
FormalVerification
Ana Borges, Quim Casals, Juan Conejero,

Mireia González, Eduardo Hermo and Joost J. Joosten

Formal Analysis
Consists of mathematical methods ap-

plied to the better understanding of the
program’s behaviour.

It usually involves three types of activi-
ties, namely system modeling, formal spec-
ifications and formal verification.

– When modeling one seeks to develop
an abstract representation of our pro-
gram.

– The specification defines the proper-
ties the program has to satisfy, some-
times characterizing the full abstract
model.

– Finally, the verification ensures that
our model complies with the specifi-
cation.

Formal Verification
We intend to prove or disprove the correctness of the program with respect to our

specification, through a model of our implementation. There are three kinds of methods:

– Model Checking explores all possible behaviours of a model of P in formal language
L. If the property does not hold, it generates a counterexample. Model Checking
achieves highly efficient and fully automated verification, but it is limited by the scale
and complexity of the model.

– Theorem Proving models the system P and the specification P as logic formulae and
proves through deductive methods that, in M, P entails P. Using inductive methods
to describe the behavior and attributes of the program can solve the “state explosion”
problem but cannot be automated at present.

– Static Analysis models the semantics of L and determines some properties of P
through abstract interpretation.

Birth of P

Representation of a real-
world process or system
from a particular perspec-
tive in M, using formal
language L.

Identifies the expected
characteristics of a sys-
tem, service, or process as
P in M.

Translates design P into
hardware or software com-
ponents P , as in Program-
ming Language L.

Checking whether the
product P fulfills our
expectations on P.

First user of P gets it to
work in the wilderness.

Testing, Verification
and Validation

Implementation

Model

Specification

Execution

D
e
v
e
lo
p
m
e
n
t

DO-333 (simplified)

FV Public Certification
In Formal Vindications we believe algorithmic law deserves a high reliability, requiring

formal methods for its validation.

Our team is developing a Public Certification Method in order to certify formally verified
software. Certified software must include the following 4 basic elements written in a formal
language (our company’s choice is Coq):

• A formal specification.

• Its implementation.

• A mathematical proof that the implementation fulfills the specification.

• The automatically generated executable, along with the method used for extraction.

As the certified software will be used by humans and a complete and sound translation
of natural language is not attainable, a 5th element is customary.

• An interpretation, containing three different abstraction levels of language.

An Example
Airborne is a safety-critical software, so requir-

ing the compliance of DO-178c standards, using
formal methods as part of the validation process.
The paper[1] shows the process of verifying such
software with formal methods following the DO-
333 standard from DO-178c. The process con-
sisted of four stages:

• Formal analysis of requirements.

• Compliance from source code to require-
ments.

• Static analysis of source code.

• Formal analysis of the executable.

They verified 1049 properties, finding 16 errors
from 54 potentials errors.

References
[1] Zongyu Cao, Wanyou Lv, Yanhong Huang, Jianqi Shi and Qin Li
Formal Analysis and Verification of Airborne Software Based on DO-333

Proyecto RTC-2017-6740-7 financiado por MCIN/AEI/10.13039/501100011033 y por FEDER.

1


