
SignedPrimitiveIntegers inCoq
Ana Borges, Raül Espejo and Joost J. Joosten

Summary
Signed primitive integers were added to the Coq kernel alongside the previ-
ously existing unsigned primitive integers.

Successor

10001001
10

10
10
11

11
00

11
01

11

10
111

1 0000 0001
0010

0011
0100

0101
0110

0111
-8-7

-6
-5

-4
-3

-2
-1

0 1

2
3

4
5

6
7

89
10

11
12

13
14

15
0 1

2
3

4
5

6
7

Cyclic behaviour of +1 operator in 4 bits
long integers, along with their’s two’s com-
plement signed and unsigned interpreta-
tion.

Examples

0000

1111

0000

0101

1010

1011

1000

0111

1000

NOT

+ 1

The two’s complement algorithm transforming 4 bits long integers 0, 5 and -8.

The minimal integer, -8, is invariant to two’s complement.

Problem
In mathematics it is useful to think of

natural numbers as being either 0 or the
successor S of some other natural number.
e.g., 3 is represented as S (S (S 0)). This
definition is ideal for inductive proofs.

For computers, it is useful to think of
natural numbers as their binary represen-
tation, consisting of 0s and 1s strings. e.g.,
3 can be represented as 11. This defini-
tion allows for efficient memory manage-
ment and computation.

Coq provides the type nat for induc-
tive proofs and the type Uint63.int of un-
signed primitive integers for efficient mem-
ory management.

However, until recently there was no
signed counterpart of Uint63.int. This
contribution provides the signed version.

Two’s complement
A string of 0s and 1s can be interpreted either as an unsigned or a signed integer. In

the signed interpretation with two’s complement, the most significant bit is seen as a sign
(0 for positive and 1 for negative). Thus, 63 bits are enough to express unsigned integers
up to 263 − 1, and signed integers between −262 and 262 − 1.

When interpreting binary strings with two’s complement, some operations such as ad-
dition and multiplication work exactly the same under the unsigned and signed interpreta-
tions. However, some other operations such as division and comparison work differently.

Solution
The new type Sint63.int was added to Coq. This type is a two’s comple-

ment interpretation of Uint63.int (previously named Int63.int), meaning
that operations such as addition and multiplication are repurposed.

The new contributions are:

• Printing and parsing of binary strings as signed primitive integers.

• Primitive definitions of signed less-than-or-equal, signed less-than, signed
division, signed remainder, and arithmetic shift right at the level of the
Coq kernel.

• A Coq library Sint63 with theory on signed primitive integers, including
all the operations repurposed from Uint63 as well as the newly defined
ones.

References
Ana de Almeida Borges (FV), Guillaume Melquiond (INRIA) and Pierre Roux (ONERA)
Int63.Sint63 2021:

https://coq.inria.fr/library/Coq.Numbers.Cyclic.Int63.Sint63.html
http://formalvindications.com/post/primitive-machine-signed-integers/

New code can be found in:
https://github.com/coq/coq/pull/13559

Older unsigned code can be found in:
https://coq.github.io/doc/master/stdlib/Coq.Numbers.Cyclic.Int63.PrimInt63.html
https://coq.inria.fr/library/Coq.Numbers.Cyclic.Int63.Uint63.html

Proyecto RTC-2017-6740-7 financiado por MCIN/AEI/10.13039/501100011033 y por FEDER.

1


