HUGE REFLECTION

JOAN BAGARIA AND PHILIPP LUCKE

ABSTRACT. We study Structural Reflection beyond Vopénka’s Principle, at the level
of almost-huge cardinals and higher, up to rank-into-rank embeddings. We identify
and classify new large cardinal notions in that region that correspond to some form of
what we call Ezact Structural Reflection (ESR). Namely, given cardinals k < A and a
class C of structures of the same type, the corresponding instance of ESR asserts that
for every structure A in C of rank A, there is a structure B in C of rank x and an
elementary embedding of B into A. Inspired by the statement of Chang’s Conjecture,
we also introduce and study sequential forms of ESR, which, in the case of sequences of
length w, turn out to be very strong. Indeed, when restricted to IT1-definable classes of
structures they follow from the existence of I1-embeddings, while for more complicated
classes of structures, e.g., 3o, they are not known to be consistent. Thus, these principles
unveil a new class of large cardinals that go beyond I1l-embeddings, yet they may not
fall into Kunen’s Inconsistency.

1. INTRODUCTION

Given a class® C of structures? of the same type and a cardinal &, the principle of Structural
Reflection® SR holds at & for C if for every structure A in C, there exists some B € CNV,, and
an elementary embedding of B into A. Different forms of SR have been investigated in [Bag,
Bagl2, BCMR15, BV16, BW, Liic|, yielding canonical characterizations of large cardinals
in different regions of the large cardinal hierarchy. For example, results in [Bagl2] and
[BCMRI15] use Magidor’s classical characterization of supercompact cardinals from [Mag71]
to show that the existence of such a cardinal is equivalent to the validity of the principle SR
for all classes of structures definable by II;-formulas without parameters.

The principles of structural reflection considered so far correspond to large cardinals
up to Vopénka’s Principle, stating that every proper class of structures of the same type
contains a structure that is elementary embeddable into another structure in the given class.
The validity of this principle can be shown to be equivalent to the existence of cardinals
witnessing SR for every class of structures (see [Bagl2]). In this paper, we shall study
principles of structural reflection that correspond to large cardinal notions stronger than
Vopénka’s Principle, up to rank-into-rank embeddings, and beyond. These principles are
given by variations of the following ezact form of SR:

Definition 1.1 (Exact Structural Reflection). Given infinite cardinals k < X and a class C
of structures of the same type, we let ESR¢(k, \) denote the assertion that for every A € C
of rank A, there exists some B € C of rank x and an elementary embedding from B into A.
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Given a definability class I' (i.e., one of ¥, or II,, for some n < w) and a class P, we
introduce the following variations of the above definition that will allow us to formulate our
results in a compact way:

(i) We let T'(P)-ESR(k, \) denote the statement that ESR¢(k, A) holds for every class
C of structures of the same type that is I'-definable with parameters in P.
(ii) We let I'(P)-ESR(x) denote the statement that I'(P)-ESR(k,\) holds for some
cardinal A > k.
(iii) We let I'(P)*-ESR(k, \) and I'(P)¥*-ESR(k) denote the restrictions of the respec-
tive principles to classes of structures that are I'-definable with parameters in P
and are closed under isomorphic copies.

Using the Downward Léwenheim—Skolem Theorem, it is easy to see that ESR¢ (&, A) holds
for every countable first-order language L, every elementary class C of L-structures and all
uncountable cardinals x < A with cof(x) < cof(A) (see Proposition 2.1 below). In contrast,
we shall see that the above principles for externally defined classes are quite strong, for
they correspond to large cardinals in the region between supercompact and rank-into-rank
embeddings, and beyond. Below is a summary of the main results.

First, we discuss our results for classes of structures closed under isomorphic copies. While
an easy application of ¥j-absoluteness shows that the principle ¥ (V,)**-ESR(k, A) holds
for all uncountable cardinals k£ < A with cof(k) < cof(\) (Proposition 3.1), we prove that
the principle IT:-ESR(k, \) already implies the existence of a <\-supercompact cardinal
less than or equal to x (Lemma 4.9). Moreover, for singular cardinals s, our results show
that the validity of principles of the form IT; (V,,)*-ESR(k, \) is equivalent to the existence of
cardinals below x possessing certain degrees of supercompactness. In particular, it turns out
that singular limits of supercompact cardinals can be characterized through exact structural
reflection for II;-definable classes closed under isomorphic copies. Namely, we have the
following equivalences:

Theorem 1.2. The following statements are equivalent for every singular cardinal k:

(i) & is a limit of supercompact cardinals.
(ii) TI;(x)*-ESR(k, \) holds for a proper class of cardinals \.
(iii) Xo(Vi)*-ESR(k, ) holds for a proper class of cardinals .

In order to state an analogous result for more complicated classes of structures, we have
to introduce a weak form of the notion of C"-extendibility from [Bagl2]. Recall that a
cardinal k is A-extendible for some ordinal A > & if there is an ordinal n and an elementary
embedding j : Vi — V;, with crit(j) = s and j(k) > A. Following [Bagl2], for every n < w,
we let O™ denote the II,,-definable closed unbounded class of all of ordinals « such that V,,
is a X,-elementary substructure of V. Given cardinals k < A and n < w, the cardinal k is
A\-C(")_extendible if there is an elementary embedding j : Vi — V,, for some cardinal v with
crit(j) = &, j(k) > X and j(x) € C™. In addition, we say that  is C")-extendible if it is
A-C(™_extendible for all (equivalently, for a proper class of) A >  (see [Bagl2, Section 3]).

The following weaker form of C(")-extendibility will allow us to prove a version of Theorem
1.2 for classes of structures of complexity greater than Y.

Definition 1.3. Given ordinals p < A and a natural number n, a cardinal k < p is [, \)-
C(")_extendible if there exist v € C("1) N [, A) and an elementary embedding j : Vy — V;,
for some n, with crit(j) = r, j(u) > X and j(v) € C™. In addition, we say that r is
[, 00)-C "M -extendible if it is [u, \)-C™ -extendible for a proper class of ordinals .

It is easy to see that extendible cardinals # are [u, 00)-C'M-extendible for all y > k. Using
the fact that the requirement ”j(k) > A” can be omitted in the definition of extendibility
(see [Kan03, Proposition 23.15]), we can also see that a cardinal x is extendible if and only
if it is [11, 00)-C(M-extendible for some p > x. We will later show that every C("-extendible
cardinal is [11, 00)-C(™-extendible, for every u > & (Proposition 4.4).

Using this notion, the above characterization of singular limits of supercompact cardinals
now generalizes in the following way:
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Theorem 1.4. For every n > 0, the following statements are equivalent for every singular
cardinal k:
() & is a limit of [k,00)-C™ -extendible cardinals.
(i) IL,41(k)*-ESR(k, ) holds for a proper class of cardinals \.
(iii) $p12(Vi)*-ESR(k, A) holds for a proper class of cardinals \.

In particular, Theorem 1.4 shows that a singular cardinal x is a limit of extendible car-
dinals if and only if ITy(x)*-ESR(k, A) holds for a proper class of cardinals \.

In combination with results from [Bagl2] and [BCMR15], the methods developed in the
proof of Theorem 1.4 also allow us to conclude that exact structural reflection for classes
of structures closed under isomorphisms holding at singular cardinals does not imply the
existence of large cardinals stronger than Vopénka’s Principle. In fact, Vopénka’s Principle
can be characterized through the validity of principles of the form II,, (V. )*“-ESR(k, ).

Theorem 1.5. Quer the theory ZFC, the following schemes of sentences imply each other:
(i) Vopénka’s Principle.
(ii) For every class C of structures of the same type that is closed under isomorphic
images, there is a cardinal k with the property that ESR¢(k, ) holds for all A > k.
(iii) For every natural number n > 0, there exists a proper class of cardinals k with the
property that I1,,(V,.)*“-ESR(k, \) holds for all A > k.

In contrast to the above results, both the validity of the principle II:>-ESR at a regular
cardinal and the validity of the principle II;-ESR. at some cardinal turn out to imply the
existence of large cardinals stronger than Vopénka’s Principle, e.g. almost huge cardinals.
The large cardinal properties introduced below will allow us to capture the strength of these
forms of exact structural reflection. Their definition is motivated by results in [Liic] that
provide a characterization of shrewd cardinals (introduced by Rathjen in [Rat95]) through a
variation of Magidor’s classical characterization of supercompactness in [Mag71] and similar
characterizations of n-hugeness in [HLN19, Section 6]. In the following, we will say that a
set M is IL,, (P)-correct for some natural number n > 0 and a class P if all II,,-formulas with
parameters in M N P are absolute between V and M.

Definition 1.6. Given a natural number n > 0, an infinite cardinal k is weakly n-exact
for a cardinal A > k if for every A € Vi1, there exists a transitive, I1,,(Vi41)-correct set M
with Vi, U{k} C M, a cardinal N € C""~V) greater than Jy and an elementary embedding
Jj: M — Hy with j(k) = X and A € ran(j). If we further require that j(crit(j)) = k, then
we say that k is weakly parametrically n-exact for .

Observe that if k is weakly parametrically 1-exact for A, then x and A are both inaccessible.
The following result shows how weakly n-exact cardinals are connected to principles of exact
structural reflection for II,-definable classes of structures.

Theorem 1.7. The following statements are equivalent for all cardinals k and all natural
numbers n > 0:

(i) & is the least regular cardinal such that TI!*-ESR(k) holds.
(ii) w is the least cardinal such that I1,,-ESR (k) holds.
(iii) & is the least cardinal such that 11,,(V,)-ESR(k) holds.
(iv) & is the least cardinal that is weakly n-exact for some \ > k.
(v) k is the least cardinal that is weakly parametrically n-exact for some A > K.

In the case of ¥, 1-definable classes of structures, the large cardinal principles corre-
sponding to the different forms of exact structural reflection are the following:

Definition 1.8. Given a natural number n, an infinite cardinal k is n-exact for some
cardinal A\ > k if for every A € Va1, there exists a cardinal k' € C™) greater than ., a
cardinal X' € C™*Y) greater than X, an elementary submodel X of H, with V,, U{x} C X,
and an elementary embedding j : X — Hy with j(k) = XA and A € ran(j). If we further
require that j(crit(j)) = & holds,* then we say that x is parametrically n-exact for \.

4Even though X need not be transitive, we still define crit(j) as the least ordinal moved by j, which
exists since j is not the identity on the ordinals as j(k) = A.
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Note that, if m < n < w and k is (parametrically) n-exact for A, then & is also (para-
metrically) m-exact for A. Moreover, standard arguments show that, if x is parametrically
0-exact for A\, then both x and X are inaccessible cardinals. In addition, it is easily seen that,
given 0 < n < w, if k is (parametrically) n-exact for A, then it is also weakly (parametrically)
n-exact for A. Finally, we will later show that, if a cardinal k is weakly parametrically (n+1)-
exact for some A and 0 < n < w, then it is also parametrically n-exact for A\ (Proposition
7.2).

The equivalence of the existence of n-exact cardinals with ESR principles for 3,,-definable
classes of structures is given in the following theorem.

Theorem 1.9. The following statements are equivalent for all cardinals x and all natural
numbers n > 0:

(i) & is the least cardinal such that ¥,41-ESR(k) holds.
(ii) & is the least cardinal such that ¥,,11(V,)-ESR(k) holds.

(iii) & is the least cardinal that is n-exact for some A > k.

(iv) & is the least cardinal that is parametrically n-exact for some A > k.

The above results allow us to uniquely place the large cardinal properties introduced in
Definitions 1.6 and 1.8 into a linear hierarchy. More specifically, if « is a cardinal satisfying
the equivalent statements of Theorem 1.9 for some 0 < n < w, then there exists a cardinal
1 < K satisfying the equivalent statements of Theorem 1.7 for the same natural number n
(Lemma 7.1). In addition, if 0 < n < w and & satisfies the statements listed in Theorem
1.7 for n + 1, then there is a cardinal p < s satisfying the statements of Theorem 1.9 (see
Lemma 5.8) for n. These results should be compared with the corresponding statements for
the principle SR, showing that SR for II,,-definable classes of structures is equivalent to SR
for 3, +1-definable classes ([Bagl2, Section 4]).

