Markov chain is called irreducible if all states communicate.

The Bernoulli random walk on Z is an example of irreducible Markov chain.
Communication between states establishes an equivalence relation on the set

of states. Each equivalence class contains states that communicate to each
other.

The next definition deals with the idea of the intensity that states are suc-
cessively visited by the dynamical system given by the Markov chain.
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Definition 5.3 (a) A state i ∈ I is termed recurrent if

P
(
lim sup

n
{Xn = i}

)
= 1.

Otherwise stated, the probability that Xn = i for infinitely many values
of n is one.

(b) A state i ∈ I is termed transient if

P
(
lim sup

n
{Xn = i}

)
= 0.

This can also be stated saying that

P
(
lim inf

n
{Xn 6= i}

)
= 1.

Recurrent states are those which are being visited infinitely many times, while
transient states are those which eventually are left forever, almost surely.
From the above definition it does not clearly follow that both notions, recur-
rence and transience, are opposite to each other. However, we shall see later
that this is actually the case.
In the analysis of these notions, the following definitions will be useful.

Definition 5.4 (a) For a state i ∈ I, the first passage time is given by

Ti = inf{n ≥ 1 : Xn = i},

with the usual convention that, if the above set is empty, Ti = ∞.

(b) The r–th passage time, r ≥ 2 is defined by

T
(r)
i = inf{n ≥ T

(r−1)
i + 1 : Xn = i},

where T
(1)
i = Ti, and T

(0)
i = 0, by convention.

(c) The length of the r–th excursion to i is the stopping time defined by

S
(r)
i =

T
(r)
i − T

(r−1)
i if T

(r−1)
i < ∞

0 otherwise.

By the strong Markov property, the r–th excursion is independent of the
Markov chain until the r − 1–th visit to i. More precisely, we have the
following result.
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Proposition 5.3 Fix r ≥ 2 and i ∈ I. Conditionally to (T
(r−1)
i < ∞), the

r–th excursion to i, S
(r)
i , is independent of the random variables {Xm, m ≤

T
(r−1)
i }. Moreover, its probability law is the same as that of Ti, that is,

P
(
S

(r)
i = n/T

(r−1)
i < ∞

)
= P (Ti = n/X0 = i) .

Proof: Set T = T
(r−1)
i . By definition, on (T

(r−1)
i < ∞), XT = i. By

the strong Markov property, the process {XT+n, n ≥ 0} is a Markov chain,
with the same probability transitions matrix that the initial one and initial
distribution given by δ{i}, independent of the random variables X0, . . . , XT .
This proves the first statement.
Concerning the second one, we notice that for the new chain {XT+n, n ≥ 0},
S

(r)
i is the first passage time to i.

�

In the sequel, we shall use the notation Pi(·) for the conditional probability
P (·/X0 = i) and Ei for the conditional expectation with respect to Pi.
Since recurrence and transience are related to the number of passages to a
state, it makes sense to study the random variable that describes this number.
For this, we introduce the following notation:
The number of visits to i ∈ I is

Vi =
∞∑

n=0

11{Xn=i}.

Clearly,

Ei(Vi) =
∞∑

n=0

Pi(Xn = i) =
∞∑

n=0

p
(n)
i,i .

We also introduce the following notation:

fi = Pi(Ti < ∞).

The quantity fi is the probability that, starting from i, the chain visits i
some time in the future. Notice that

1. The state i is recurrent if and only if Pi(Vi = ∞) = 1,

2. The state i is transient if and only if Pi(Vi < ∞) = 1.

With the quantities fi, we can obtain the distribution function of the random
variable Vi, as follows.

Proposition 5.4 For r = 0, 1, . . . , Pi(Vi > r) = f r
i .
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Proof: On the set (X0 = i), we have (Vi > r) = (T r
i < ∞). We will use this

fact to prove the proposition recursively on r.
For r = 0, T

(0)
i = 0 and Pi(Vi > 0) = 1. Therefore the formula holds true.

Assume that it is true for any integer less or equal to r. Then,

Pi(Vi > r + 1) = Pi

(
T

(r+1)
i < ∞

)
= Pi

(
T

(r)
i < ∞, S

(r+1)
i < ∞

)
= Pi

(
S

(r+1)
i < ∞/T

(r)
i < ∞

)
Pi

(
T

(r)
i < ∞

)
= fif

r
i = f r+1

i .

�

With this proposition, we can give a characterization of recurrence and tran-
sicence.

Theorem 5.1 1. If Pi(Ti < ∞) = 1, then the state i is recurrent and∑∞
n=0 p

(n)
i,i = ∞;

2. If Pi(Ti < ∞) < 1, then the state i is transient and
∑∞

n=0 p
(n)
i,i < ∞.

Thus, each state is either recurrent or transient.

Proof: Assume first Pi(Ti < ∞) = 1. By Proposition 5.4 and the sequential
continuity property of the probability,

Pi(Vi = ∞) = lim
r→∞

Pi(Vi > r)

= lim
r→∞

(Pi(Ti < ∞))r = 1.

In this case,
∞∑

n=0

p
(n)
i,i = Ei(Vi) = ∞,

proving (1).
Assume now that Pi(Ti < ∞) = fi < 1. Since Vi is a discrete random
variable, its expectation can be computed by the formula

Ei(Vi) =
∞∑

n=0

Pi(Vi > n).

Hence, owing to Proposition 5.4, one reaches

∞∑
n=0

p
(n)
i,i = Ei(Vi) =

∞∑
n=0

Pi(Vi > n)

=
∞∑

n=0

fn
i =

1

1− fi

< ∞.
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Since Ei(Vi) < ∞, Pi(Vi = ∞) = 0 and i is transient.
�

An easy consequence of the preceding theorem is that recurrence and tran-
science is a class property, in the following sense

Corollary 5.1 All states in an equivalence class with respect to the equiva-
lence relation given by the notion of communicating are either transient or
recurrent.

Proof: Let C ⊂ I denote a generic equivalence class. Fix i, j ∈ C and assume
that i is transient. Let n,m ≥ 0 be such that p

(n)
i,j > 0 and p

(m)
j,i > 0. Then

for any k ≥ 0,
p

(n+m+k)
i,i ≥ p

(n)
i,j p

(k)
j,j p

(m)
j,i .

Consequently,
∞∑

n=0

p
(k)
j,j ≤

1

p
(n)
i,j p

(m)
j,i

∞∑
k=0

p
(n+m+k)
i,i < ∞.

By the previous theorem, j should be transient.
�

We finish this section stating two important properties without proofs.
A set A ⊂ I is closed for a Markov chain X = {Xn, n ≥ 1} if, whenever the
chain hits the set, no exit is possible. We also say that A is an absorbing set.
This term is specially used when A reduces to a single element i ∈ I. That
is, we say that i is an absorbing state.

1. Every recurrent class is closed.

2. Every finite closed equivalence class (with respect to communication)
is recurrent.

5.3 Hitting Times

We recall the notion introduced in Example 3.5: For a stochastic process
X = {Xn, n ≥ 0} and a set A ⊂ I, the hitting time of A by X is defined by

TA = inf{n ≥ 0 : Xn ∈ A}.

By convention, if the set {n ≥ 0 : Xn ∈ A} is empty, TA = ∞.
Hitting times are stopping times with respect to the natural filtration gener-
ated by the process
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One of the most important applications of hitting times is related to the
notion of absorption that we are now going to define.
Hitting times of absorbing sets are called absorbing times. For practical
reasons, it is important to compute the probability that such absorption
takes place at a finite time. More precisely, for A ⊂ I, set

hA
i = P (TA < ∞/X0 = i).

The quantities hA
i , i ∈ I, satisfy the linear system of equations

hA
i = 1, i ∈ A (5.9)

hA
i =

∑
j∈I

pi,jh
A
j , i /∈ A. (5.10)

Indeed. The first equation in (5.9) is obvious, because if X0 = i ∈ A, then
TA = 0 and consequently, hA

i = 1.
Assume that X0 = i /∈ A. Then TA ≥ 1. By the Markov property,

P (TA < ∞/X1 = j, X0 = i) = P (TA < ∞/X1 = j) = hA
j .

By the principle of total probabilities, we have

hA
i = P (TA < ∞/X0 = i)

=
∑
j∈I

P (TA < ∞, X1 = j/X0 = i)

=
∑
j∈I

P (TA < ∞, X1 = j, X0 = i)

P (X0 = i))
× P (X1 = j, X0 = i)

P (X1 = j, X0 = i)

=
∑
j∈I

P (TA < ∞/X1 = j)P (X1 = j/X0 = i) =
∑
j∈I

pi,jh
A
j ,

proving the second equation of (5.9).
A related interesting quantity is the mean value of the absorption time

kA
i = E(TA/X0 = i).

Since TA is a discrete random variable,

kA
i =

∞∑
n=0

nP (TA = n/X0 = i).

