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Summary
Signed primitive integers were added to the Coq kernel alongside the previ-
ously existing unsigned primitive integers.
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Cyclic behaviour of +1 operator in 4 bits
long integers, along with their’s two’s com-
plement signed and unsigned interpreta-
tion.
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The two’s complement algorithm transforming 4 bits long integers 0, 5 and -8.

The minimal integer, -8, is invariant to two’s complement.

Problem
In mathematics it is useful to think of

natural numbers as being either 0 or the
successor S of some other natural number.
e.g., 3 is represented as S (S (S 0)). This
definition is ideal for inductive proofs.

For computers, it is useful to think of
natural numbers as their binary represen-
tation, consisting of 0s and 1s strings. e.g.,
3 can be represented as 11. This defini-
tion allows for efficient memory manage-
ment and computation.

Coq provides the type nat for induc-
tive proofs and the type Uint63.int of un-
signed primitive integers for efficient mem-
ory management.

However, until recently there was no
signed counterpart of Uint63.int. This
contribution provides the signed version.

Two’s complement
A string of 0s and 1s can be interpreted either as an unsigned or a signed integer. In

the signed interpretation with two’s complement, the most significant bit is seen as a sign
(0 for positive and 1 for negative). Thus, 63 bits are enough to express unsigned integers
up to 263 − 1, and signed integers between −262 and 262 − 1.

When interpreting binary strings with two’s complement, some operations such as ad-
dition and multiplication work exactly the same under the unsigned and signed interpreta-
tions. However, some other operations such as division and comparison work differently.

Solution
The new type Sint63.int was added to Coq. This type is a two’s comple-

ment interpretation of Uint63.int (previously named Int63.int), meaning
that operations such as addition and multiplication are repurposed.

The new contributions are:

• Printing and parsing of binary strings as signed primitive integers.

• Primitive definitions of signed less-than-or-equal, signed less-than, signed
division, signed remainder, and arithmetic shift right at the level of the
Coq kernel.

• A Coq library Sint63 with theory on signed primitive integers, including
all the operations repurposed from Uint63 as well as the newly defined
ones.
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