Exact cardinals are very strong, consistency-wise. In Section 8 we give lower and upper
bounds for their consistency strength, and we also prove they imply the existence of well-
known large cardinals in the upper ranges of the large-cardinal hierarchy. Recall that a
cardinal & is almost huge (see [Kan03]) if it is the critical point of an elementary embedding
j:V — M, with M transitive and closed under sequences of length less than j(k). Given
such an embedding j, we then say that k is almost huge with target j(k). If k is either
parametrically 0-exact for A, or weakly parametrically 1-exact for A, then many cardinals
smaller than k are almost huge with target x (Corollary 8.2). As for upper bounds, while
every huge cardinal (with target some \) is weakly parametrically 1l-exact (for the same
A), the least huge cardinal x is not l-exact for any A > k (Propositions 8.4 and 8.6). A
strong consistency upper bound is provided by an I3-embedding (see [Kan03, §24]), for if
j : Vs = Vs is such an embedding, then in Vj a proper class of cardinals are parametrically
n-exact for unboundedly-many A, for every n (Proposition 8.7). A much lower upper bound,
namely an almost 2-huge cardinal, is given in Proposition 8.9 for the consistency of weakly
parametrically n-exact cardinals, all n > 0.

Finally, in Section 9, we show how the principle ESR(k, A) can be strengthened to en-
compass increasing sequences of cardinals of length at most w, instead of a single cardinal
A, in order to obtain principles of structural reflection that are much stronger, implying
the existence of many-times huge cardinals or even I3-embeddings. The formulation of
these stronger sequential ESR principles is motivated by the observation that the principle
I1;-ESR(k, A) directly implies the instance

(M R) = (K, <K)

of Chang’s Conjecture, i.e. every structure A in a countable language with domain \ has an
elementary substructure B of cardinality x with |B N k| < k. The definition of our sequential
ESR principles will then directly imply that higher versions of Chang’s Conjecture hold for
the respective cardinals.

We then also strengthen, accordingly, the notions of weakly exact and exact cardinals to
obtain large cardinal properties that correspond to the new sequential ESR principles and
show that much of the theory developed for ESR(k, A) can be generalized to this stronger
context. In particular, we obtain exact equivalences for the least cardinals witnessing the
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sequential forms of ESR and the corresponding sequential forms of weakly exact and exact
cardinals (Theorems 9.8 and 9.11). As for determining the position of these large cardinals
in the large cardinal hierarchy, we show, on the one hand, that the existence of a weakly 1-
exact or a 0-exact cardinal for a sequence of cardinals of length n+1 implies the existence of
smaller n-huge cardinals. On the other hand, every n-huge cardinal is weakly parametrically
n-exact for some sequence of cardinals of length n (Proposition 9.3). Also, if & is the critical
point of an I1-embedding (see [Kan03, §24]), then it is weakly parametrically 1-exact for a
sequence of cardinals of length w.

Many questions remain, and some of them are addressed in the last section of the article.
Most interesting is the problem of determining the exact strength of the sequential forms
of ESR. We know that these principles, in the case of sequences of length w, are very
strong, so much so that even when restricted to Xo-definable classes of structures we don’t
know them to be consistent. This makes the study of such principles both challenging and
exciting, for they appear to constitute a new class of large-cardinal principles that go beyond
I1-embeddings, yet they may not fall into Kunen’s Inconsistency.

2. ISOMORPHISM-CLOSED CLASSES

We start by studying instances of the principle ESR for classes of structures closed under
isomorphic copies. Notice that if a class C of structures of the same type is X,,-definable
(with or without parameters) for some n > 0, then the closure of C under isomorphic copies
is also X,,-definable (with the same parameters, if any).

Proposition 2.1. Given uncountable cardinals k < A, the following statements are equiva-
lent for every class C of structures of the same type that is closed under isomorphic copies:
(i) ESRe(k, A).
(ii) For every structure B in C whose cardinality is contained in the interval [cof()\), 3],
there exists an elementary embedding of a structure A in C into B such that the
cardinality of A is contained in the interval [cof(k), 3]

Proof. Assume that (i) holds and fix a structure B in C whose cardinality is contained in
the interval [cof(A),35]. Then we can pick an injection ¢ from the domain of B into Vy such
that the set
[y < A 1an(i) 0 (Vg \ V3) # @)

is unbounded in A. Let By denote the isomorphic copy of B induced by i. Then By is a
structure in C of rank A and our assumptions yield an elementary embedding of a structure
Ain C of rank k into By. But this allows us to conclude that the cardinality of A is contained
in the interval [cof(k),J,], and there exists an elementary embedding of A into B.

Now, assume that (ii) holds and fix a structure B in C of rank A. Then the cardinality of B
is contained in the interval [cof()), 35] and our assumption yields an elementary embedding
of a structure A in C into B whose cardinality is contained in the interval [cof(x),3,]. Pick
an injection ¢ from the domain of A into V,; with the property that the set

{a <k |ran(i) N (Vor1 \ Vo) # 9}

is unbounded in k, and let Ay denote the isomorphic copy of A induced by i. Then Ay is a
structure in C of rank x and there exists an elementary embedding of Ay into B. ]

Corollary 2.2. Let k < A be inaccessible cardinals and let C be a class of structures of the
same type that is closed under isomorphic copies. Then ESRc¢(k,\) holds if and only if for
every structure B € C of cardinality A, there exists an elementary embedding of a structure
A € C of cardinality k into B. O

Corollary 2.3. LetC be a class of structures of the same type that is closed under isomorphic
copies and let k < p < X be infinite cardinals with the property that ESRe(k, A) holds.

(i) If cof(u) < cof(k), then ESRe(p, A) holds.

(ii) If cof(u) > cof(N), then ESRe(k, ) holds.

Proof. Since cof(p) < cof (k) implies [cof(x),3,] C [cof (i), 3,] and cof (1) > cof(A) implies
[cof (1), 3,] C [cof(A),Tx], both statements follow directly from Proposition 2.1. O



6 JOAN BAGARIA AND PHILIPP LUCKE

3. LOW COMPLEXITIES

In this section, we study exact structural reflection for X;-definable classes of structures.
In the case of classes closed under isomorphic copies, these principles are provable in ZFC.

Proposition 3.1. If x is an uncountable cardinal, then the principle 1 (V,)*-ESR(k, \)
holds for every cardinal A > K with cof(k) < cof(\).

Proof. Fix a ¥i-formula ¢(vg,v1) and z € V, such that C = {A | ¢(A,2)} is a class of
structures of the same type and pick a structure B in C whose cardinality is contained in
the interval [cof(A\),3,]. Let By be an isomorphic copy of B in H:;r and pick an elementary
substructure X of H:lj of cardinality J,, with V,, U{k, Bp} C X. Let 7 : X — M denote the

induced transitive collapse. Since m(z) = z, ¥j-absoluteness now implies that ¢(7(By), z)
holds and hence m(By) is an element of C. Moreover, our construction ensures that m(By)
has cardinality at most J, and, since By has cardinality at least cof(\) > cof(x) and
m(cof(k)) = cof(k), we know that m(By) has cardinality at least cof(x). Finally, using the
inverse collapse w1, it is easy to see that there exists an elementary embedding of 7(By)
into B. By Proposition 2.1, the above computations yield the desired conclusion. O

In contrast with the previous Proposition, the principle ESR¢(k,A) for some £ < A
and all ¥g-definable (without parameters) classes C of structures of the same type (so, no
closure under isomorphic copies required), has considerable large-cardinal strength and fails
in Godel’s constructible universe L.

Lemma 3.2. If X-ESR(k) holds for some uncountable cardinal k, then a¥ exists for every
real a.

Proof. Let L denote the first-order language that extends the language L of set theory by
a binary predicate symbol E, a constant symbol ¢ and a unary function symbol f . Define C
to be the class of all L-structures of the form (v, €, E, o, f) with the property that v is an
ordinal and f : (v, €) — (ran(f), E) is an order-isomorphism. Then it is easy to see that C
is definable by a Yg-formula without parameters.

Now, fix a real a and a cardinal A > k such that ESR¢(k,\) holds. Pick a bijection
b: Ly[a] = X and set

E = {(b),b(y)) | © €y € Lafa]}.
Then
B = (\€,Eb(k),b ] A)

is an L-structure of rank A in C. By our assumption, there exists a binary relation R on k,
a function f : kK — k and «a < k such that

A = (k&R f)

is a structure in C with the property that there exists an elementary embedding i of A
into B. Since our construction ensures that (A, E') is well-founded and (k, R) embeds into
(A, E), it follows that (k, R) is well-founded too. Moreover, elementarity implies that (s, R)
is extensional. Let 7 : (k, R) — (M, €) denote the corresponding transitive collapse and set

j = bloior™t: M — Lylal.

Then j is an elementary embedding of transitive structures.
Now, note that elementarity implies that ran(f) = #—*[M N Ord] and

7 [ ran(f) : (ran(f), R) — (M N Ord, €)
is an order-isomorphism. But this shows that
wo f: (k€)= (MNOrd,€)

is also an order-isomorphism and hence we can conclude that M N Ord = k. In particular,
elementarity implies that M = Ly[a].

Finally, since j(m(a)) = k > w(«a), we know that j : Lila] — La[a] is a non-trivial
elementary embedding. But then |crit(j)| < & and the proof of [Jec02, Theorem 18.27]
shows that a” exists. |
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The next result provides an upper bound for the consistency strength of the assumption
of Lemma 3.2. In particular, it shows that this assumption does not imply the existence of
an inner model with a measurable cardinal. Its proof is based on arguments contained in
the proof of [VWO01, Theorem 2.3].

Lemma 3.3. If§ is a Ramsey cardinal, then the set of inaccessible cardinals k < & with the
property that ¥1(V,;)-ESR(k) holds in Vs is unbounded in ¢.

Proof. Fix £ < § and pick A C 6 such that V5 = Ls[A]. By our assumption, there exists a
good set I of indiscernibles for the structure (Ls[A4], €, 4) (see [DJK81, Section 1]) that is
unbounded in ¢ and satisfies min(I) > &. Set

X = Hullir,(4),€,4) (min(1) U (I \ {min()}))

and let 7 : X — M denote the corresponding transitive collapse. Since I is unbounded in
0, we know that M N Ord = §. Moreover, indiscernibility ensures that min(l) ¢ X and
hence 7=! : M — Vj is a non-trivial elementary embedding with critical point min(7). Set
k=7 (min(I)) € M and A = 7~ !(k) € M. Then s and )\ are both inaccessible cardinals
greater than &.

Claim. In Vj, the principle ESR¢(k, \) holds for every class C of structures of the same
type that is definable by a X1 -formula with parameters in V.

Proof of the Claim. Assume, towards a contradiction, that there is a ¥;-formula ¢(vg, v1)
with the property that for some z € Vj, the class C = {A € V5 | ¢(4,%)} consists of
structures of the same type and there exists B € C of rank A such that for all A € C of
rank , there is no elementary embedding of A into B. Using elementarity, we now know
that, in M, there exist zo € Vinin(r) and By € Viy1 \ Vi with the property that the class
Co={A e M | p(A,z2)} consists of structures of the same type, By € Cp and for all A € C
of rank min(7), there is no elementary embedding of A into By. Since we have

—1 M —
m vain(l) - 1dvnl,vi[n(1)’

the elementarity of 7=! implies that C. = {A € V5 | »(A4, 29)} consists of structures of the
same type, 7 1(Bg) € C, and for all A € C, of rank &, there is no elementary embedding
of A into 771(By). But this yields a contradiction, because the upwards absoluteness of
¥1-formulas implies that By is a structure in C, of rank x and 7~! induces an elementary
embedding of By into 771 (By). O

The above claim completes the proof of the lemma. O

4. THE II,,-CASE FOR ISOMORPHISM-CLOSED CLASSES

We now show that the structural reflection principles introduced in Definition 1.1 become
very strong when they hold for more complex classes of structures. In particular, the validity
of these principles for II;-definable classes C of structures closed under isomorphic copies
at singular cardinals already implies non-trivial fragments of supercompactness, and the
corresponding principles for a regular cardinal will turn out to imply the existence of many
almost huge cardinals.