Following similar arguments as those leading to (5.9) we have that kA
i , i ∈ I,

satisfy the linear system of equations

kA
i = 0, i ∈ A (5.11)

kA
i = 1 +

∑
j /∈A

pi,jk
A
j , i /∈ A. (5.12)
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In fact, the first equation in (5.11) is trivial, because if X0 = i ∈ A, then
TA = 0. The second one is proved as follows

kA
i =

∞∑
n=0

nP (TA = n/X0 = i)

=
∞∑

n=0

n
∑
j∈I

P (TA = n,X1 = j, X0 = i)

P (X1 = j, X0 = i)
× P (X1 = j, X0 = i)

P (X0 = i)

=
∑
j∈I

E(TA/X1 = j, X0 = i))pi,j

=
∑
j∈A

E(TA/X1 = j, X0 = i))pi,j +
∑
j /∈A

E(TA/X1 = j, X0 = i)pi,j

= 1 +
∑
j /∈A

kA
j pi,j.

To illustrate the preceding notions, let us consider the Markov chain asso-
ciated to the gambler’s ruin problem, that means a random walk with two
absorbing states 0, N , N being the total fortune of both gamblers. The state
space is I = {0, 1, 2, . . . , N} and the transition probability matrix

Π =


1 0 0 · · · 0
· · · · · · · · · · · · · · ·
· · · 1− p 0 p · · ·
· · · · · · · · · · · · · · ·
0 0 0 · · · 1

 (5.13)

We wish to solve the system (5.9) when A = {0}. For the sake of simplicity,
we write hi instead of hA

i and q = 1 − p. Because of the particular form of
Π, (5.9) reads

h0 = 1 (5.14)

hi = phi+1 + qhi−1, i = 1, 2, . . . , N − 1 (5.15)

hN = 0. (5.16)

Notice that the second equation in (5.14) can be written equivalently

phi+2 − hi+1 + qhi = 0, i = 0, . . . , N − 2.

We solve these equations by trying solutions of the form hi = λi, with λ ∈
R− {0}, which amount to find values of λ satisfying

pλi+2 − λi+1 + qλi = 0, i = 0, . . . , N − 2. (5.17)
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There are two possibilities.
Case 1: p 6= q. There are two solution of (5.17), and there are λ1 = 1, λ2 = q

p
.

Then, a general solution to (5.14) is given by

hi = Aλi
1 + Bλi

2 = A + B

(
q

p

)i

, (5.18)

i = 1, . . . , N − 1, with the boundary conditions

h0 = A + B = 1

hN = A + B

(
q

p

)N

= 0,

yielding

B =
1

1−
(

q
p

)N ,

A = 1−B.

Substituting these values of A and B into (5.18) yields

hi =

(
q
p

)i

1−
(

q
p

)N ,

i = 1, . . . , N − 1

Case 2: p = q = 1
2
. There is a unique solution of (5.17) and it is λ = 1

2p
= 1.

A general solution to (5.14) is given by

hi = Aλi + Biλi = A + Bi,

with the boundary conditions h0 = 1, hN = 0, which implies A = 1, B = − 1
N

.
Consequently,

hi =
N − i

N
,

i = 1, . . . , N − 1.

5.4 Stationary Distributions

In this section, we develop a notion related with the limit behaviour of a
Markov chain. In the next definition, ν = (νi, i ∈ I) is a probability on I
and Π a stochastic matrix indexed by I.
In matrix calculus, vectors will be written as column matrices; the notation
νt means the transpose of ν, that means, a matrix consisting of one single
row.
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Definition 5.5 A probability ν on is said to be invariant or stationary for
Π if the following identity holds:

νt = νtΠ. (5.19)

It is very easy to check recursively that the identity (5.19) is equivalent to

νt = νtΠn.

Along this section, we shall denote by {Xn, n ≥ 0} a Markov chain with
transition probability matrix Π.
Assume that the law of X0 is a stationary distribution ν. Then, each random
variable Xn of the process has the same distribution and this is ν. Indeed,
by (5.5)

P (Xn = j) = (νtΠn)j = νt.

Assume that I is finite, say I = {1, 2, . . . , N}. The equation (5.19) defining
invariance is equivalent to

νt(I − Π) = 0 (5.20)

I meaning the N -dimensional identity matrix. Since Π is a stochastic matrix,
we clearly have det(I−Π) = 0. Hence the linear system (5.20) has at least a
solution. Actually the null vector is a solution. But this is not the solution
we are looking for, since we are interested in solutions defining a probability.
Notice also that (5.20) tell us that ν must be an eigenvector of Π with one
as eigenvalue. Assume that Π is symmetric. Then, since it is a stochastic
matrix, one can easily check that µ = (1, 1, . . . , 1) is one of these eigenvectors.
Of course µ does not define a probability, but it suffices to normalize by N
to get one. More precisely, in the finite case,

ν =
(

1

N
, . . . ,

1

N

)
provides an invariant probability for any stochastic matrix Π.
Using a more sophisticated argument based on compactness one can prove
the existence of invariant probability as follows.
Let v be a probability on I. For any n ≥ 1, set

vt
n =

1

n

n−1∑
k=0

vtΠk.

One can easily prove that vn defines a probability on I. Moreover,

vt
n − vt

nΠ =
1

n
(vt − vtΠn).
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Then, an invariant probability is obtained by the limit (which exists by com-
pactness, since I is finite) of some subsequence (vnk

, k ≥ 1) of (vn, n ≥ 1).
The previous arguments cannot be extended to countable sets I.
There is no uniqueness of invariant probabilities. For example, if Π is the
identity matrix, any probability ν is invariant. Moreover, given two invariant
probabilities νi, i = 1, 2, any linear convex combination λν1 + (1 − λ)ν2,
λ ∈ [0, 1], is also an invariant probability.

Example 5.2 Consider the random walk with absorbing states 0, N . The
transition probability matrix is given by (5.13). The finite dimensional linear
system νt = νtΠ can be written coordinatewise as follows:

ν0 = ν0 + ν1q

ν1 = ν2q

νj = νj−1p + νj+1q, j = 2, . . . , N − 2

νN−1 = νN−2p

νN = νN−1p + νN .

From the last equation, we obtain νN−1 = 0. Substituting this value in the
equation before the last one, we obtain νN−2 = 0. Proceeding further in the
same way yields

ν1 = ν2 = · · · = νN−1 = 0.

Finally, from the first and last equation, we obtain that ν0 and νN can be any
numbers in [0, 1] satisfying ν0 + uN = 1.
Consequently, there exist -but there is no uniqueness- invariant probabilities,
and they are given by

(λ, 0, . . . , 0, 1− λ),

with λ ∈ [0, 1].

5.5 Limiting Distributions

The existence of invariant probability is related to the existence of limiting
distributions. This section is devoted to study more closely this fact. The
main result (see Theorem 5.2) concerns the particular case I is finite.
Let I be countable. Assume that there exists i ∈ I such that for any j ∈ I,
the limits

lim
n→∞

p
(n)
i,j

exist and do not depend on i. That is

lim
n→∞

p
(n)
i,j = πj. (5.21)
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Then, the limit vector π = (πj, j ∈ I) defines an invariant probability. More-
over, if the assumption (5.21) holds for any i ∈ I, then this is the unique
invariant probability.
Indeed, let us first prove that π is a probability on I. By its very definition∑

j∈I

πj =
∑
j∈I

lim
n→∞

p
(n)
i,j = lim

n→∞

∑
j∈I

p
(n)
i,j = 1.

In addition,

πj = lim
n→∞

p
(n+1)
i,j = lim

n→∞

∑
k∈I

p
(n)
i,k pk,j

=
∑
k∈I

lim
n→∞

p
(n)
i,k pk,j =

∑
k∈I

πkpk,j,

proving the invariance.
Let us now prove uniqueness Let π̃ be an invariant probability for Π. That
is

π̃j =
∑
k∈I

π̃kp
(n)
k,j .

Taking limits as n →∞ in both sides of the preceding equality, we have

π̃j =
∑
k∈I

π̃k( lim
n→∞

)p
(n)
k,j = πj

∑
k∈I

π̃k = πj.

We remark that in the above arguments, we could exchange sums and limits
by monotone convergence.
There are simple examples of Markov chains for which there is no limiting dis-
tribution. In fact, consider the deterministic Markov chain whose associated
transition probability matrix is given by

Π =

(
0 1
1 0

)
.

Simple computations show that Π2n = I, while Π2n+1 = Π. Hence, the
sequence p

(n)
i,j , for fixed i, j takes either value 0 or 1 and therefore, cannot

converge.

The next theorem gives the existence of limiting distributions for Markov
chains with a finite number of states. Let us first introduce some notation:
A Markov chain is called regular if its associated transition probability matrix
satisfies the following property
(R) There exists a natural number n0 such that

min
i,j∈I

p
(n0)
i,j > 0. (5.22)
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Theorem 5.2 1. Assume that the Markov chain is finite and regular.
There exists a probability π = (πj, j ∈ I), with πj ∈ (0, 1] for any
j ∈ I such that

lim
n→∞

pn
i,j = πj, for all i ∈ I. (5.23)

and this probability is stationary for Π.

