
FVTime
Ana Borges, Quim Casals, Juan Conejero,

Mireia González, Eduardo Hermo and Joost J. Joosten

Summary
The FV Time Library is a Coq-verified implementation of the UTC stan-

dard and some utilities to make it more usable for both critical and regular
programming. While most time softwares don’t include leap seconds, FV
Time does.

The FV Time Manager is a standalone executable available for Linux and
Windows, allowing the user to interact with the Time Library from the com-
mand line.

Leap Seconds
The Earth’s rotation period varies, slowing down unpredictably, but the time standard

defines days as 86400 SI seconds (measured with atomic clocks). This standard would
gradually differ from solar time. This may be irrelevant for some purposes, but when civil
time is somehow involved this can present a problem: without adjustments, noon in atomic
time could even happen during the night (in the sense of period with no solar light). This
problem is the motivation for defining leap seconds.

The UTC standard states that days always have 24 hours, every hour has 60 minutes,
but minutes can have between 59 and 61 seconds. When a minute of 61 seconds occurs, the
extra second is called a leap second. When UTC differs in 0.9 seconds of UT1, a leap second
is inserted. The leap second is inserted at second 23:59:60 of a chosen UTC date. The last
day of December and June are preferred, and then the last day of March or September,
and the last day of any other month as last preference. All leap seconds as of 2022 have
been scheduled for either June 30 or December 31. Up to April 2022 there hasn’t been any
negative leap second.

Features
The main goal of the Time Library is

to provide verified functions translating be-
tween UTC times (with leap seconds) and
timestamps.

The calendar.v file describes the spec-
ifications of our library, using MathComp’s
nat. Since the specifications are optimized
to be intuitive and not efficient, we provide
a second file, Hinnant.v, with alternative
implementations. The implementation of
the datestamp algorithm and its inverse are
inspired by the ones described by Howard
Hinnant, hence the name of the file.

To achieve even better performance
all functions were refined to Coq’s inte-
gers primitive types, proving that over the
range of primitives the same lemmas were
valid.

Adding and subtracting durations or
time intervals doesn’t respect basic arith-
metical properties, due to the irregular pe-
riods that Gregorian calendar and UTC
define. This problem affects all the com-
ponents to the left of seconds. To solve
this problem we implemented two differ-
ent types of operations in time arithmetic.
The first ones, shift functions, are the con-
ventional operation over components. The
second ones form a new standard of op-
erations called add-formal. They behave
consistently with basic arithmetical prop-
erties.

Comparison to DateTime
Comparison of FV Time Library to Mi-
crosoft’s Datetime.

Compilation

References
Hinnant’s Algorithms:

https://howardhinnant.github.io/date_algorithms.html

Proyecto RTC-2017-6740-7 financiado por MCIN/AEI/10.13039/501100011033 y por FEDER.

Hinnant’s algorithms
The Gregorian calendar has a 400 year

cyclic structure, the algorithms base their
calculations on this structure, ruling out
the actual year from the core computa-
tions. This helps with the addition of leap
days, preceding March 1st.

We call each cycle of 400 years an era.
The first era starting the 1st of March of
year 0.

However, following the Time Unix tra-
dition, the seconds and days count begin
at 1970-01-01 and end 9999-12-31.

1