Recall that a cardinal x is A-supercompact if there is a transitive class M closed under
A-sequences and an elementary embedding j : V — M with crit(j) = x and j(x) > \.

Lemma 4.1. Let k < X be infinite cardinals such that r is singular and cof(k) < cof(\).
If the interval (cof(k), k) contains a Jy-supercompact cardinal p, then I1;(V,,)*-ESR(k, \)
holds.

Proof. Fix a IIj-formula ¢(vg,v1) and an element z of V, such that C = {4 | p(A4,2)}
is a class of structures of the same type that is closed under isomorphic copies. Pick a
structure B in C whose cardinality is contained in the interval [cof()), 3)] and whose domain
is a subset of J,. Now, fix an elementary embedding j : V — M with crit(j) = g,
j(p) > 3y and M C M. Then the closure properties of M ensure that B is an element
of M and the elementary embedding of B into j(B) induced by j is also contained in M.
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Moreover, II;-downwards absoluteness for transitive classes implies that (B, z) holds in
M. Thus, M satisfies that there exists a structure A whose cardinality is contained in the
interval [cof(k),j(u)) such that o(A,z) holds, and there exists an elementary embedding
e: A — j(B), as this is witnessed by B and j | B : B — j(B). Since j(z) = z and
j(cof(k)) = cof(k), the elementarity of j yields an elementary embedding of a structure A
of the given type into B such that ¢(A, z) holds and the cardinality of A is contained in the
interval [cof(k), ). This shows that there is an elementary embedding of a structure in C
whose cardinality is contained in the interval [cof(k),3,] into B. By Proposition 2.1, this
proves the lemma. O

Corollary 4.2. If k < A are cardinals such that cof (k) < cof(\) and k is a singular limit of
Ja-supercompact cardinals, then 111 (V,)-ESR(k, \) holds. Hence, if k is a singular limit of
supercompact cardinals, then 11 (V,;)**-ESR(k, \) holds for a proper class of cardinals \. O

We continue by showing that, for all n > 1, analogous statements hold for II,,-definable
classes and [3J,,, 3y + 1)-C(® Y-extendible cardinals.

Lemma 4.3. Let n > 0 be a natural number and let k < X be infinite cardinals such that
is singular and cof (k) < cof(X\) holds. If the interval (cof (k), k) contains a cardinal & that is
(1, Dy + 1)-C ™) -eatendible for some ordinal 6 < p < 3., then I, 1(Vs)**-ESR(k, \) holds.

Proof. Fix a II,,;-formula ¢(vg,v1) and an element z of Vs such that C = {A | (A, 2)} is a
class of structures of the same type that is closed under isomorphic copies. Pick a structure B
in C whose cardinality is contained in the interval [cof()),3,] and whose domain is a subset
of Jy. Let v € "V N [y, 3y + 1) and let j : Va,41 — V;, be an elementary embedding
with crit(j) = 6, j(u) > Ix + 1, and j(v) € C™. Then the fact that Iy < j(u) < j(v)
implies that B is an element of V}(,y and the elementary embedding of B into j(B) induced
by j is contained in V;,. Moreover, since j(v) € C™ | by I,,41-downwards absoluteness for
Vi), we have that ¢(B, ) holds in V). Thus, V;, satisfies that there exists a structure A
whose cardinality is contained in the interval [cof(k),j(x)) such that p(A4, z) holds in Vj,,
and there exists an elementary embedding e : A — j(B), as this is witnessed by B and
j 1 B:B — j(B). Since j(z) = z and j(cof(k)) = cof(x), the elementarity of j yields an
elementary embedding of a structure A of the given type into B such that ¢(A, z) holds in
V,, and the cardinality of A is contained in the interval [cof(k), ). But since v € C("+1)]
we know that ¢(A, z) also holds in V. This shows that there is an elementary embedding
of a structure in C whose cardinality is contained in the interval [cof(k),3,] into B. By
Proposition 2.1, this proves the lemma. O

The following observation shows that C(")- extendible cardinals provide natural examples
of [p, 00)-C'™-extendible cardinals.

Proposition 4.4.
() If & is a A\-C™-eatendible cardinal and C™tY) N [k, \) # @, then k is [k, \)-C™)-
extendible.
(ii) Every C™-extendible cardinal x is [u, 00)-C ™ -extendible, for every u > k.

Proof. (i): Assume & is A-C(™-extendible and v € C("*1) N [k, ). Since k € C™), and
since every true X,11 statement, with parameters in Vj is true in V,,, the assumption that
r is \-C-extendible easily yields that £ € C(*1D. Then & itself witnesses the [r, X)-C(™)-
extendibility of .

(ii): As shown in [Tsal8], a cardinal  is C(™-extendible if and only if it is cm*.
extendible, i.e., for a proper class of A € C") there exists an elementary embedding j :
Vi — V, for some n € C™ with crit(j) = &, j(k) > X and j(xk) € C™. Thus, if x is C"-
extendible, then it is [, \)-C(™-extendible, for every u > k and every A € C™ such that
CtDN [, \) # @. In particular, every C(™-extendible cardinal & is [z, 00)-C(™)-extendible
for every p > k. |

Corollary 4.5. Let n > 0 be a natural number, let k be a singular cardinal and let A\ > k
be a cardinal with cof(k) < cof(A).
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(i) If & is a limit of cardinals & that are [, Dy + 1)-C™) -extendible for some § < ju < r,
then T, 11(Vi.)*“-ESR(k, \) holds.
(ii) If & is a limit point of C™*tY) and a limit of (3y + 1)-C™ -extendible cardinals,
then I,,41(V;)-ESR(k, \) holds.
(iii) If k is a limit of C"™) -extendible cardinals, then I1,41(V,)**-ESR(k, \) holds

Proof. The first statement follows directly from Lemma 4.3. For the second statement,
notice that our assumption implies that & is a limit of (Jy + 1)-C™-extendible cardinals
& with the property that C("*1) N (6, k) # @. By Proposition 4.4, this implies that & is a
limit of cardinals § that are [6, 3y + 1)-C(™-extendible and therefore we can use the first
part to derive the desired conclusion. Finally, since [Bagl2, Proposition 3.4] shows that
all C'(™-extendible cardinals are elements of C("*2)| we can apply the second part of the
corollary to prove the third statement. (|

We are now ready to show that Vopénka’s Principle can be characterized through princi-
ples of exact structural reflection.

Proof of Theorem 1.5. First, assume that (i) holds and fix a natural number n > 0. Since
[BCMR15, Corollary 6.9] shows that our assumption implies the existence of a proper class
of C(")_extendible cardinals, there exists a proper class of cardinals  of countable cofinality
that are limits of C(™-extendible cardinals. The third part of Corollary 4.5 now implies
that for every such cardinal x and every A > &, the principle II,,41(V,)*-ESR(k, A) holds.
This shows that (iii) holds in this case.

Now, assume that (ii) holds and let Cy be a proper class of structures of the same type.
Let C denote the class of all structures of the given type that are isomorphic to a structure
in Cy and define C' = {|A| | A € C}. By our assumptions, there exists a cardinal x with the
property that ESRe¢(k, A) holds for all A > k. If C' is a proper class, then there exists a
structure B € Cy of cardinality greater than 3,; and, since the principle ESR¢(k, | B]) holds,
we can use Proposition 2.1 to find a structure A € Cy of cardinality at most 3, and an
elementary embedding of A into B. In particular, we know that Vopénka’s Principle for C
holds in this case. In the other case, namely if C is a set, then we can find distinct A, B € C
that are isomorphic and hence Vopénka’s Principle for C also holds in this case. This allows
us to conclude that (i) holds.

This concludes the proof of the theorem, because (iii) obviously implies (ii). O

Similar results hold also for X, (V,)-definable classes closed under isomorphic copies,
assuming k is a singular limit of supercompact cardinals, in the case n = 2, or a singular
limit of [#, 00)-C(™~2)-extendible cardinals, in the case n > 2.

Corollary 4.6. Let x be a singular cardinal and let A > £ be a cardinal with cof (k) < cof(A).

(i) If k is a limit of supercompact cardinals, then $2(V,)-ESR(k, \) holds.
(ii) If n > 0 and & is a limit of [k,00)-C™) -extendible cardinals, then ¥, o(V)*-
ESR(k, A) holds.

Proof. (i) Assume that k is a limit of supercompact cardinals and fix z € V,,. Let ¢(vg, v1)
be a Yg-formula such that C = {4 | p(4, z)} is a class of structures of the same type that
is closed under isomorphic copies. Pick a structure B in C whose cardinality is contained in
the interval [cof(A),35]. We can use our assumption to find cardinals p < k and 6 > 3y
such that z € V), and there exists a transitive class M containing B and closed under §-
sequences, and an elementary embedding j : V' — M with crit(j) = p, j(p) > 6 and the
property that ¢(B, z) holds in M. In this situation, we can repeat the proof of Lemma 4.1
to find a structure A in C whose cardinality is contained in the interval [cof(x),3,] and an
elementary embedding of A into B.

(ii) Now, assume that  is a limit of [, 00)-C(™-extendible cardinals. Fix a %, o-formula
p(vo,v1) and z € V, that define a class C of structures of the same type closed under
isomorphic copies. If we now pick a structure B € C whose cardinality is contained in the
interval [cof(\), 3y, then there is a cardinal Jy < 6 € C("*2) | a cardinal v € C"+1) N[k, )
and an elementary embedding j : Vy — V,, for some 7 such that z € Vi,(;), j(k) > 0 and
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jlv) e C(") . Using the fact that € C("*2) we can now continue as in the proof of Lemma
4.3 to obtain the desired elementary embedding. ]

We shall next prove several results that will allow us to derive high lower bounds for
the consistency strength of the principle IT{>-ESR. In particular, these results will show
that passing from ¥;-definable to IT;-definable classes of structures drastically increases the
strength of the principle ESR.

Given a set z and a natural number n > 0, we let W, (z) denote the class of all structures
(in the language L¢ of set theory extended by five constant symbols and two unary function
symbols) of the form (D, E,a,b,c,d,e, f,g) with the property that the relation E is well-
founded and extensional, and, if 7 : (D, E) — (M, €) denotes the corresponding transitive
collapse, then the following statements hold:

(i) m(a),n(b),m(c),7(d) € M NOrd, and V() C M.

(ii) If w(b) > 0, then 7(b) € C™).
(iii) (e )—ZEV()
(iv) M is I, (Vr(ey+1)- correct.

(v) The map wo fo 7r I induces a bijection between V(o) and m(d).

(vi) The map gom~! restricts to a bijection between 7(d) and D.

Then it is easy to see that the class W, (z) is closed under isomorphic copies and is definable
by a II,-formula with parameter z.

Lemma 4.7. Let < X be cardinals such that ESRyy, (»)(p, A) holds for some element z of
V. and some natural number n > 0. Given a cardinal N € C™) greater than 1y, there exist
e a cardinal k < p with z € V,; and cof (u) < 3,
e q transitive, I1,,(Vi11)-correct set M with V,, U{3.} C M, and
e an elementary embedding j : M — Hy with crit(j) < &, j(crit(5)) < u, j(z) = 2,
w € ran(j) and j(k) = A.
In addition, for every v € C™) N [u, \), we can find objects satisfying the above statements
such that j(¢) = v holds for some ¢ € C™ N k.