2. Conversely, if there exists a probability π = (πj, j ∈ I), with πj ∈ (0, 1)
satisfying (5.23) then (R) holds.

Proof: The probability π is given in a constructive way as follows. For any
j ∈ I, we set

m
(n)
j = min

i∈I
p

(n)
i,j , M

(n)
j = max

i∈I
p

(n)
i,j .

We clearly have
p

(n+1)
i,j =

∑
k∈I

pi,kp
(n)
k,j . (5.24)

Consequently,

m
(n+1)
j = min

i∈I
p

(n+1)
i,j = min

i∈I

∑
k∈I

pi,kp
(n)
k,j

≥ min
i∈I

∑
k∈I

pi,k min
k∈I

p
(n)
k,j = min

k∈I
p

(n)
k,j = m

(n)
j .

Similarly,
M

(n)
j ≥ M

(n+1)
j , n ≥ 1. (5.25)

To prove (5.23), it suffices to establish that

lim
n→∞

(M
(n)
j −m

(n)
j ) = 0, j ∈ I. (5.26)

Indeed, we have just checked that (m
(n)
j , n ≥ 1) increases and (M

(n)
j , n ≥ 1)

decreases. Since both sequences are bounded, their respective limits as n →
∞ do exist. Let us call them mj and Mj, respectively. If (5.26) holds then
necessarily, mj = Mj. But, by definition

m
(n)
j ≤ p

(n)
i,j ≤ M

(n)
j ,

and this implies (5.23) with πj = mj = Mj, j ∈ I.

To prove (5.26), set ε = mini,j∈I p
(n0)
i,j , a strictly positive number by assump-

tion (R). For any n ≥ 1,

p
(n0+n)
i,j =

∑
k∈I

p
(n0)
i,k p

(n)
k,j =

∑
k∈I

(p
(n0)
i,k − εp

(n)
j,k )p

(n)
k,j

ε
∑
k∈I

p
(n)
j,k p

(n)
k,j

=
∑
k∈I

(p
(n0)
i,k − εp

(n)
j,k )p

(n)
k,j + εp

(2n)
j,j .
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Since ε = mini,j∈I p
(n0)
i,j ≤ p

(n0)
i,k and p

(n)
j,k ≤ 1, we have that p

(n0)
i,k − εp

(n)
j,k ≥ 0.

Therefore,

p
(n0+n)
i,j ≥ m

(n)
j

∑
k∈I

(p
(n0)
i,k − εp

(n)
j,k ) + εp

(2n)
j,j

= m
(n)
j (1− ε) + εp

(2n)
j,j .

Therefore,
m

(n0+n)
j ≥ m

(n)
j (1− ε) + εp

(2n)
j,j .

With similar arguments, we can also prove that

M
(n0+n)
j ≤ M

(n)
j (1− ε) + εp

(2n)
j,j .

Combining both inequalities yields

M
(n0+n)
j −m

(n0+n)
j ≤ (M

(n)
j −m

(n)
j )(1− ε),

and by iteration

0 ≤ M
(kn0+n)
j −m

(kn0+n)
j ≤ (M

(n)
j −m

(n)
j )(1− ε)k.

The last expression tends to zero as k → ∞, because ε > 0. Thus, we have
proved the existence of a subsequence of (M

(n)
j −m

(n)
j , n ≥ 1) converging to

zero. But this sequence is monotone; hence (5.26) holds true.

For any n ≥ n0, m
(n)
j ≥ m

(n0)
j = ε > 0. This implies

πj := lim
n→∞

m
(n)
j ≥ ε > 0.

From (5.20), it follows that

1 =
∑
j∈I

p
(n)
i,j →n→∞

∑
j∈I

πj.

The fact that a limiting distribution is invariant has already been proved
in the preceding section. Consequently, the proof of the first part of the
theorem is complete.

Let us now prove part 2 of the statement. From (5.23) is follows that, for

any j ∈ I there exist nj and for any n ≥ nj, p
(n)
i,j > 0, for any i ∈ I. Hence,

mini∈I p
(nj)
i,j > 0. Set n0 = max(nj, j ∈ I). Clearly, this yields property (R).

�

After having proved the theorem, a natural question to ask is whether there
are simple conditions on the process ensuring property (R). The next Propo-
sition gives an answer to this question.
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Proposition 5.5 Let {Xn, n ≥ 0} be a finite irreducible Markov chain. As-
sume that there exists h ∈ I such that ph,h > 0. Then (R) is satisfied.

Proof: Fix i, j ∈ I and let n(i, j) ≥ 0 be such that p
(n(i,j))
i,j > 0. Set m =

maxi,j∈I n(i, j). The matrix Π2m+1 has all its entries strictly positive. Indeed,

p
(2m+1)
i,j ≥ p

n(i,h)
i,h ph,h · · · · · ph,hp

n(h,j)
h,j > 0,

where in the second term of the preceding inequality, we have written 2m +
1− n(i, h)− n(h, j) many factors ph,h. �
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6 Brownian motion

In example 2.3 of Chapter 2, we have introduced an example of Gaussian
continuous time stochastic process. In this chapter we will study some of the
most important properties of this process in view of the introduction to Itô’s
stochastic calculus developed later in this course.

6.1 Study of The Probability Law

Let us start by recalling the definition.

Definition 6.1 The Brownian motion or Wiener process is a Gaussian
stochastic process {Bt, t ≥ 0} such that

E(Bt) = 0,

E(BsBt) = s ∧ t.

As mentioned in Chapter 2, the existence of this processes is ensured by
Kolmogorov’s theorem. For this, se have to make clear that the proposal we
made for the covariance is correct. This means the following. A covariance
function of a stochastic processes is a mapping

(s, t) → Γ(s, t)

which is required to be nonnegative definite. That means, for any ti, tj ≥ 0
and any real numbers ai, aj, i, j = 1, . . . ,m,

m∑
i,j=1

aiajΓ(ti, tj) ≥ 0.

It is not difficult to check that the function Γ(s, t) = s ∧ t possesses this
property. Indeed, notice first that

s ∧ t =
∫ ∞

0
11[0,s](r) 11[0,t](r) dr.

Hence,

m∑
i,j=1

aiajti ∧ tj =
m∑

i,j=1

aiaj

∫ ∞

0
11[0,ti](r) 11[0,tj ](r) dr

=
∫ ∞

0

(
m∑

i=1

ai11[0,ti](r)

)2

dr ≥ 0.
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Since E(B2
0) = 0, the random variable B0 is zero almost surely.

Using the formula on transformations of densities of random vectors by
smooth functions, it is possible to obtain the density of the random vector

Bt1 , Bt2 −Bt1 , . . . , Btm −Btm−1 ,

for any choice 0 ≤ t1 ≤ · · · ≤ tm and to see that it corresponds to that
of m independent random variables, Gaussian, centered, with variance ti −
ti−1, i = 1, . . . ,m. Hence, Brownian motion has independent and stationary
increments.
Each random variable Bt, t > 0, of the Brownian motion has a density and
it is

pt(x) =
1√
2πt

exp(−x2

2t
),

while for t = 0, its ”density” is a Dirac mass at zero, δ{0}.
Differentiating pt(x) once with respect to t, and then twice with respect to
x easily yields

∂

∂t
pt(x) =

1

2

∂2

∂x2
pt(x)

p0(x) = δ{0}.

This is the heat equation on R with initial condition p0(x) = δ{0}. That
means, as time evolves, the density of the random variables of the Brownian
motion behaves like a diffusive physical phenomenon.

6.2 Sample Paths

Brownian motion was introduced as a model for erratic trajectories of parti-
cles. Thus, one expects to be able to prove that its sample paths are almost
surely continuous, but with brusque changes in directions of its trajectories.
This section is devoted to give some elements towards a good understanding
of these properties.

The continuity of the sample paths of Brownian motion can be proved by
different methods. It can be obtained as a by-product of an explicit construc-
tion. It can also be proved using Kolmogorov’s continuity criterion, a result
which allows to catch the roughness of sample paths from Lp(Ω) estimates
of increments of the process at different times.

Brownian motion as limit of a random walk
Let {ξj, j ∈ N} be a sequence of independent, identically distributed random
variables, with mean zero and variance σ2 > 0. Consider the sequence of
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partial sums defined by S0 = 0, Sn =
∑n

j=1 ξj. We have already seen in
previous chapters that the sequence {Sn, n ≥ 0} is a Markov chain, and also
a martingale.
Let us consider the continuous time stochastic process defined by linear in-
terpolation of {Sn, n ≥ 0}, as follows. For any t ≥ 0, let [t] denote its integer
value. Then set

Yt = S[t] + (t− [t])ξ[t]+1, (6.1)

for any t ≥ 0.
The next step is to scale the sample paths of {Yt, t ≥ 0}. By analogy with
the scaling in the statement of the central limit theorem, we set

B
(n)
t =

1

σ
√

n
Ynt, (6.2)

t ≥ 0.
A famous result in probability theory -Donsker theorem- tell us that the se-
quence of processes B

(n)
t , t ≥ 0}, n ≥ 1, converges in law to the Brownian

motion. The reference sample space is the set of continuous functions van-
ishing at zero. Hence, proving the statement, we obtain continuity of the
sample paths of the limit.
Donsker theorem is the infinite dimensional version of the above mentioned
central limit theorem. Considering s = k

n
, t = k+1

n
, the increment B

(n)
t −

B(n)
s = 1

σ
√

n
ξk+1 is a random variable, with mean zero and variance t −

s. Hence B
(n)
t is not that far from the Brownian motion, and this is what

Donsker’s theorem proves.

Kolmogorov’s continuity criterion: Application to the Brownian
motion

Proposition 6.1 Let {Xt, t ≥ 0} be a stochastic process satisfying the fol-
lowing property: For some positive real numbers α, β and C,

E (|Xt −Xs|α) ≤ C|t− s|1+β.

Then almost surely, the sample paths of the process are γ-Hölder continuous
with γ ≤ β

α
.

The law of the random variable Bt−Bs is N(0, t− s). Thus, it is possible to
compute the moments, and we have

E
(
(Bt −Bs)

2k
)

=
(2k)!

2kk!
(t− s)k,
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for any k ∈ N. Therefore, Proposition 6.1 yields that almost surely, the
sample paths of the Brownian motion are γ–Hölder continuous with γ ∈
(0, 1

2
).

Quadratic variation
The notion of quadratic variation provides a measure of the roughness of
a function. Existence of variations of different orders are also important in
procedures of approximation via a Taylor expansion and also in the develop-
ment of infinitesimal calculus. We will study here the existence of quadratic
variation, i.e. variation of order two, for the Brownian motion. As shall be
explained in more detail in the next chapter, this fact provides the explana-
tion to the fact that rules of Itô’s stochastic calculus are different from those
of the classical differential deterministic calculus.
Fix a finite interval [0, T ] and consider the sequence of partitions given by
the points (tnj = jT

n
, j = 0, 1, . . . , n). Set ∆kB = Btn

k
−Btn

k−1
.

Proposition 6.2 The sequence {∑n
k=1(∆kB)2, n ≥ 1} converges in L2(Ω) to

the deterministic random variable T . That is,

lim
n→∞

E

( n∑
k=1

(∆kB)2 − T

)2
 = 0.

Proof: For the sake of simplicity, we shall omit the dependence on n. Set
∆kt = tk−tk−1. Notice that the random variables (∆kB)2−∆kt, k = 1, . . . , n,
are independent and centered. Thus,

E

( n∑
k=1

(∆kB)2 − T

)2
 = E

( n∑
k=1

(
(∆kB)2 −∆kt

))2


=
n∑

k=1

E
[(

(∆kB)2 −∆kt
)2
]

=
n∑

k=1

[
3(∆kt)

2 − 2(∆kt)
2 + (∆kt)

2
]

= 2
n∑

k=1

(∆kt)
2 ≤ 2

T

n
,

which clearly tends to zero as n tends to infinity. �

This proposition, together with the continuity of the sample paths of Brow-
nian motion yields

sup
n

n∑
k=1

|∆kB| = ∞, a.s.
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Indeed, assume that V := supn

∑n
k=1 |∆kB| < ∞. Then

n∑
k=1

(∆kB)2 ≤ sup
k
|∆kB|

(
n∑

k=1

|∆kB|
)

≤ V sup
k
|∆kB|.

We obtain limn→∞
∑n

k=1(∆kB)2 = 0. a.s., which contradicts the result proved
in Proposition 6.2.

6.3 The Martingale Property of Brownian Motion

We start this section by extending the definition of martingale given in Sec-
tion 3.2 to continuous time stochastic processes. First, we introduce the
appropriate notion of filtration, as follows.
A family {Ft, t ≥ 0} of sub σ–fields of F is termed a filtration if

1. F0 contains all the sets of F of null probability,

2. For any 0 ≤ s ≤ t, Fs ⊂ Ft.

If in addition
∩s>tFs = Ft,

for any t ≥ 0, the filtration is said to be right-continuous.

Definition 6.2 A stochastic process {Xt, t ≥ 0} is a martingale with respect
to the filtration {Ft, t ≥ 0} if each variable belongs to L1(Ω) and moreover

1. Xt is Ft–measurable for any t ≥ 0,

2. for any 0 ≤ s ≤ t, E(Xt/Fs) = Xs.

If the equality in (2) is replaced by ≤ (respectively, ≥), we have a super-
martingale (respectively, a submartingale).
As for discrete parameter sets, given a stochastic process {Xt, t ≥ 0}, there
is a natural way to define a filtration by considering

Ft = σ(Bs, 0 ≤ s ≤ t), t ≥ 0.

To ensure that the above property (1) holds, one needs to complete the σ-
field. In general, there is no reason to expect right-continuity. However, for
the Brownian motion, the natural filtration possesses this property.
In example 3.3, we have seen that the sequence of partial sums of independent
centered random variables with zero mean is a martingale with respect to
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the natural filtration. The reason for this to be true relies on the fact that
the increments of the partial sums are independent random variables. In
continuous time, the property of independent increments allows to prove the
martingale property with respect to the natural filtration as well.
Indeed, fix 0 ≤ s ≤ t. Owing to the property (c) of the conditional expecta-
tion

E(Xt −Xs/Fs) = E(Xt −Xs) = 0.

Hence, a Brownian motion possess the martingale property with respect to
the natural filtration.

Other examples of martingales with respect to the same filtration, related
with the Brownian motion are

1. {B2
t − t, t ≥ 0},

2. {exp
(
aBt − a2t

2

)
, t ≥ 0}.

Indeed, for the first example, let us consider 0 ≤ s ≤ t. Then,

E
(
B2

t /Fs

)
= E

(
(Bt −Bs + Bs)

2/Fs

)
= E

(
(Bt −Bs)

2/Fs

)
+ 2E ((Bt −Bs)Bs/Fs)

+ E
(
B2

s/Fs

)
.

Since Bt−Bs is independent of Fs, owing to the properties of the conditional
expectation, we have

E
(
(Bt −Bs)

2/Fs

)
= E

(
(Bt −Bs)

2
)

= t− s,

E ((Bt −Bs)Bs/Fs) = BsE (Bt −Bs/Fs) = 0,

E
(
B2

s/Fs

)
= B2

s .

Consequently,

E
(
B2

t −B2
s/Fs

)
= t− s.

For the second example, we also use the property of independent increments,
as follows:

E

(
exp

(
aBt −

a2t

2

)
/Fs

)
= exp(aBs)E

(
exp

(
a(Bt −Bs)−

a2t

s

)
/Fs

)

= exp(aBs)E

(
exp

(
a(Bt −Bs)−

a2t

s

))
.
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Using the density of the random variable Bt −Bs one can easily check that

E

(
exp

(
a(Bt −Bs)−

a2t

s

))
= exp

(
a2(t− s)

2
− a2t

2

)
.

Therefore, we obtain

E

(
exp

(
aBt −

a2t

2

)
/Fs

)
= exp

(
aBs −

a2s

2

)
.

6.4 Markov Property

For any 0 ≤ s ≤ t, x ∈ R and A ∈ B(R), we set

p(s, t, x, A) =
1

(2π(t− s))
1
2

∫
A

exp

(
−|x− y|2

2(t− s)

)
dy. (6.3)

Actually, p(s, t, x, A) is the probability that a random variable, Normal, with
mean x and variance t− s take values on a fixed set A.
Let us prove the following identity:

P{Bt ∈ A /Fs} = p(s, t, Bs, A), (6.4)

which means that, conditionally to the past of the Brownian motion until
time s, the law of Bt at a future time t only depends on Bs.
Let f : R → R be a bounded measurable function. Then, since Bs is Fs–
measurable and Bt −Bs independent of Fs, we obtain

E (f(Bt)/Fs) = E (f (Bs + (Bt −Bs)) /Fs)

= E (f(x + Bt −Bs))
∣∣∣∣
x=Bs

.

The random variable x + Bt −Bs is N(x, t− s). Thus,

E (f(x + Bt −Bs)) =
∫

R
f(y)p(s, t, x, dy),

and consequently,

E (f(Bt)/Fs) =
∫

R
f(y)p(s, t, Bs, dy).