Proof. Pick an elementary substructure X of Hy of cardinality Jy with VU (3, +1) C X,
a map hg : X — X that extends a bijection between V) and 3y, and a map h; : X — X
that extends a bijection between 3y and X. Fix an ordinal v such that either v = 0 or
v e C™N[u, ). Since Vyy1 N X is contained in the transitive part of X, it follows that the
transitive collapse of X is IT,,(Vj1)-correct and hence

<X7 SN )‘a:)\a 2, ho, h1>
is a structure in W, (z) of cardinality J,. By Proposition 2.1, our assumptions allow us

to find a structure (D, E, a,b,c,d,e, f,g) in W, (z) whose cardinality is contained in the
interval [cof(u),3,] and an elementary embedding

T (D,E,a,b,c,d,e,f,g) — <X,€,,LL,I/,)\7:)\,Z,h0,h1>.

Let m : (D,E) — (M,€) denote the corresponding transitive collapse. Set § = =(a),
¢ =m(b), and k = 7(c). Then we have w(e) =2€ Vp CV, C M,
e = Vil = [M] € [cof(p), 3]
and therefore rnk(z) < 0 < k < u. Moreover, since the ordinal m(d) has cardinality 3,
our setup ensures that J, € M. The definition of the class W, (z) also ensures that M is
I1,,(Vj41)-correct. Define
j = domn ':M— Hy.

Then j is an elementary embedding satisfying j(z) = z, j(6) = p > k > 0, and j(k) = \.
In partlcular we know that crit(j) < 0 < k and ](Crlt(j)) < j(0) = p. Finally, if we have
veon N [, A), then elementarity implies that ¢ > 0 and this allows us to conclude that
¢ is an element of C Nk with j(¢) = v. |

The following direct consequence of the Kunen Inconsistency (see [Kan03, Corollary
23.14]) will be used in our subsequent arguments:
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Proposition 4.8. Given cardinals k < X\ and an ordinal o < Kk, if j : Vo — V) is a
non-trivial elementary embedding with j(«) = «, then crit(j) > a.

Proof. Assume, towards a contradiction, that crit(j) < a holds. Then j"(crit(j)) < o < K
holds for all n < w and hence we can conclude that p = sup,, ., 7" (crit(j)) < a < k. Since
j(p) = p and Vg2 € Voo € Vi, we know that j | V4o @ Vypo — V,49 is a non-trivial
elementary embedding. This contradicts the Kunen Inconsistency. |

The next results show that the assumptions of Corollary 4.2 are close to optimal.

Lemma 4.9. Let p < X be cardinals and let o < pu be an ordinal.
(i) If Oy ({a})*-ESR(u, A) holds, then the interval (o, p] contains a <\-supercompact
cardinal.
(ii) Given a natural number n > 0, if C"+tV) N[, ) # @ and T4 1 ({a})*-ESR(u, \)
holds, then the interval (o, y] contains a [, \)-C™ -extendible cardinal.

Proof. (i) Pick a cardinal A > 3, with the property that H, is sufficiently elementary
in V. Since ESRyy,(a)(; A) holds, an application of Lemma 4.7 shows that there is a
cardinal o < k < p, a transitive set M with V,, U {x} C M and an elementary embedding
Jj: M — Hy with crit(j) < &, j(erit(5)) < p, j(a) = a and j(k) = A. In this situation,
Proposition 4.8 shows that crit(j) > «. By [Mag71, Lemma 2|, the fact that V,; C M implies
that crit(j) is <k-supercompact. Since all ultrafilters witnessing this property are contained
in V; C M, it follows that crit(j) is <sk-supercompact in M and hence j(crit(j)) € (a, p] is
<A-supercompact in both Hy, and V.

(i) Pick some v € C*YN[u, \) and N € C"D) greater than Jy. Since ESRyy, |, (o) (14, A)
holds, Lemma 4.7 allows us to find a cardinal x with o < k < p, a cardinal ¢ € C"t1) N g,
a cardinal 6 < (, a 11,41 (V,41)-correct transitive set M with V,,U{x} C M, and an elemen-
tary embedding j : M — H)y, with crit(j) < 0, j(a) = «, j(0) = u, j({) = v and j(k) = \.
By Proposition 4.8, we have crit(j) > «. Now, notice that A and j [ V,; witness that there
exists an ordinal 1 and an elementary embedding i : Vi, — V;, with crit(¢) € (a,0], i(0) > &
and i(¢) € C™) | and this statement can be expressed by a 3, 4;-formula with parameters «,
k, 8 and . Moreover, since kK + 1 C M and M is I1,,11(Vx41)-correct, this statement holds
in M. By the elementarity of j and the fact that X' € C"*t1) | we now know that, in V, there
exists an ordinal 7 and an elementary embedding i : Vy — V;, with crit(i) € (a, p], i(pn) > A
and i(v) € C™). This shows that crit(i) € (a, u] is a [u, \)-C™-extendible cardinal. O

Corollary 4.10. Let k be a cardinal and let a < k be an ordinal.

(i) If I;({a})*-ESR(k, \) holds for a proper class of cardinals X\, then the interval
(o, K] contains a supercompact cardinal.

(ii) For each natural numbern > 0, if 1L, 11 ({a})**-ESR(k, \) holds for a proper class of
cardinals \, then the interval (o, k] contains a [k, 00)-C"™) -extendible cardinal. [

A combination of the above results now yield short proofs of Theorems 1.2 and 1.4 stated
in the Introduction.

Proof of Theorem 1.2. Let k be a singular cardinal. If  is a limit of supercompact cardinals,
then Corollary 4.6 shows that X5(V,,)*-ESR(k, A) holds for a proper class of cardinals A. In
the other direction, if IT; (k)*-ESR(k, \) holds for a proper class of cardinals A, then we can
apply Corollary 4.10 to show that x is a limit of supercompact cardinals. O

Proof of Theorem 1.4. Let k be a singular cardinal and let n > 0 be a natural number. If
% is a limit of [x, 00)-C(™-extendible cardinals, then Corollary 4.6 shows that ¥, 2(V,)*-
ESR(k, A) holds for a proper class of cardinals A\. For the other direction, if IT, 1 (V;)%-
ESR(k, A) holds for a proper class of cardinals A, then Corollary 4.10 allows us to conclude
that x is a limit of [k, 00)-C(™-extendible cardinals. O

We will eventually show that the strength of the principle IT:-ESR(x) further increases
significantly if « is a regular cardinal. More specifically, we will show (see Corollary 8.2 below
and Theorem 1.7 stated in the Introduction) that this assumption implies the existence of
an almost huge cardinal. The next lemma is the starting point of this analysis. It will allow
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us to show that the least regular cardinal p satisfying I1*-ESR(u) coincides with the least
cardinal v satisfying II,,(V,)-ESR(v).

Lemma 4.11. Given a natural number n > 0, assume that

e k< A<\ are cardinals with 3y < X € C™,
o M is a transitive, I1,,(Vi41)-correct set with V,; U{x} C M, and
e j: M — Hy is an elementary embedding with j(k) = A.

Then the following statements hold:

(i) If p € ran(y) N (crit(j), k] and z € M with j(z) = z, then j(pu) > p and I, ({z})-
ESR(p,7(p)) holds.
(i) If p = j(crit(y)), then p < k implies that 11, (V,)-ESR(u, j(1)) holds.

Proof. (i) Pick # € M with j(0) = pand set v = j(u) < A. Since j(k) = A > Kk > p > crit(y),
we know that crit(j) < 6 and this allows us to apply Proposition 4.8 to show that § < u < v.
Fix a II,-formula p(vg,v;) with the property that the class C = {A | (A4, 2)} consists of
structures of the same type. Assume, towards a contradiction, that there exists B € C of
rank v with the property that for all A € C of rank pu, there exists no elementary embedding
of A into B. Since 3, < Jy < X, we know that B € Hy and the fact that X € C™ implies
that ¢(B, z) holds in Hy and for every structure A of the given type and rank pu, either
p(A, 2) fails in Hy, or Hy contains no elementary embedding of A into B. The elementarity
of j then yields a structure By € M of the given type and rank p such that ¢(By, z) holds
in M and for every structure A of the given type and rank 6, either ¢(A, z) fails in M or
M contains no elementary embedding of A into By. Our setup then ensures that By is an
element of C of rank p and the embedding j gives rise to an elementary embedding i of
By into j(Bg). But this yields a contradiction to the elementarity of j, because By and i
are both contained in H)/, and the fact that M is correct about the sentence ¢(By, z), and
N € 0™ implies that (Bo,u) holds in Hy.

(ii) Set v = j(u) > p and fix a IL,-formula @(vg,v1). Assume, towards a contradiction,
that there exists z € V,, with the property that C = {A | ¢(4,2)} is a class of structures of
the same type and there exists B € C of rank v such that for all A € C of rank p, there is no
elementary embedding of A into B. Then the fact that v < A < 3y < X € C implies that
this statement also holds in H)/, and hence, in M, there exists 2o € Vijz(;) with the property
that Co = {A | p(A4, 2z0)} is a class of structures of the same type and there exists B € Cy of
rank p such that for all A € Cy of rank crit(j), there is no elementary embedding of A into
B. Since M is II,,(V,;+1)-correct, this is true in V. So, since j(zo) = 2o and p € (crit(j), &,
we can now proceed as in the proof of (i) to derive a contradiction. O

Lemma 4.12. Given a natural number n > 0, let p be a reqular cardinal with the property
that TI¢-ESR (1, A) holds for some cardinal X > pi. Then there exists an inaccessible cardinal
0 < p with the property that 11, (Vs)-ESR(J, p) holds for an inaccessible cardinal p with
d<p<A.

Proof. Pick X' € C™) greater than 3y and use Lemma 4.7 to find a cardinal x < p with
p = cof(u) < 3i, a transitive, II,,(Vi11)-correct set M with V, U {3,} € M and an
elementary embedding j : M — Hy with crit(j) < &, j(crit(j)) < wp, p € ran(j) and
j(k) = A. Since V,; C M, we have that crit(j) is an inaccessible cardinal.

Claim. j(crit(j)) < k.

Proof of the Claim. Let ¢ be minimal with 3. > u. Note that ¢ < k. Since p is an element
of ran(j), and ¢ is definable from u, we can find ¢ € M with j(¢) = e. Moreover, since
crit(j) is an inaccessible cardinal smaller than J., we know that ¢ > crit(j). But this allows
us to conclude that j(crit(j)) < j(¢) = ¢ < k. O

Define § = j(crit(y)) € M and p = j(4). Then elementarity implies that § and p are also
inaccessible cardinals. Moreover, an application of the second part of Lemma 4.11 directly
shows that I, (Vs)-ESR(J, p) holds. O
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5. THE II,,-CASE FOR ARBITRARY CLASSES

In order to study principles of exact structural reflection for IT,,-definable classes of struc-
tures that are not necessarily closed under isomorphic copies, we analyse connections between
the validity of these principles and the existence of weakly n-exact cardinals. The following
variation of Definition 1.6 will allow us to state our results more precisely:

Definition 5.1. Given cardinals Kk < A, a set z € V,; and a natural number n > 0, we
say that k is weakly n-exact for A\ and z if for every A € Vii1, there exists a transitive,
I0,,(Vies1)-correct set M with Vi, U{x} C M, a cardinal \' € C"~V) greater than 3y and an
elementary embedding j : M — Hy with j(k) = X, j(2) = z and A € ran(j).

Proposition 5.2. If a cardinal k is weakly parametrically n-exact for some cardinal \, then
K s weakly n-exact for A and all z € V.

Proof. Given z € V,; and A € V)41, our assumptions yield a transitive, I, (V,+1)-correct set
M with V,,U{k} C M, a cardinal \' € C"~1 greater than J) and an elementary embedding
Jj: M — Hy with j(k) = A, j(crit(j)) = x and A, z € ran(j). Pick zp € M with j(z9) = z.
Since we have j(rnk(zp)) = rnk(z) < x = j(crit(j)), it follows that zo € M N V(5 and
hence zp = j(z0) = z. O

Proposition 5.3. If x is weakly n-exzact for X\ and z, then I1,,({z})-ESR(k, \) holds. In
particular, if k is weakly parametrically n-exact for X, then IL, (V,)-ESR(k, \) holds.