This yields (6.4) by taking f = 11A.
Going back to (6.3), we notice that the function x → p(s, t, x, A) is measur-
able, and the mapping A → p(s, t, x, A) is a probability.
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Let us prove the additional property, called Chapman-Kolmogorov equation:
For any 0 ≤ s ≤ u ≤ t,

p(s, t, x, A) =
∫

R
p(u, t, y, A)p(s, u, x, dy). (6.5)

We recall that the sum of two independent Normal random variables, is again
Normal, with mean the sum of the respective means, and variance the sum
of the respective variances. This is expressed in mathematical terms by the
fact that

fN(x,σ1) ∗ fN(y,σ2) =
∫

R
fN(x,σ1)(y)fN(y,σ2)(· − y)dy

= fN(x+y,σ1+σ2).

Using this fact, we obtain∫
R

p(u, t, y, A)p(s, u, x, dy) =
∫

A
dz
(
fN(x,u−s) ∗ fN(0,t−u)

)
(z)

=
∫

A
dzfN(x,t−s)(z) = p(s, t, x, A).

proving (6.5).
This equation is the time continuous analogue of the property own by the
transition probability matrices of a Markov chain. That is,

Π(m+n) = Π(m)Π(n),

meaning that evolutions in m + n steps are done by concatenating m-step
and n-step evolutions. In (6.5) m + n is replaced by the real time t − s, m
by t− u, and n by u− s, respectively.
We are now prepared to give the extension of the Markov property introduced
in Chapter 5 for continuous time stochastic processes.
Consider a mapping

p : R+ × R+ × R× B(R) → R+,

satisfying the properties

(i) for any fixed s, t ∈ R+, A ∈ B(R),

x → p(s, t, x, A)

is B(R)–measurable,

83



(ii) for any fixed s, t ∈ R+, x ∈ R,

A → p(s, t, x, A)

is a probability

(iii) Equation (6.5) holds.

Such a function p is termed a Markovian transition function.
Let us also fix a probability µ on B(R).

Definition 6.3 A real valued stochastic process {Xt, t ∈ R+} is a Markov
process with initial law µ and transition probability function p if

(a) the law of X0 is µ,

(b) for any 0 ≤ s ≤ t,

P{Xt ∈ A/Fs} = p(s, t, Xs, A).

Therefore, we have proved that the Brownian motion is a Markov process
with initial law a Dirac delta function at 0 and transition probability function
p the one defined in (6.3).
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7 Basic Notions on Itô’s Calculus

Itô’s calculus has been developed in the 50’ by Kyoshi Itô in an attempt to
give rigourous meaning to some differential equations driven by the Brownian
motion appearing in the study of some problems related with continuous time
Markov processes. Roughly speaking, one could say that Itô’s calculus is an
analogue of the classical Newton and Leibniz calculus for stochastic processes.
In fact, in deterministic mathematical analysis, there are several extensions
of the Riemann integral

∫
f(x)dx. For example, if g is an increasing bounded

function (or the difference of two of this class of functions), Lebesgue-Stieltjes
integral gives a precise meaning to the integral

∫
f(x)g(dx), for some set of

functions f . However, before Itô’s development, no theory allowing nowhere
differentiable integrators g was known. Brownian motion, introduced in the
preceding chapter, is an example of stochastic process whose sample paths,
although continuous, are nowhere differentiable. Therefore, in the framework
of Lebesgue-Stieltjes theory it is not possible to give a rigourous meaning to
stochastic integration with respect to Brownian motion.
There are many motivations coming from a variety of sciences for considering
stochastic differential equations driven by a Brownian motion. Such an object
is defined as

dXt = σ(t,Xt)dBt + b(t,Xt)dt,

X0 = x0,

or in integral form,

Xt = x0 +
∫ t

0
σ(s, Xs)dBs +

∫ t

0
b(s, Xs)ds. (7.1)

The first notion to be introduced is that of stochastic integral. In fact, in (7.1)
the integral

∫ t
0 b(s, Xs)ds can be defined pathwise, but this is not the case

for
∫ t
0 σ(s, Xs)dBs, because of the roughness of the paths of the stochastic

integral we have just mentioned. More explicitely, it is not possible to fix
ω ∈ Ω, then to consider the path σ(s, Xs(ω)), and finally to integrate with
respect to Bs(ω).

7.1 Itô’s Integral

Along this section, we will consider a Brownian motion B = {Bt, t ≥ 0}
defined on a probability space (Ω,F , P ). We also will consider the natural
filtration (Ft, t ≥ 0) associated with B.
We fix a finite time horizon T and define L2

a,T the set of stochastic processes
u = {ut, t ∈ [0, T ]} satisfying the following conditions:
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(i) u is adapted and jointly measurable in (t, ω), with respect to the product
σ-field B([0, T ])×F .

(ii)
∫ T
0 E(u2

t )dt < ∞.

The notation L2
a,T gathers the two properties -adaptedness and square

integrability- described before.
Consider first the subset of L2

a,T consisting of step processes. That is, stochas-
tic processes which can be written as

ut =
n∑

j=1

uj11]tj−1,tj [(t), (7.2)

with 0 = t0 ≤ t1 ≤ · · · ≤ tn = T and where uj, j = 1, . . . , n, are Ftj−1
–

measurable square integrable random variables. We shall denote by E the
set of these processes.
For step processes, the Itô stochastic integral is defined by the very natural
formula ∫ T

0
utdBt =

n∑
j=1

uj(Btj −Btj−1
). (7.3)

Notice that
∫ T
0 utdBt is a random variable. Of course, we would like to be

able to consider more general integrands than step processes. Therefore, we
must attempt to extend the definition (7.3). For this, we have to use tools
provided by Functional Analysis based upon a very natural idea: If we are
able to prove that (7.3) gives a continuous functional between two metric
spaces, then the stochastic integral defined for the very particular class of
step stochastic processes could be extended to a more general class given by
the closure of this set with respect to a suitable norm.
The idea of continuity is made precise by the
Isometry property:

E

(∫ T

0
utdBt

)2

= E

(∫ T

0
u2

t dt

)
. (7.4)

Let us prove (7.4) for step processes. Clearly

E

(∫ T

0
utdBt

)2

=
n∑

j=1

E
(
u2

j(∆jB)2
)

+ 2
∑
j<k

E(ujuk(∆jB)(∆kB)).
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The measurability property of the random variables uj, j = 1, . . . , n, implies
that the random variables u2

j are independent of (∆jB)2. Hence, the con-
tribution of the first term in the right hand-side of the preceding identity is
equal to

n∑
j=1

E(u2
j)(tj − tj−1) =

∫ T

0
E(u2

t )dt.

For the second term, we notice that for fixed j and k, j < k, the random
variables ujuk∆jB are independent of ∆kB. Therefore,

E(ujuk(∆jB)(∆kB)) = E(ujuk(∆jB))E(∆kB) = 0.

Thus, we have (7.4).
This property tell us that the stochastic integral is a continuous functional
defined on E , endowed with the norm of L2(Ω× [0, T ]), taking values on the
set L2(Ω) of square integrable random variables.
The next step consists of identifying a bigger set than E of random processes
such that E is dense in the norm L2(Ω × [0, T ]). This is actually the set
denoted before by L2

a,T . Indeed, one can prove -and this is a crucial fact in
Itô’s theory- that for any u ∈ L2

a,T , there exists a sequence (un, n ≥ 1) ⊂ E
such that

lim
n→∞

∫ t

0
E
(
(un

t − ut)
2dt
)

= 0.

Owing to this fact, we can give the following definition.

Definition 7.1 The Itô stochastic integral of a process u ∈ L2
a,T is∫ T

0
utdBt := L2(Ω)− lim

n→∞

∫ T

0
un

t dBt. (7.5)

In order this definition to make sense, one needs to be sure that if the process
u is approximated by two different sequences, say un,1 and un,2, the definition
of the stochastic integral, using either un,1 or un,2 coincide. This is proved
using the isometry property. Indeed

E

(∫ T

0
un,1

t dBt −
∫ T

0
un,2

t dBt

)2

=
∫ T

0
E
(
un,1

t − un,2
t

)2
dt

≤ 2
∫ T

0
E
(
un,1

t − ut

)2
dt + 2

∫ T

0
E
(
un,2

t − ut

)2
dt

→ 0,

By its very definition, the stochastic integral defined in Definition 7.1 satisfies
the isometry property as well. Moreover,

87



• stochastic integrals are centered random variables:

E

(∫ T

0
utdBt

)
= 0,

• stochastic integration is a linear operator:∫ T

0
(aut + bvt) dBt = a

∫ T

0
utdBt + b

∫ T

0
vtdBt.

To prove these facts, we first consider processes in E , in this case the proof
is very easy, and then we extend their validity by a density argument.

We end this section with an interesting example.

Example 7.1 For the Brownian motion B, the following formula holds:∫ T

0
BtdBt =

1

2

(
B2

T − T
)
.

Let us remark that we would rather expect
∫ T
0 BtdBt = 1

2
B2

T , by analogy
with rules of deterministic calculus.
To prove this identity, we define a particular sequence of approximating step
processes, as follows. Consider the partition of [0, T ] given by tj = jT

n
and

set

un
t =

n∑
j=1

Btj−1
11]tj−1,tj ].

We have ∫ T

0
E (un

t −Bt)
2 dt =

n∑
j=1

∫ tj

tj−1

E
(
Btj−1

−Bt

)2
dt

≤ T

n

n∑
j=1

∫ tj

tj−1

dt =
T 2

n
.

Therefore, un, n ≥ 1 is an approximating sequence of B in the norm of
L2(Ω× [0, T ]). According to Definition 7.1,

∫ T

0
BtdBt = lim

n→∞

n∑
j=1

Btj−1

(
Btj −Btj−1

)
,

in the L2(Ω) norm.
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Clearly,

n∑
j=1

Btj−1

(
Btj −Btj−1

)
=

1

2

n∑
j=1

(
B2

tj
−B2

tj−1

)

− 1

2

n∑
j=1

(
Btj −Btj−1

)2

=
1

2
B2

T −
1

2

n∑
j=1

(
Btj −Btj−1

)2
.

We conclude by using Proposition 6.2.

7.2 The Itô Integral as a Stochastic Process

The indefinite Itô stochastic integral of a process u ∈ L2
a,T is defined as

follows: ∫ t

0
usdBs :=

∫ T

0
us11[0,t](s)dBs, (7.6)

t ∈ [0, T ].
For this definition to make sense, we need that for any t ∈ [0, T ], the process
{us11[0,t](s), s ∈ [0, T ]} belongs to L2

a,T . This is clearly true.
Obviously, properties of the integral mentioned in the previous section, like
zero mean, isometry, linearity, also hold for the indefinite integral.
The rest of the section is devoted to the study of important properties of the
stochastic process given by an indefinite Itô integral.

Proposition 7.1 The process {It =
∫ t
0 usdBs, t ∈ [0, T ]} is a martingale.

Proof: We first establish the martingale property for any approximating
sequence

In
t =

∫ t

0
un

s dBs, t ∈ [0, T ],

where un converges to u in L2(Ω× [0, T ]). This suffices to prove the Propo-
sition, since L2(Ω)–limits of martingales are again martingales.
Let un

t , t ∈ [0, T ], be defined by the right hand-side of (7.2). Fix 0 ≤ s ≤ t ≤
T and assume that s ≤ tk ≤ tl ≤ t. Then

In
t − In

s = uk(Btk −Bs) +
l∑

j=k+1

uj∆jB

+ ul(Bt −Btl).
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Using properties (g) and (f), respectively, of the conditional expectation
yields

E (In
t − In

s /Fs) = E (uk(Btk −Bs)/Fs) +
l∑

j=k+1

E
(
E
(
uj∆jB/Ftj−1

)
/Fs

)
+ E

(
ulE

(
Bt −Btl/Ftl−1

)
/Fs

)
= 0.

This finishes the proof of the proposition. �

A proof not very different as that of Proposition 6.2 yields

Proposition 7.2 For any process u ∈ L2
a,T ,

L1(Ω)− lim
n→∞

n∑
j=1

(∫ tj

tj−1

usdBs

)2

=
∫ t

0
u2

sds.

That means, the quadratic variation of the indefinite stochastic integral is
given by the process {

∫ t
0 u2

sds, t ∈ [0, T ]}.

The isometry property of the stochastic integral can be extended in the fol-
lowing sense. Let p ∈ [2,∞[. Then,

E
(∫ t

0
usdBs

)p

≤ C(p)E
(∫ t

0
u2

sds
) p

2

. (7.7)

Here C(p) is a positive constant depending on p. This is Burkholder’s in-
equality.
A combination of Burkholder’s inequality and Kolmogorov’s continuity cri-
terion allows to deduce the continuity of the sample paths of the indefi-

nite stochastic integral. Indeed, assume that
∫ T
0 E (ur)

p
2 dr < ∞, for any

p ∈ [2,∞[. Using first (7.7) and then Hölder’s inequality (be smart!) implies

E
(∫ t

s
urdBr

)p

≤ C(p)E
(∫ t

s
u2

rdr
) p

2

≤ C(p)|t− s|
p
2
−1
∫ t

s
E (ur)

p
2 dr

≤ C(p)|t− s|
p
2
−1.

Since p ≥ 2 is arbitrary, with Proposition 6.1 we have that the sample paths
of
∫ t
0 usdBs, t ∈ [0, T ] are γ–Hölder continuous with γ ∈]0, 1

2
[.
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7.3 Remarks on Extensions of The Stochastic Integral

Consider stochastic processes satisfying

P

{∫ T

0
u2

t dt < ∞
}

= 1. (7.8)

Clearly (7.8) holds for processes in L2
a,T .

One can construct a stochastic integral for processes u satisfying (7.8) by
means of a stopping procedure, as follows.

For any natural number n, define the positive random variable

τn = inf
{
t ≥ 0 :

∫ t

0
u2

sds = n
}

(7.9)

One can prove that τn is a stopping time with respect to the filtration (Ft, t ≥
0). Than means (τn ≤ t) ∈ Ft, for any t ≥ 0.

By virtue of assumption (7.8), the sequence of random variables (τn, n ≥ 1)
increases to the deterministic random variable T . In addition, it holds that
if t ≤ τn, then

∫ t
0 u2

sds ≤ n.

Define

u
(n)
t = ut11[0,τn](t),

n ≥ 1. This process belongs to L2
a,T . Moreover, if m ≥ n, on the set (t ≤ τn)

both processes u(n) and u(m) coincide. By the local property of the stochastic
integral, one has that

∫ t

0
u(n)

s dBs =
∫ t

0
u(m)

s dBs.

Fix t ≤ T . Because of the convergence of τn to T , there exists n0 such that
t < τn for any n ≥ n0 and, by the above discussion, it makes sense to define

∫ t

0
usdBs =

∫ t

0
u(n0)

s dBs.

A second aspect to be mentioned in this section, concerns the underlying
filtration. One can follow the constructions given so far for the Itô’s stochas-
tic integral by replacing the natural filtration generated by the Brownian
motion by a new filtration (Gt, t ≥ 0) satisfying E (Bt −Bs/Gs) = 0. The
corresponding stochastic integral possess all the properties mentioned before
with the obvious changes.
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7.4 A Change of Variables Formula: Itô’s Formula

Like in Example 7.1, we can prove the following formula, valid for any t ≥ 0:

B2
t = 2

∫ t

0
BsdBs + t. (7.10)

If the sample paths of {Bt, t ≥ 0} were sufficiently smooth -for example, of
bounded variation- and you were asked for a formula for B2

t , you most likely
would answer

B2
t = 2

∫ t

0
BsdBs, (7.11)

relying on the rules of classical calculus.
The difference between the formula we have rigorously established, (7.10),
and the spontaneous answer (7.11) is the term t. Where does it come from?
Consider the very näıve decomposition of B2

t associated with any partition
of [0, t] defined by 0 = t0 ≤ t1 ≤ · · · ≤ tn = t,

B2
t =

n−1∑
j=0

(
B2

tj+1
−B2

tj

)

= 2
n−1∑
j=0

Btj

(
Btj+1

−Btj

)
+

n−1∑
j=0

(
Btj+1

−Btj

)2
, (7.12)

where we have used that B0 = 0.
Consider a sequence of partitions of [0, t] whose mesh tends to zero and let
us compute the limit of the right hand-side of (7.12). By the result proved
in Proposition 6.2, we infer that

n−1∑
j=0

(
Btj+1

−Btj

)2
→ t,

in the convergence of L2(Ω). This gives the extra contribution in the devel-
opment of B2

t in comparison with the classical calculus approach.
Notice that, if B were of bounded variation then, we could argue as follows:

n−1∑
j=0

(
Btj+1

−Btj

)2
≤ sup

0≤j≤n−1
|Btj+1

−Btj |

×
n−1∑
j=0

|Btj+1
−Btj |.

By the continuity of the sample paths of the Brownian motion, the first factor
in the right hand-side of the preceding inequality tends to zero as the mesh

92



of the partition tends to zero, while the second factor remains finite, by the
property of bounded variation.

Summarising. Differential calculus with respect to the Brownian motion
should take into account second order differential terms. Roughly speaking

(dBt)
2 = dt.

We can attach a precise meaning to this heuristic formula by means of Propo-
sition 6.2.

7.4.1 One dimensional Itô’s formula

In this section, we shall extend the formula (7.10) and write an expression
for f(t, Bt) for a class of functions f which include f(x) = x2.

Definition 7.2 Let {vt, t ∈ [0, T ]} be a stochastic process, adapted, whose
sample paths are almost surely Lebesgue integrable, that is

∫ T
0 |vt|dt < ∞,

a.s.. Consider a stochastic process {ut, t ∈ [0, T ]} belonging to L2
a,T and a

random variable X0. The stochastic process defined by

Xt = X0 +
∫ t

0
usdBs +

∫ t

0
vsds, (7.13)

t ∈ [0, T ] is termed an Itô process.