Proof. Fix a II,,-formula ¢ (v, v1) with the property that the class C = {A | ¢(A, 2)} consists
of structures of the same type and B € C of rank A. By our assumptions, there exists a
transitive, IT,, (V. 1)-correct set M with V,, U{x} C M, a cardinal \' € C("~1) greater than
3, and an elementary embedding j : M — Hy with j(k) = A, j(z) = z and B € ran(j).
Pick A € M with j(A) = B. Since all II,,-formulas with parameters in Hy are downwards
absolute from V' to Hy/, we know that ¢(B, z) holds in Hy and the structure B has rank A
in Hy. But this means that, in M, the statement ¢(A, z) holds and A has rank k. The fact
that M is correct about the statement ¢(A, z) allows us to conclude that A is a structure
in C of rank x and the embedding j induces an elementary embedding of A into B. The
second part of the proposition follows directly from Proposition 5.2. O

For each natural number n > 0 and every set z, let £,(z) denote the class of structures
(D, E,a,b,c) (in the language of set theory with three additional constant symbols) with
the property that rnk(D) C D, FE is a well-founded and extensional relation on D and, if
7 : (D, E) — (M,€) is the corresponding transitive collapse, then Vin(py U {rnk(D)} € M,
M is I, (Vipk(p)41)-correct, w(b) = rnk(D), n(c) = z and 7~ | rnk(D) = id,nk(p). Note
that the class £,(z) is definable by a II,-formula with parameter z.

Lemma 5.4. Let k < X be cardinals, let z € V,; and let n > 0 be a natural number with the
property that ESRg, (z)(k, \) holds. Given B € Vyy1 and a cardinal X € ™) greater than
A5 there exists a transitive, I1,,(V,.41)-correct set M with V,, U{x} C M and an elementary
embedding j : M — Hy with j(k) = A, j(2) = z and B € ran(j). In particular, the cardinal
K 1s weakly n-exact for \ and z.

Proof. Let X be an elementary submodel of H)y, of cardinality 3y with V) U {\,B} C
Y. Pick a bijection f : X — V) with f [ A = id) and let R be the induced binary
relation on Vy. Since the transitive collapse of (Vy, R) is the composition of f~! and the
transitive collapse of (X, €) and all ¥,,-formulas using parameters from the transitive part
of X are absolute between V' and the transitive collapse of X, it follows that the structure
(Vx, R, f(B), f(A), f(2)) is an element of &,(z) of rank A.

By our assumptions, we can find a structure (D, E, a,b, ¢) of rank « in &,(z) such that
there exists an elementary embedding

i:(D,E,a,b,c) = (V\, R, f(B), f(N), f(2)).

5Since the class C(1) consists of all cardinals p with the property that H, = V), the given assumption
ensures that )\’ is greater than 1.
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Let m: (D, E) — (M, €) denote the corresponding transitive collapse. Set A = m(a) and
j = f_l ojom1: M — Hy:.

Then M is a transitive set with V, U {xk} C M, A € M NV, with the property that
M is II,,(V,41)-correct and j is an elementary embedding with j(k) = A, j(A) = B and
j(z) =z O

A combination of Proposition 5.3 and Lemma 5.4 now yields the following equivalence:

Corollary 5.5. The following statements are equivalent for all natural numbers n > 0, all
cardinals kK < A and all z € V:
(i) I ({z})-ESR(k, A).
(ii) &k is weakly n-exzact for X and z.
(iii) For all A € Vg1 and X < N € C™), there exists a transitive, 11, (Vi 1)-correct
set M with V, U{k} C M and an elementary embedding j : M — Hy: satisfying
j(k) =X, j(2) = z and A € ran(j). O

The techniques developed above now allow us to show that exact structural reflection for
II,,-definable classes implies exact structural reflection for ¥,,-definable classes.

Proposition 5.6. Let Kk < X be cardinals, let z € V,; and let n > 0 be a natural number.
Then I1,,({z})-ESR(k, \) implies £,,({z})-ESR(k, A).

Proof. Fix a ¥,-formula ¢(vg, v1) with the property that the class C = {A | ¢(A, z)} consists
of structures of the same type and a structure B in C of rank A. Using Corollary 5.5, we
can find a cardinal A < X € C(™, a transitive, L, (Viq1)-correct set M with V,, U{x} C M
and an elementary embedding j : M — H)y with j(k) = A, j(z) = z and B € ran(j). Pick
By € M with j(By) = B. Since \' € C"), we know that ¢(B, z) holds in Hy and hence
©(Bo, z) holds in M. By the II,,(Vj41)-correctness of M, this shows that By is an element
of C of rank k. Moreover, the map j induces an elementary embedding of By into B. O

Arguments contained in the proofs of the above results also allow us to prove the following
parametrical version of Corollary 5.5 that will be needed later on.

Lemma 5.7. Let n > 0 be a natural number, and let k be weakly parametrically n-exact
for some cardinal A > k. If \ < X € C"™ and B € Vyy1, then there exists a transitive,
IT,,(Vit1)-correct set M with V., U{k} C M and an elementary embedding j : M — Hy
satisfying j(crit(y)) = &, j(k) = X and B € ran(j).

Proof. Pick an elementary submodel X of Hys of cardinality A with V), U {\,B} C X
and a bijection f : X — V) with f | A = idy. Let (V), R, f(B), f(\),9) denote the
corresponding structure in &,(@) of rank A constructed in the proof of Lemma 5.4. By
our assumptions, we can find a transitive, II,(V,.1)-correct set N with V, U{k} C N, a
cardinal 3y < 1 € C"~Y and an elementary embedding i : N — H,, with i(crit(i)) = &,
i(k) = A and R, f(B), f(A) € ran(i). Pick Ry, ag,bp € N with i(Ry) = R, i(ag) = f(B) and
i(bo) = f(A). Then the elementarity of i, the IL,(V,1)-correctness of N and the fact that
V) is contained in H,, ensure that (Vi, Ro, ag, b, @) is a structure in &, (@) of rank x and

i f Vn : <Vm Ro,ao, b07 ®> — <V)\7 Ra f(B)a f(/\)a ®>
is an elementary embedding. Let 7 : (V,;, Rg) — (M, €) denote the corresponding transitive
collapse. Then M is a I1,,(V,.41)-correct set with V,U{x} C M, 7~} | k = id,, and 7(bg) = k.
If we now define
j = floion t: M — Hy,
then j is a non-trivial elementary embedding between transitive structures with j | crit(i) =
iderie(sy, j(crit(i)) = k> crit(i) = crit(j), j(k) = A and B € ran(j). O

In the remainder of this section, we prove that for all natural numbers n > 0, exact struc-
tural reflection for IT,-definable classes is strictly stronger than exact structural reflection
for 3,,-definable classes. This will follow from Corollary 5.5 and the next Lemma.
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Lemma 5.8. Let n > 0 be a natural number and let k be weakly parametrically n-exact for
some cardinal X > k. Then the set of cardinals p < k such that ¥, (V,)-ESR(u, k) holds is
stationary in K.

Proof. Fix a closed unbounded subset K of x. By Lemma 5.7, there exists a transitive,
IT,, (Vi1 1)-correct set M with V,, U{x} C M, cardinals x < A < ) € C™ and an elementary
embedding j : M — Hy with j(crit(j)) = &, j(k) = A and K € ran(j). Then crit(j) € K.
Assume, towards a contradiction, that X, (Verie(j))-ESR(crit(j), x) fails. Then there exists
a Yp-formula p(vo,v1), 2 € Vigy) and B € Viy1 \ Vi with the property that the class
C ={A | p(4,z)} consists of structures of the same type, ¢(B, z) holds and for all A € C
of rank crit(j), there is no elementary embedding of A into B. Since « is inaccessible and
therefore every elementary embedding of a structure of rank less than  into a structure
of rank « is an element of V,;, there is a ¥,-formula with parameters in V,; U {V,} that
expresses the statement that there exists a structure B € C of rank x with the property that
for every A € C of rank crit(j), there is no elementary embedding of A into B. Since M is
I1,,(Vi41)-correct and V,, U {V,;} C M, this yields By € C N M of rank x with the property
that, in M, for all A € Viyie(j)41 \ Verie(j) such that ¢(A, z) holds, there is no elementary
embedding of A into Bg. Then, in Hy/, for all A € V41 \ Vi such that ¢(A4, z) holds, there
is no elementary embedding of A into j(By). Since k < A < X € C™ it now follows that
©(Bo, z) holds in Hy and the map j | By : By — j(By) is an element of Hy,. But this yields
a contradiction, because j [ By is an elementary embedding of By into j(Bp) in Vi . O

6. THE X,,41-CASE

Analogously to the theory developed in the previous section, we now analyse the rela-
tionship between the principle ¥,,;1-ESR and n-exact cardinals. First, let us consider the
following variation of Definition 1.8.

Definition 6.1. Given cardinals Kk < A, a set z € V; and n < w, the cardinal k is n-exact
for X and z if for every A € Vg1, there exists a cardinal k' € C™ greater than 3., a
cardinal X' € C"tY) greater than X\, an elementary submodel X of H, with V, U{x} C X,
and an elementary embedding j : X — Hy with j(k) = A, j(2) = z and A € ran(j).

Proposition 6.2. If a cardinal k is parametrically n-ezact for some cardinal \ (see Defi-
nition 1.8), then k is n-exact for A and all z € Vj,. |

Proposition 6.3. If k is n-exact for \ and z, then X,11({z})-ESR(k, A) holds. In partic-
ular, if Kk is parametrically n-exact for X, then X,41(V,)-ESR(k, \) holds.

Proof. Pick a ¥, 41-formula ¢(vg,v1) with the property that the class C = {A | p(4,z2)}
consists of structures of the same type and fix B € C of rank A. By our assumptions, there
exists a cardinal 3, < &’ € C)| a cardinal A < X € C™*t1D an elementary submodel X of
H,, with V, U{x} C X and an elementary embedding j : X — Hy with j(k) =\, j(2) =z
and B € ran(j). Pick A € X with j(A) = B. Then our setup ensures that ¢(A, z) holds
and hence A is a structure in C of rank k. Moreover, the map j induces an elementary
embedding of A into B. These computations yield the first part of the proposition. The
second part follows directly from a combination of the first part and Proposition 6.2. |

For each natural number n > 0 and every set z, we let D,,(z) denote the class of structures
(D, E,a,b,c) (in the language of set theory with three additional constant symbols) with the
property that for some cardinal # € C(™ greater than Jmk( D), there exists an elementary
submodel X of Hy with Vi,x(py U {rnk(D)} € X and an isomorphism 7 : (D, E) — (X, €)
with 7(b) = z and 7(c) = rnk(D). Note that the class D,,(2) is definable by a X, 1-formula
with parameter z.

Lemma 6.4. Let k < X\ be cardinals, let z € V; and let n > 0 be a natural number with the
property that ESRp, (.y(k, A) holds. Then k is n-exact for X and z.

Proof. Fix A € Vag1, N € C(™*t1 greater than A and an elementary submodel Y of Hy/ of
cardinality 3, with V), U{A4,\} C Y. Pick a bijection f: Y — V) and let R be the binary
relation on V), induced by f and €. Then X and f~! witness that (Vy, R, f(4), f(2), f(\))
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is a structure of rank A in D, (z). By our assumptions, there exists a structure (D, E, a, b, c)
of rank x in D, (z) and an elementary embedding

i:(D,E,a,b,c) > (Vx, R, f(A), f(2), f(N))-

Pick a cardinal ' € C™ an elementary submodel X of H,  and an isomorphism 7 :
(D,E) — (X,€) witnessing that (D, E,a,b,c) is an element of D,(z). Then 7(b) = z,
7(c) = Kk, 3 < kK and V, U {k} C X. Define

j = floion t:X — Hy.
Then j is an elementary embedding with j(k) = A, j(z) = z and A = j(n(a)) € ran(j). O

Corollary 6.5. Let K < X\ be cardinals, let z € V,, and let n > 0 be a natural number. If k
is weakly (n + 1)-ezact for A and z, then k is n-exact for A and z.