An alternative writing of (7.13) in differential form is

dXt = utdBt + vtdt.

We are now going to state a version of the Itô formula.

Theorem 7.1 Let f : [0, T ] × R → R be a function in C1,2 and X be an
Itô process with decomposition given in (7.13). The following formula holds
true:

f(t,Xt) = f(0, X0) +
∫ t

0
∂sf(s, Xs)ds +

∫ t

0
∂xf(s, Xs)usdBs

+
∫ t

0
∂xf(s, Xs)vsds +

1

2

∫ t

0
∂2

xxf(s, Xs)u
2
sds. (7.14)
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An idea of the proof. Consider a sequence of partitions of [0, T ], for example
the one defined by tnj = jt

n
. In the sequel, we avoid mentioning the superscript

n for the sake of simplicity. We can write

f(t,Xt)− f(0, X0) =
n−1∑
j=0

[
f(tj+1, Xtj+1

)− f(tj, Xtj)
]

=
n−1∑
j=0

[
f(tj+1, Xtj)− f(tj, Xtj)

]
(7.15)

+
[
f(tj+1, Xtj+1

)− f(tj+1, Xtj)
]

=
n−1∑
j=0

[
∂sf(t̄j, Xtj)(tj+1 − tj)

]
(7.16)

+
[
∂xf(tj+1, Xtj)(Xtj+1

−Xtj)
]

+
1

2

n−1∑
j=0

∂2
xxf(tj+1, X̄j)(Xtj+1

−Xtj)
2. (7.17)

with t̄ ∈]tj, tj+1[ and X̄j an intermediate (random) point on the segment
determined by Xtj and Xtj+1

.

In fact, this follows from a Taylor expansion of the function f up to the
first order in the variable s, and up to the second order in the variable x.
The asymmetry in the orders is due to the existence of quadratic variation
of the processes involved. The expresion (7.15) is the analogue of (7.12).
The former is much simpler for two reasons. Firstly, there is no s-variable;
secondly, f is a polynomial of second degree, and therefore it has an exact
Taylor expansion. But both formulas have the same structure.

When passing to the limit as n →∞, we obtain

n−1∑
j=0

∂sf(tj, Xtj)(tj+1 − tj) →
∫ t

0
∂sf(s, Xs)ds

n−1∑
j=0

∂xf(tj, Xtj)(Xtj+1
−Xtj) →

∫ t

0
∂xf(s, Xs)usdBs

+
∫ t

0
∂xf(s, Xs)vsds

n−1∑
j=0

∂xxf(tj, X̄j)(Xtj+1
−Xtj)

2 →
∫ t

0
∂2

xxf(s, Xs)u
2
sds,

in the convergence of probability.
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Itô’s formula (7.14) can be written in the formal simple differential form

df(t,Xt) = ∂tf(t,Xt)dt + ∂xf(t,Xt)dXt +
1

2
∂2

xxf(t,Xt)(dXt)
2, (7.18)

where (dXt)
2 is computed using the formal rule of composition

dBt × dBt = dt,

dBt × dt = dt× dBt = 0,

dt× dt = 0.

Consider in Theorem 7.1 the particular case where f : R → R is a function
in C2. Then formula (7.14) becomes

f(Xt) = f(X0) +
∫ t

0
f ′(Xs)usdBs +

∫ t

0
f ′(Xs)vsds

+
1

2

∫ t

0
f ′′(Xs)u

2
sds. (7.19)

Example 7.2 Consider the function

f(t, x) = eµt−σ2

2
t+σx,

with µ, σ ∈ R.
Applying formula (7.14) to Xt := Bt -a Brownian motion- yields

f(t, Bt) = 1 + µ
∫ t

0
f(s, Bs)ds + σ

∫ t

0
f(s, Bs)dBs.

Hence, the process {Yt = f(t, Bt), t ≥ 0} satisfies the equation

Yt = 1 + µ
∫ t

0
Ysds + σ

∫ t

0
YsdBs.

The equivalent differential form of this identity is the linear stochastic differ-
ential equation

dYt = µYtdt + σYtdBt,

Y0 = 1. (7.20)

Black and Scholes proposes as model of a market with a single risky asset
with initial value S0 = 1, the process St = Yt. We have seen that such a
process is in fact the solution to a linear stochastic differential equation (see
(7.20)). The section 7.5 will be devoted to a further analysis of this example.
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7.4.2 Multidimensional Version of Itô’s Formula

Consider a m-dimensional Brownian motion {(B1
t , · · · , Bm

t ) , t ≥ 0} and n
real-valued Itô processes, as follows:

dX i
t =

m∑
l=1

ui,l
t dBl

t + vi
tdt,

i = 1, ·, n. We assume that each one of the processes ui,l
t belong to L2

a,T and

that
∫ T
0 |vi

t|dt < ∞.
Consider also a function f : [0,∞) × Rn 7→ R of class C1,2. Using similar
ideas as for the proof of Theorem 7.1, one can establish the following formula

f(t,Xt) = f(0, X0) +
∫ t

0
∂sf(s, Xs)ds +

n∑
i=1

∫ t

0
∂fxi

(s, Xs)dX i
s

+
1

2

n∑
i,j=1

∫ t

0
∂xi,xj

(s, Xs)dX i
sdXj

s , (7.21)

where in order to compute dX i
sdXj

s , we have to apply the following rules

dBi
sdBj

t = δi,jds, (7.22)

dBi
sds = 0,

(ds)2 = 0.

We remark that the identity (7.22) is a consequence of the independence of
the components of the Brownian motion.

Example 7.3 Consider the particular case m = 1, n = 2 and f(x, y) = xy.
That is, f does not depend on t and we have denoted a generic point of R by
(x, y). Then the above formula (7.21) yields

X1
t X2

t = X1
0X

2
0 +

∫ t

0
X1

s dX2
s +

∫ t

0
X2

s dX1
s +

∫ t

0

[(
u1

s

)2
+
(
u2

s

)2
]
ds. (7.23)

7.5 An Application of Stochastic Calculus: The Black
and Scholes Model

In this section, we shall consider the mathematical market consisting of a
single risky asset in continuous time, obtained by a limiting procedure of
the discrete time Cox, Ross and Rubinstein model. Denoting by S0 its initial
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value, the value at any time t is the continuous time stochastic process defined
by

St = S0e
µt−σ2

2
t+σBt ,

while for the non risky asset
S0

t = ert,

where r > 0 denotes the instantaneous interest rate.

Definition 7.3 A portfolio or a trading strategy in the market {(S0
t , St), t ≥

0} is a stochastic process Φ = {(αt, βt), 0 ≤ t ≤ T} satisfying the following
conditions:

1. α and β are measurable and adapted processes,

2. ∫ T

0
|αt|dt < ∞,∫ T

0
β2

t dt < ∞.

Recall that the term portfolio refers to the number of shares of each asset at
a given time t.

Definition 7.4 The value of the portfolio at time t is the stochastic process

Vt(Φ) = αte
rt + βtSt.

Definition 7.5 A portfolio Φ is said to be self-financing if its Itô differential
is given by

dVt(Φ) = rαte
rtdt + βtdSt. (7.24)

Notice that, the conditions required on the processes α and β imply that
(7.24) is well defined. In fact, the integral form of (7.24) is

Vt(Φ) = V0(Φ) +
∫ t

0
αsdS0 +

∫ t

0
βsdSs,

and the integrals of the right hand-side of this expression make sense for the
class of processes under consideration.
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The condition of being self-financing is really a restriction on the model.
Indeed, equation (7.24) would be the one derived from the definition of Vt(Φ)
if

d(αte
rt) = αtd(ert),

d(βtSt) = βtdSt.

This is of course true if αt, βt were constant real numbers.
As in the discrete case, we can define the normalized market of discounted
prices by

S̃t = e−rtSt = S0 exp

(
(µ− r)t− σ2

2
t + σBt

)
.

Then, the discounted value of the portfolio is

Ṽt(Φ) = e−rtVt(Φ) = αt + βtS̃t.

When taking the Itô differential, we have

dṼt(Φ) = −re−rtVt(Φ)dt + e−rtdVt(Φ)

= −rβtS̃tdt + e−rtβtdSt

= βtdS̃t.

7.5.1 Viability of the Black and Scholes Model

Remember the notion of a neutral probability given in Definition 4.9 and its
relationship with arbitrage free strategies.
In this setting, the existence of a neutral probability follows from an im-
portant result in stochastic calculus given by Girsanov’s Theorem. We shall
report now on it.