Proof. By Corollary 5.5, our assumption implies that the principle II,1({z})-ESR(k, A)
holds and this allows us to use Corollary 5.6 to show that X, 11 ({z})-ESR(k, A) also holds
true. Using Lemma 6.4, we can conclude that « is n-exact for A and z. O

7. PROOFS OF THE MAIN THEOREMS
We shall now give a proof of Theorems 1.7 and 1.9.

Proof of Theorem 1.7. Fix a cardinal x and a natural number n > 0.
The next two claims, together with Proposition 5.3 and Corollary 5.5, will allow us to
conclude that all statements (i)-(v) listed in the theorem are equivalent.

Claim. If k is the least reqular cardinal with the property that II:°-ESR(k) holds, then  is
weakly parametrically n-exact for some A > k.

Proof of the Claim. By Lemma 4.12 and the minimality of x, we know that x is an in-
accessible cardinal with the property that the principle I, (V})-ESR(k, A) holds for some
inaccessible cardinal A > k. Assume, towards a contradiction, that x is not weakly para-
metrically n-exact for A. Then there exists A € V)41 with the property that j(crit(j)) # k
holds whenever M is a transitive, IT,, (V.4 )-correct set with V,, U {x} C M, X € C(»~V
is a cardinal greater than A and j : M — H), is an elementary embedding with j(k) = A
and A € ran(j). An application of Lemma 5.4 now allows us to find a transitive, IT,,(Vi41)-
correct set M with V,, U {s} C M, a cardinal ' with A < ) € O and an elementary
embedding j : M — Hy with j(k) = A and A,k € ran(j). Then j(crit(j)) < x and hence
Jlerit(j)) < k. Set p = j(crit(y)) € M Nk and v = j(u). We can now apply Lemma 4.11 to
conclude that II,,(V,,)-ESR(u, v) holds, contradicting the minimality of . O

Claim. If k is the least cardinal that is weakly n-exact for some cardinal X\, then k is reqular.

Proof of the Claim. Assume, towards a contradiction, that x is singular. Then Proposition
5.3 yields a cardinal A > k with the property that II,,-ESR(k,\) holds. In this situation,
we can apply Lemma 5.4 to find a cardinal X with 3y < N € C™) | a transitive, IT,,(Vi41)-
correct set M with V,U{k} C M and an elementary embedding j : M — Hy with j(k) = A
and k € ran(j). Set p = j(crit(j)). Then elementarity implies that u is regular and, since
the fact that k € j(k)Nran(j) ensures that p < k, we know that u < k. In this situation, the
second part of Lemma 4.11 implies that IT,-ESR(u, j(1)) holds and this allows us to apply
Corollary 5.5 to conclude that p is weakly n-exact for j(u), contradicting the minimality of
K. (]

By the first claim above, the cardinal that satisfies (i) of the Theorem is greater than or
equal to the cardinal that satisfies (v), which, by Proposition 5.3, is greater than or equal
to the cardinal that satisfies (iii). Moreover, the cardinal satisfying (iii) is obviously greater
than or equal to the cardinal that satisfies (ii), and an application of Corollary 5.5 then
shows that the cardinal satisfying (ii) is greater than or equal to the cardinal that satisfies
(iv). Our second claim then shows that the cardinal satisfying (iv) is regular and this allows
us to use Corollary 5.5 again to conclude that it is greater than or equal to the cardinal
satisfying (i). This shows that all of these cardinals are equal. (|
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Proof of Theorem 1.9. Fix a cardinal k and a natural number n > 0.
The next two claims, together with Proposition 6.3, will allow us to conclude that all
statements (i)-(iv) listed in the theorem are equivalent.

Claim. If k is the least cardinal with the property that ¥, 11-ESR(k) holds, then k is para-
metrically n-exact for some A > K.

Proof of the Claim. Fix D € Vy;1. Using Lemma 6.4, we find a cardinal 3, < &’ € C(™),
cardinals kK < A < X € C+1) an elementary submodel X of H, with V,U{x} C X and an
elementary embedding j : X — V) with j(k) = X and D,k € ran(j). Set p = j(crit(j)) <
k € X and v = j(p). Assume, towards a contradiction, that 3,41-ESR(u,v) fails. Then
we can find a ¥, 1-formula ¢ with the property that the class C = {A | ¢(A)} consists of
structures of the same type and B € C of rank v with the property that for all A € C of rank
1, there is no elementary embedding of A into B. Since X € C™*1 this statement also
holds in Hys and therefore the elementarity of j allows us to find By € X of rank p with the
property that ¢(j(By)) holds in Hy and for all A € V41 \ V,, such that ¢(A) holds, there
is no elementary embedding of A into j(By) in Hy,. But this yields a contradiction, because
our setup ensures that ¢(By) holds in V' and the fact that V; C X implies that j induces
an elementary embedding of By into j(By) that is an element of Hy,. In this situation, the
minimality of x implies that x = g and v = A. In particular, we can conclude that x is
parametrically n-exact for A. O

Since Proposition 6.3 shows that %,,11(V,)-ESR(x) holds whenever x is parametrically
n-exact for some cardinal A > x and therefore all statements listed in the theorem imply that
Yn+1-ESR(k) holds, the above claim allows us to conclude that all of the listed statements
are equivalent. O

In the remainder of this section, we show that, for all n > 0, exact structural reflection for
Yn+1-definable classes is strictly stronger than exact structural reflection for II,-definable
classes. In combination with the equivalences provided by Theorems 1.7 and 1.9, the follow-
ing lemma shows that, in general, the principle II,, (V,;)-ESR(x) does not imply the principle
Yn+1-ESR(k). This statement should be compared with the results of [Bagl2, Section 4],
showing that the validity of the principle SR for II,,-definable classes of structures is equiv-
alent to the validity of this principle for 3,1 1-definable classes.

Lemma 7.1. Let n > 0 be a natural number and let K be parametrically n-exact for some
cardinal X > k. Then the set of cardinals p < k with the property that I1,,(V,)-ESR (1, &)
holds is stationary in k. In particular, there exists a cardinal p < k that is weakly paramet-
rically n-exact for some cardinal v > p.

Proof. Fix a closed unbounded subset K of k. Using our assumptions, we can find a cardinal
k < kK € C™, a cardinal A < X € C™_ an elementary submodel X of H, with
Vi, U{k} C X and an elementary embedding j : X — Hy with j(k) = A, j(crit(j)) = k and
K e ran(j). Then crit(y) is an element of K.

Now, assume towards a contradiction, that there is a II,,-formula ¢ (v, v1) and z € Ve ()
such that the class C = {A | ¢(A, z)} consists of structures of the same type and there exists
B € C of rank « such that for all A € C of rank crit(j), there is no elementary embedding
from A into B. Since k < k' € C™ these statements hold in H, and we can find B € CNX
of rank k with the property that for every A € C of rank crit(j), there is no elementary
embedding of A into B. In this situation, since A < X € C"*t1 | elementarity implies that
j(B) is an element of C and for every A € C of rank &, there is no elementary embedding
of A into j(B). But this yields a contradiction, because the fact that Vj is a subset of X
implies that j induces an elementary embedding of B into j(B).

The above computations yield the first part of the lemma. The second part follows
directly from a combination of the first part with Theorem 1.7. (]

We end this section by proving the following parametrical version of Corollary 6.5:

Proposition 7.2. Given a natural number n > 0, if a cardinal k is weakly parametrically
(n+ 1)-ezxact for some cardinal \, then k is also parametrically n-exact for A.
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Proof. Fix A € Vii1, a cardinal A < X € C"*tD an elementary submodel Y of Hy
of cardinality A with V) U {A,A} C Y and a bijection b : A — Y with 5(0) = X and
blw-(147)) =~ foraly <A Set R={{a,8) | b(ar) €b(B)} € Vap1. By Lemma 5.7,
there exists a transitive, I, 1 (Vi41)-correct set M with V,, U {k} C M and an elementary
embedding j : M — H)y with j(crit(j)) = &k, j(k) = X and A, R € ran(j). Pick Ag, Rg € M
with j(4g) = A and j(Ry) = R. Now, note that, since n > 0, the statement ” There exists
a cardinal n with A\ < n € C™ and an elementary embedding k : (\, R) — (H,, €) with
WAU{A4, \} Cran(k), k(0) = A and k(w-(147)) = v for all v < A” can be expressed by X, 41-
formula with parameters A and A, and therefore this statement also holds in Hy,. Using the
elementarity of j and the II,, -correctness of M, we can find a cardinal £’ with x < &’ € C'")
and an elementary embedding ¢ : (k, Rg) — (Hy, €) with V,, U {Ap,x} C ran(i), i(0) = k
and i(w - (1 +«)) = a for all @ < k. Set X =ran(i) and
Jjo = bojoiil : X — Hy.

Then X is an elementary submodel of H,, with V,, U {Ap,x} C X and, since i(crit(j)) =
crit(j), b(k) = k and j | & : (K, Rp) — (A, R) is an elementary embedding, the map jo
is an elementary embedding with jo [ crit(j) = idesis(s), Jo(crit(j)) = &, jo(k) = A and
A € ran(jo). O

8. THE STRENGTH OF EXACT CARDINALS

In this section, we measure the strength of the principles of exact structural reflection
introduced above by positioning exact and weakly exact cardinals in the hierarchy of large
cardinals. We start by deriving lower bounds for their consistency strength by showing that
the existence of such cardinals implies the existence of many almost huge cardinals below
them.

Recall that a cardinal k is almost huge if there exists a transitive class M and a non-
trivial elementary embedding j : V — M with crit(j) = x and <7(")M C M. We then say
that a cardinal k is almost huge with target X if there exists an embedding j witnessing the
hugeness of xk with j(k) = .

The following standard argument will allow us to prove these implications:

Lemma 8.1. Let k < A be cardinals with the property that there exists a non-trivial ele-
mentary embedding j : V., — Vi with j(crit(j)) = k. Then crit(j) is almost huge with target
K.

Proof. Set p = crit(j). Given pu <~ < k, define
Uy = {ASPu() i) € i(A)}

Then it is easy to see that for every p <y < &, the collection U, is a normal ultrafilter over
P, (7). Moreover, this definition directly ensures that

Uy = {{anvy|ac A} | Ac Us}

holds for all p <y <6 < k.

Now, given u < v < &, we let i, : V. — M, denote the ultrapower embedding induced
by U,. In addition, for all 4 < v <0 < K, we let k5 : M, — Ms denote the canonical
embedding satisfying is = k- s 0 i, (see [Kan03, p. 333]).

Claim. If p <y <k and v < o < i(p), then there exists v < ¢ < k with k, s(a) = 6.
Proof of the Claim. Pick a function f :P,(y) = p with [f]y. = o and define
§ = j(Hh]) < &

Since normality allows us to conclude that [a — ot(a)]y., =, we know that

{a e Pu(v) [ ot(a) < fa)} € U,

and hence

Moreover, we have



HUGE REFLECTION 19

and hence {a € P,(v) | f(aN~y) =ot(a)} € Us. But then
kys(a) = kys([flv,) = la— flany)]u; = la ot(a)]y, = 0. 0
By [Kan03, Theorem 24.11], this shows that p is almost huge with target . |

Corollary 8.2. Let Kk < A be cardinals with the property that k is either parametrically
0-exact for A or weakly parametrically 1-exact for A. Then the set of cardinals p < k with
the property that p is almost huge with target K is stationary in K.

Proof. Let C be a closed unbounded subset of k. By definition, both of the listed assumption
imply the existence of a non-trivial elementary embedding j : V,; — V) with j(crit(y)) = &
and C' € ran(j). Then crit(j) is an element of C' and Lemma 8.1 shows that crit(j) is almost
huge with target x. |

Corollary 8.3. Let k be a cardinal that is parametrically 0-ezact for some cardinal A\ > k.
Then k is almost huge with target .

Proof. By definition, there exist a cardinal £’ > &, a cardinal A\ < X € C), an elementary
submodel X of H, with V,, U{k} C X and an elementary embedding j : X — H, with
J(k) = X and j(crit(j)) = . Then Lemma 8.1 implies that crit(j) is almost huge with target
k. Since the system of filters witnessing this statement is contained in H/, the model X
also contains such a system. But then the elementarity of j implies that, in H)/, there is a
system of ultrafilters witnessing that  is almost huge with target A. Since A < X' € C(),
this statement also holds in V. ]

Recall that a cardinal k is huge if there exists a transitive class M and a non-trivial
elementary embedding j : V' — M with crit(j) = & and /)M C M. We then say that a
cardinal x is huge with target A if there exists an embedding j witnessing the hugeness of
k with j(k) = A. It is well-known that  is huge with target A if and only if there exists
a k-complete normal ultrafilter U over P(A) such that {x € P()) | otp (z) = Kk} € U (see
[Kan03, Theorem 24.8]).

Proposition 8.4. If k is huge with target A\, then x is weakly parametrically 1-exact for .

Proof. Let M be an inner model with *M C M and let j : V — M be an elementary
embedding with crit(j) = k and j(k) = A. Fix A € Vy;; and let N be an elementary
submodel of Hy+ of cardinality A with V) U {A,A\} C N. We then have N € M and, since
Hy+ = H%, Y ;-absoluteness implies that N is IT; (Vy41)-correct in M. Set jo = j [ N :
N —- H %/\)+. Then jo is an elementary embedding that is an element of M. Thus, in
M, there exists a transitive, II;(Vj(,.)41)-correct set K with Vi) U {j(x)} € K (namely
N) and an elementary embedding k : K — Hj\+) with k(crit(k)) = j(r), k(j(k)) = j(\)
and j(A) € ran(k) (namely jo) Hence, the elementarity of j implies that, in V, there exists
a transitive, IT;(V,.41)-correct set K with V,, U {k} C K and an elementary embedding
k: K — Hy+ with k(crit(k)) = &, k(k) = A and A € ran(k). O

This result also allows us to show that the consistency strength of huge cardinals is strictly
larger than the consistency strength of weakly 1-exact cardinals.

Corollary 8.5. If k is huge with target A\, then there is an inaccessible cardinal p < k such
that 11, (V,)-ESR(p, k) holds in V.

Proof. Let j: V — N be an elementary embedding with critical point & such that j(k) = A
and N is closed under A-sequences. Note that Hy+ € ij(\’/\). Fix a II;-formula ¢(vg, v1) and
z € V., with the property that, in le(\&), the class {A | (A, z)} consists of structures of the
same type. Pick a structure B of rank A with the property that ¢(B, z) holds in VjJ(V)\). Since
Hy,+ C VjJ(VA), Y;-absoluteness implies that ¢(B, z) also holds in V. By our assumptions,
we can now apply Proposition 8.4 to find a structure A of rank x with the property that
©(A4, z) holds in V' and an elementary embedding i of A into B. But then A is contained in
Vj](\[)\)7 (A, z) holds in ij(v)\) and the map i is an element of ij(v/\)_
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These computations show that the principle II;(V,;)-ESR(k, A) holds in ij(v)\). Using the
elementarity of j, we can now conclude that, in V), there is an inaccessible cardinal p < &
with the property that II; (V,)-ESR(p, £) holds . O

We now show that the implication given by Proposition 8.4 is optimal. Note that, by
Corollary 6.5, the next result also shows that the least huge cardinal x is not weakly 2-exact
for some cardinal A > k.

Proposition 8.6. If k is the least huge cardinal, then k is not l-exact for any cardinal
A> K.

Proof. Assume, towards a contradiction, that there exists a cardinal k < x’ € C(1)| cardinals
A< XN € 0P, an elementary submodel X of H, with V,, U{x} C X and an elementary
embedding j : X — Hy with j(k) = A. Note that the statement “There exists a huge
cardinal smaller than X’ can be formulated by a Ys-formula with parameter A and, since
A < X e C?, this statement holds in Hy. But then the elementarity of j and the fact
that x € C) allow us to conclude that there exists a huge cardinal smaller than , a
contradiction. |

The next proposition gives a consistency upper bound for the existence of a parametrically
exact cardinal. Recall that an Il-embedding is a non-trivial elementary embedding j :
Vsi1 — Vsi1 for some limit ordinal §. Also, an 12-embedding is an elementary embedding
j 'V — M for some transitive class M such that Vs C M for some limit ordinal § > crit(j)
satisfying j(§) = ¢. Finally, an I3-embedding is a non-trivial elementary embedding j : V5 —
Vs, for some limit ordinal ¢ (see [Kan03, §24]). Note that, if j : V5 — Vj is an I3-embedding
with critical point &, then Vj is a model of ZFC and the sequence (j"(k) | m < w) is cofinal
in 4.

Proposition 8.7. Assume that k is the critical point of an 13-embedding j : Vs — Vs. If
l,m,n < w, then, in Vs, the cardinal j'(x) is parametrically n-exact for j*r™+1 (k).

Proof. Given 0 < m < w, set £y, = j™ (k). Then, in V;, every k,, is inaccessible and belongs
to C, for all n < w. Pick 0 < m < w, set A\ = K,, and fix A € Vy,;. Then, in V;, the
map j [ Hy, ., + He,yy = Hg,,,,, Witnesses that there exists an elementary embedding
it Hjm(e,y = Hjm(s,, ) With j7(A) € ran(i), i(j™(x)) = j™(A) and i(crit(i)) = j™ (k).
But then the elementarity of j7 : Vs — Vs implies that, in Vj, there exists an elementary
embedding i : H,, — H,,, with A € ran(i), i(x) = XA and i(crit(i)) = k. Since k < K1 €
(CNYVs and A < kppp1 € (C)Ys for all n < w, these computations show that, in Vj, the
cardinal k is parametrically n-exact for A for all n < w. By elementarity of the iterated
embedding j!, this yields the statement of the proposition. O

In the following, we will derive a much lower upper bound for the consistency strength of
the existence of a cardinal x that is weakly parametrically n-exact for some cardinal A for
all n < w.

Definition 8.8. Given a natural number n > 0, a cardinal  is n-superstrong if there
exists a transitive class M and an elementary embedding j : V — M with crit(j) = k and
Viney € M. If, moreover, j(")an(K,) C M, then we say that Kk is hugely n-superstrong.

Notice that, given an elementary embedding j : V — M and a natural number n > 1,
the embedding j witnesses that x is hugely n-superstrong if and only if it witnesses that
k is n-superstrong and cof(j"(k)) > j(k). Also note that every huge cardinal is hugely
l-superstrong and, for n > 1, every almost n-huge cardinal® is hugely n-superstrong.

Proposition 8.9. If k is a hugely 2-superstrong cardinal, then there exists an inaccessible
cardinal A > k and a cardinal p > X such that V), is a model of ZFC and, in V,,, the cardinal
k is weakly parametrically n-exact for A for all natural numbers n > 0.

6Recall that  is almost n-huge if there exists an elementary embedding j : V' — M, with crit(j) = &,
and with M transitive and closed under <j™(k)-sequences.
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Proof. Let j : V. — M with be an elementary embedding with M transitive, crit(j) = &,
Viz(y € M, and 9™ Vj2(,.y € M. Set A = j(k) and p = j?(k). Then our assumptions ensure
that A is an inaccessible cardinal and p is a cardinal with the property that V), is a model of
ZFC. Notice that, since V,, < V(K) = V), elementarity implies that Vx = V) 2 V) =V,
and therefore also V, = Vj(y) = Vj(p)

Now, fix A € Vy41 and, in M, pick an elementary submodel X of V, of cardinality A
with Vy U{A4,A\} C X. Let 7 : X — N denote the corresponding transitive collapse. Then
VAU{A, A} € N. Moreover, since 7 | (Va11NX) = idy,,,nx, it follows that N is IT, (Va41)-
correct in V), for all n < w. But since V,, =< Vj%[)), the set N is also II,,(Vy41)-correct in Vy(p)
for all n < w. Finally, pick a bijection b: X — X with b(\) = 0 and b(y) = w - (1 + ) for all

v < A Set
= {<b($0),b($1)> | o, T1 € X, g € ,Tl} c M.

Then the map j | A: (A, E) — (p,j(E)) is an elementary embedding of Lc-structures and,
since it is a subset of V), of cardinality A, the closure properties of M ensure that this map
is an element of M.

We now have that, in M, the map

i = j0" eI Nobor i N — Vi,

is an elementary embedding with i | kx = id,, i(k) = j(k) = A, i(A) = j(\) = p and
j(A) € ran(i). Finally, we know that N € V,, because N is a subset of V, of cardinality A
in M and p is inaccessible in M. Since the closure properties of M 1mply that p is a limit
cardinal of cofinality greater than A\ in V', we can find an M-cardinal p < n < j(p) with
J(N) € Hyt < Vi)

Fix 0 < n < w. The above computations now show that, in V]Ig) ) there exists a cardinal
p < n € CM a transitive II,(Vy 1)-correct set N with V3 U {A\} € N and a non-trivial
elementary embedding i : N — H,, with i(crit()) = A, i(A) = p and j(A) € ran(i). In this
situation, the elementarity of j implies that, in V,, there exists a cardinal A < A" € cm),
a transitive II,,(V,.1)-correct set Ny with V, U {k} C Ny and a non-trivial elementary
embedding ig : Ng — H) with ig(crit(ip)) = &, i0(k) = X and A € ran(ip). O

9. BEYOND HUGE REFLECTION

In this section, we introduce a generalization of the principle ESR¢(x,A) to sequences
of cardinals in order to obtain principles of structural reflection that imply the existence of
even stronger large cardinals. The following definition is motivated by the formulation of
Chang’s Conjecture.

Definition 9.1. Let0 < n < w and let L be a first-order language containing unary predicate
symbols P = (P |i<mn).
(i) Given a sequence fi = (u; | i <n) of cardinals with supremum u, an L-structure A
has type fi (with respect to P) if the universe of A has rank u and rnk(PA) = u;
for alli <n.
(ii) Given a class C of L-structures and a strictly increasing sequence X = (\; | i < 14 1)
of cardinals, we let ESRC(X) denote the statement that for every structure B in C
of type (Xix1 | i < n), there exists an elementary embedding of a structure A in C
of type (\; | i < n) into B.
(iii) Given a definability class T and a class P, we let T(P)-ESR(X) denote the statement

that ESRC(X) holds for every class C of structures of the same type that is T'-
definable with parameters in P.

In order to determine the large cardinal strength of the above principles, we consider the
following sequential versions of n-exact and weakly n-exact cardinals:

Definition 9.2. Let 0 < 7 < w and let X = (A, | m < 1) be a strictly increasing sequence
of cardinals with supremum .
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(i) Givenn < w a cardinal kK < Ao s n-exact for X if for every A € V1, there exists
a cardinal p,” a cardinal ' € C™) greater than 3,, a cardinal N € C+) greater
than X, an elementary submodel X of H,, with V, U {p} C X, and an elementary
embedding j : X — Hy with A € ran(j), j(p) = )\ J(K) = Ao and j(Am—1) = Am
for all 0 < m < n. If we further require that ](crlt(])) = kK, then we say that k is
parametrically n-exact for X

(ii) Given 0 <n < w, a cardinal kK < X\ is weakly n-exact for X if for every A € Vaq1,
there exists a cardinal p, a transitive, I1,,(V,41)-correct set M with V, U {p} C M,
a cardinal N € C"=V) greater than Jy and an elementary embedding j : M — H),
with A € ran(j), j(p) = A, j(k) = Ao and j(Am—1) = A\, for all 0 < m < n. If
we further require that j(crit(j)) = K, then we say that k is weakly parametrically
n-exact for \.