Given a Brownian motion {Bt, 0 ≤ t ≤ T} and a real number λ, the stochastic
process

Lt = exp

(
−λBt −

λ2

2
t

)
,

t ≥ 0, is a martingale.
Indeed, this follows easily applying Itô’s formula, since clearly,

Lt = 1− λ
∫ t

0
LsdBs.

By construction, L is positive and E(Lt) = 1, for any t ≥ 0.
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Consider the probability space (Ω,FT , P ). For any A ∈ FT define

Q(A) = E (11ALT ) .

Obviously, Q(Ω) = 1 and Q defines a new probability on (Ω,FT ). Moreover,
if instead of considering the probability space (Ω,FT , P ), we take (Ω,Ft, P ),
0 ≤ t ≤ T , the restriction of Q on Ft can be computed as follows:

Q(A) = E (11ALT ) = E (E (1ALT /Ft))

E (11AE (LT /Ft)) = E (1ALt) ,

for any A ∈ Ft, where we have used the martingale property of the process
Lt. Clearly P and Q are equivalent in the (usual) sense that P (A) = 0 if and
only if Q(A) = 0.

Theorem 7.2 (Girsanov’s Theorem) Fix λ ∈ R and consider the translation
of the sample paths of the Brownian motion defined by

Wt = Bt + λt,

for any t ∈ [0, T ]. On the probability space (Ω,FT , Q), the stochastic process
{Wt, t ∈ [0, T ]} is a Brownian motion.

Let us go back to the Black and Scholes model. Define

Wt = Bt +
µ− r

σ
t,

t ∈ [0, T ].

The value of the parameter λ := µ−r
σ

is chosen in such a way that

St = S0 exp

(
rt− σ2

2
t + σWt

)

and therefore

S̃t = S0 exp

(
−σ2

2
t + σWt

)
. (7.25)

That is, in the probability space (Ω,FT , Q), the discounted prices are a mar-
tingale. This property yields that the Black and Scholes model is viable.
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7.5.2 Pricing in the Black and Scholes Model

From the expression

Ṽt(Φ) = V0(Φ) +
∫ t

0
βudS̃u,

we infer that the value of the portfolio is a martingale with respect to the
probability Q provided that∫ T

0
E(β2

uS̃
2
u)du < ∞.

Assume this condition in the sequel. Then, for an European call option with
maturity time T and exercise price K, any replicable strategy Φ must satisfy
VT (Φ) = (ST −K)+. The price of this replicable strategy is

Vt(Φ) = EQ

(
e−r(T−t)(ST −K)+/Ft

)
,

because of the martingale property mentioned before. This formula is valid
for any t ∈ [0, T ]. In particular, for t = 0, this gives the price of the option:

V0(Φ) = EQ

(
e−rT (ST −K)+

)
.

7.5.3 Completeness of the Black and Scholes Model

Like its discrete time analogue, the Black and Scholes model is also complete.
The proof of this fact relies on a result of representation of random variables
in L2(Ω,FT , P ) in terms of a stochastic integral with respect to the Brownian
motion, as follows.

Theorem 7.3 Let F ∈ L2(Ω,FT , P ). There exists a unique stochastic pro-
cess {ut, t ∈ [0, T ]} belonging to L2

a,T such that

F = E(F ) +
∫ T

0
usdBs. (7.26)

From this result, it is easy to obtain a representation for square integrable
martingales. More precisely, consider a martingale {Mt, t ∈ [0, T ]} such that
each random variable Mt satisfies E(Mt)

2 < ∞. Then, there exists a unique
stochastic process {ut, t ∈ [0, T ]}0 in L2

a,T such that

Mt = E(M0) +
∫ t

0
usdBs. (7.27)
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Indeed, we can apply (7.26) to F := MT and then, take the conditional
expectation with respect to Ft to obtain

Mt = E(MT /Ft) = E(M0) + E

(∫ T

0
usdBs/Ft

)

= E(M0) +
∫ t

0
usdBs,

where in the last equality we have applied the martingale property of the
stochastic integral.

For example, from the Itô formula, we obtain that the process u in the
integral representation of F := B2

T is given by us = 2Bs, since E(B2
T ) = T

(see equation (7.10)).

With these results, let us prove the completeness of Black and Scholes model
for an European call option.

First, let H be the payoff of a derivative with maturity time T and assume
that H ∈ L2(Ω,FT , Q). Later on, H = (ST −K)+.

Consider the square integrable martingale on the probability space (Ω,FT , Q)

Mt = EQ

(
e−rT H/Ft

)
,

and its integral representation

Mt = M0 +
∫ t

0
usdWs.

Consider the pair of stochastic processes:

βt =
ut

σS̃t

,

αt = Mt − βtS̃t.

Let Φt = (αt, βt). We check that Vt(Φ) = H and therefore H is attainable.

Indeed, the discounted value of this trading strategy is

Ṽt(Φ) = αt + βtS̃t = Mt,

and its value at time T ,

VT (Φ) = erT ṼT (Φ) = erT MT = H.
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Let us next check that Φ is self-financing (see (7.24). Indeed, it is clear that

dVt(Φ) = rertṼt(Φ)dt + ertdṼt(Φ)

= rertMtdt + ertdMt

= rertMtdt + ertutdWt

= rert
(
αtdt + βtS̃tdt

)
+ σertβtS̃tdWt

= rert
(
αtdt + βtS̃tdt

)
+ ertβtdS̃t

= rertαtdt + βtdSt.

7.5.4 Computing the Replicating Strategy

Let H = g(ST ). By writing

Vt := Vt(Φ) = EQ

(
e−r(T−t)g(ST )/Ft

)
= e−r(T−t)EQ

(
g(Ste

r(T−t)eσ(WT−Wt)−σ2

2
(T−t))/Ft

)
, (7.28)

we obtain

Vt = F (t, St),

with

F (t, x) = e−r(T−t)EQ

(
g(xer(T−t)eσ(WT−Wt)−σ2

2
(T−t))/Ft

)
.

This is a useful expression. In fact, assume that F (t, x) is a C1,2 function.
This condition shall depend, of course on the function g. Recall that, in
terms of the new Brownian motion Wt,

St = S0e
(r−σ2

2
)t+σWt ,

which implies

dSt = rStdt + σStdWt.

By applying Itô’s formula, we obtain

Vt = V0 +
∫ t

0
σ

∂F

∂x
(s, Ss)SsdWs +

∫ t

0
r
∂F

∂x
(s, Ss)Ssds

+
∫ t

0

∂F

∂s
(s, Ss)ds +

1

2

∂2F

∂x2
(s, Ss)σ

2S2
sds. (7.29)
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On the other hand,

dVt = rertṼtdt + ertdṼt = rVtdt + ertdMt

= rVtdt + ertutdWt

= rVtdt + ertσβtS̃tdWt

= rVtdt + σβtStdWt.

This yields the expression of Vt as an Itô process,

Vt = V0 +
∫ t

0
σβsSsdWs +

∫ t

0
rVsds. (7.30)

Comparing the expressions (7.29) and (7.30), and by virtue of the uniqueness
of the Itô representation, we obtain the crucial relations

βt =
∂F

∂x
(t, St), (7.31)

rVt = rF (t, St) =
∂F

∂x
(t, St)St +

∂F

∂t
(t, St)

+
1

2

∂2F

∂x2
(t, St)σ

2S2
t . (7.32)

Since St is positive, we see that the function F (t, x) satisfies the partial
differential equation on (0,∞)

∂F

∂x
(t, x)x +

∂F

∂t
(t, x) +

1

2

∂2F

∂x2
(t, x)σ2x2 = rF (t, St),

F (T, x) = g(x). (7.33)

This is Black-Scholes-Merton partial differential equation.
We have thus obtained the following formulas for the replicating portfolio:

βt =
∂F

∂x
(t, St),

αt = e−rt (F (t, St)− βtSt) .

But this is not enough, because we need the explicit expression for F (t, x).
For this reason, we go back to formula (7.28), we set θ = T − t and we obtain

F (t, x) =
1√
2π

e−rθ
∫

R
e−

y2

2 g
(
xerθ−σ2

2
θ+σ

√
θy
)

dy.

In the particular case g(x) = (x −K)+, and consequently, H = (ST −K)+

(European call option), this formula yields
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F (t, x) =
1√
2π

∫
R

e−
y2

2

(
xe−

σ2

2
θ+σ

√
θy −Ke−r(T−t)

)+

dy

= xΦ(d+)−Ke−r(T−t)Φ(d−), (7.34)

where Φ denotes the distribution function of a standard unidimensional Gaus-
sian law and

d+ =
log x

K
+
(
r + σ2

2

)
(T − t)

σ
√

T − t
,

d− =
log x

K
+
(
r − σ2

2

)
(T − t)

σ
√

T − t
.

The relation (7.34) provides a formula for pricing European call options in
the Black and Scholes model:

Vt(α, β) = F (t, St),

with the replicating portfolio

βt =
∂F

∂x
(t, St) = Φ(d+),

αt = e−rt(F (t, St)− βtSt).
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