Note that, if » > 0 is a natural number and ()\; | ¢ < n) is a strictly increasing sequence
of cardinals such that A\g is weakly 1-exact for (A\;11 | ¢ < n), then the instance

()\n,...,)\1,>\0) —» ()\n717~-~>)\07<)\0)

of Chang’s Conjecture (see, for example, [Forl0, p. 914]) holds true. Analogous implications
hold true for sequences of cardinals of length w.

We show next that the large cardinal notions introduced above are located in the upper-
most regions of the large cardinal hierarchy. Recall that, given a natural number n > 0,
a cardinal k is n-huge if there exists a transitive class M and an elementary embedding
j:V — M with crit(j) = x and 7" (®) M C M.

Proposition 9.3. Let n > 0 be a natural number.

(i) If K is an n-huge cardinal, witnessed by an elementary embedding j : V — M, then
Kk is weakly parametrically 1-exact for the sequence (771 (k) | m < n).

(ii) If & is a cardinal and X = ( m | m<n) is a sequence of cardinals such that k
is either weakly 1-exact for X or O-ezact for /\ then some cardinal less than k is
n-huge.

Proof. (i) Set p = j""1(k) and A = j*(k). Fix A € Vy41. Let N be an elementary submodel
of Hy+ of size A with VAU{\, A} C N. Then N is an element of M and N is Iy (V)41 )-correct
in M. Since the map j [ N: N — H ;‘(/IA)Jr is also contained in M, elementarity allows us
to conclude that, in V, there exists a transitive, ITy (V},41)-correct set K with V, U {p} C K
and an elementary embedding k : K — Hy+ with A € ran(k), k(p) = A, k(crit(k)) = x and
k(5™ (k) = j™ (k) for all m < n.

(ii) Set A = A\, and p = A\,,—1. Both of our assumptions then yield a cardinal A’ > A, a set
X with V,U{p} C X and an elementary embedding j : X — Hy with & € ran(j), j(x ) Ao
and j()\m,l) = A\p, for all 0 < m < n. Set u = crit(j) < k. An easy induction then shows
that j™%2(u) < A, holds for all m < n. In particular, we have j"(u) < p and therefore
i=31V,:V, = Vyis an elementary embedding with crit(i) = p and " () < p. Using
results of Kanamori (see [Kan03, Theorem 24.8]), we can now conclude that p is n-huge. O

Proposition 9.4. Let X = (Am | m < w) be a strictly increasing sequence of cardinals with
supremum A and let kK < Ay be a cardinal.

(i) If k is either weakly 1-exact for X or 0-ezact for X, then there exists an 13-embedding
j: Vi = V.

(ii) If K is either weakly parametrically 1-exact for X or parametrically 0-exact for X,
then the set of critical points of 13-embeddings is stationary in k.

Proof. (i) Both of our assumptions ensure that there exists a cardinal X' > A, a set X with
VAU{\} C X and an elementary embedding j : X — Hy, with j(A) = X and j(An—1) = A
for all 0 < m < w. Then j [ V) is an I3-embedding,.

"Note that, in both parts of this definition, the listed requirements ensure that there is a unique cardinal
p with these properties. If n =1, then A = Ag and p = k. Next, if 1 <9 < w, then A = X;;_1 and p = X\ 2.
Finally, if n = w, then A = p.
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(ii) Fix a closed unbounded subset C' of k. By our assumptions, there exists a cardinal
N > A aset X with VA U{A} C X and an elementary embedding j : X — H, with
C €ran(j), j(erit(j)) = &, 7(A) = A and j(Am—1) = A, for all 0 < m < w. Then crit(j) € C
and the map j [ V) : Vi — V) is an I3-embedding with critical point crit(j). O

Proposition 9.5. If k is the critical point of an I1-embedding j : Vyx41 — Vag1 and k >0
is a natural number, then k is weakly parametrically 1-exact for (¥t (k) | m < w).

Proof. By standard coding arguments, our assumptions yields an elementary embedding
i: Hy+ — Hy+ with ¢ [ V) = j [ Vi and therefore ¢ [ V,; = idy,,. Fix A € V)41 and
pick an elementary submodel N of H,+ of cardinality A with AU {A,A\} C N. Then %;-
absoluteness implies that N is IT; (V11 )-correct. In this situation, the set N and the map
i* | N : N — i*(N) witness that, in H,+, there exists a transitive, IT; (V) 1)-correct set
M with Vy, U{A} € M and an elementary embedding [ : M — i*(N) with i*(A4) € ran(l),
I(crit(1)) = i*(k), 1(i* (k) = i*(j*(x)) and 1(i* (5*™(k))) = i*(F* D (k) for all 0 < m < w.
Using the elementarity of i* Vi1 — Vig1, Xi-absoluteness and the fact that N is an
elementary submodel of Hy+, we can now conclude that there exists a transitive, II; (V) 41)-
correct set M with V), U {A} € M and an elementary embedding ! : M — H,+ with
A e ran(l), I(crit(l)) = k, I(k) = j*(k) and 1(j*(k)) = D (k) forall 0 < m < w. O

In the remainder of this section, we show how the validity of the principle ESR(X) is
connected to the existence of cardinals that are exact or weakly exact for certain sequences
of cardinals.

Lemma 9.6. The following statements are equivalent for every natural number n > 0, every
ordinal 0 < n < w, every strictly increasing sequence X = (A | i< 14n) of uncountable
cardinals with supremum A, and all z € Vy:
(i) Ta({})-ESRe().
(ii) For every A € Vi1, there exists a cardinal p, a transitive, IL,(V,y1)-correct set
M with V, U {p} € M, a cardinal A\ < N € C"~V and an elementary embedding
j M — Hy such that A € ran(j), j(z) = z, j(p) = X and j(\;) = Xiy1 for all
i<
(iii) For all cardinals A < X' € C™ and every A € Vi1, there exists a cardinal p, a
transitive, I1,,(V,41)-correct set M with V,U{p} C M and an elementary embedding
j: M — Hy such that A € ran(j), j(z) = z, j(p) = A and j(\;) = Xiy1 for all
i<

Proof. First, assume that (ii) holds. Fix a IL,-formula ¢(vg,v;) with the property that
C ={A ] v(A,z)} is a suitable class of structures and pick a structure B in C of type
(Aigx1 | i <m). Since B € Vi1, we can find a cardinal p, a transitive, IL,(V,1)-correct
set M with Vy U{\} C M, a cardinal A < X € C" 1 and an elementary embedding
j: M — Hy such that A, X € ran(j), j(z) = 2, j(p) = A and j(\;) = Aigq for all i < 7.
Elementarity then implies that p is the supremum of the sequence (\; | i < 7). Moreover,
the fact that A’ € C(™=1 implies that II,-statements are downwards absolute from V to
H), and this allows us to conclude that ¢(B,z) holds in Hy. Pick A € M NV, with
j(A) = B. In this situation, the elementarity of j and the fact that j(\;) = A;+1 holds for
all i < 7 cause p(A, z) to hold in M and, by the II,, (V4 )-correctness of M, this shows that
A is a structure of type (\; | ¢ <n) in C. Finally, since A has rank p and V, is a subset of
M, the map j induces an elementary embedding of A into B. This shows that (i) holds in
this case.

Next, assume that (i) holds and we shall prove (iii). So fix a cardinal A < N € C(™
and A € Vy;1. Define £ to be the first-order language extending L¢ by predicate symbols
P = (P, | i < n) and constant symbols A, A, z and (\; | i < 7). Define C to be the class of all
L-structures (D, F, ]3, a,b,c, J} with the property that E is a well-founded and extensional
relation on D and, if P = (P; | i<n), d = (d; | i <n) and 7 : (D, E) — (M, €) is the
induced transitive collapse, then the following statements hold:

e k(D) is a cardinal and Vi, (py U {rnk(D)} C M.
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o M is I1,,(Vink(p)+1)-correct.
o 7(b) =rnk(D), m(c) = z and w(d;) = rnk(F;) for all i < n.
o (rnk(P;) | ¢ <mn) is a strictly increasing sequence of cardinals with supremum
rnk(D).
Then C is definable by a II,,-formula with parameter z.

Now, let X be an elementary substructure of V., of cardinality 3y with VA U{A, A} C X.
Pick a bijection f : X — V) and let R denote the induced binary relation on V). These
choices ensure that the transitive collapse of (V, R) is II,,(Vi41)-correct and this allows us
to conclude that

(Va, By (Aier [0 <m), f(A), F(N), f(2), (f (Niga) [ i <))
is a structure in C of type (A\j+1 | ¢ <n). By our assumptions, there exists an elementary
embedding i of a structure
<DaEv<Pi | i < n},a,b,c, <di | i< 77>>
of type (\; | i <n) in C into the above structure. Let 7 : (D, E) — (M, €) denote the
corresponding transitive collapse and set
j = f71 ojom1: M — Hy:.
Set p = m(b) = rnk(D) = sup;,, Ai. Then M is a IL,,(V,11)-correct set with V, U {p} C M
and j is an elementary embedding with j(p) = A, j(z) = z and A € ran(j). Moreover, given
i <1, we now have \; = rnk(P;) = 7(d;) and this allows us to conclude that

i) = (fhod)(di) = Aiga.
This shows that (iii) holds in this case.
Since (iii) obviously implies (ii), this concludes the proof of the lemma. O

Corollary 9.7. Let 0 < n < w, let 0 < n < w and let X = (N | i<14n) be a strictly
increasing sequence of cardinals.

(i) The cardinal Xy is weakly n-ezact for (A\i11 | i < ) if and only if I1,-ESR(X) holds.
(i) If Ao is weakly parametrically n-exact for (Aiy1 | i <mn), then II,(Vy,)-ESR(N)
holds. g

In the case of sequences of finite length, we can now generalize Theorem 1.7 to principles
of the form IT,-ESR(A).

Theorem 9.8. The following statements are equivalent for every cardinal k and all natural
numbers n,n > 0:
(i) w is the least cardinal such that there ewists a strictly increasing sequence A\ =
(\i | i <n+1) of cardinals with \o = x and the property that IL,-ESR(X) holds.
(ii) & is the least cardinal such that there exists a strictly increasing sequence \ =
(\i | i<n+1) of cardinals with Ao =  and the property that IL,(V,)-ESR(X)
holds.
(iii) & 4s the least cardinal that is weakly n-exact for some strictly increasing sequence
of cardinals greater than x of length n.
(iv) k is the least cardinal that is weakly parametrically n-exact for some strictly in-
creasing sequence of cardinals greater than k of length n.

Proof. Let k be the least cardinal such that there exists a strictly increasing sequence )=
(Ai | i < p+1) of cardinals with A\g = x and the property that II,,-ESR(X) holds. Set A = A,
and p = A,;—1. Pick X > X\ with the property that V), is sufficiently elementary in V.

Claim. k is weakly parametrically n-exact for (\i11 | i <n).

Proof of the Claim. Assume, towards a contradiction, that A € V)41 witnesses that x is not
weakly parametrically n-exact for (\;11 | ¢ < n). Using Lemma 9.6, we can find a transitive,
II,, (V41 )-correct set M with V,U{p} C M and an elementary embedding j : M — Vy with
A,k €ran(j) and j(A;) = Aj1q for all ¢ < . Our setup then ensures that j(crit(j)) # « and,
since £ € ran(j) and j(k) = A1 > k, this implies that j(crit(j)) < . Given i < i+ 2, set
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pi = ji(crit(5)). Then p;q < \; for all i < n+ 1. Since py < &, the minimality of » yields
a IT,-formula ¢(v) with the property that the class C = {A | ¢(A)} consists of structures of
the same type and there exists a structure B of type (12 | ¢ <) in C such that for every
structure A of type (u;1+1 | ¢ <n) in C, there exists no elementary embedding of A into B.
By the choice of X', these statements are absolute between V' and V.. Elementarity now
implies that, in M, there exists a structure By of type (u;+1 | ¢ < n) with the property that
©(Byp) holds and for every structure A of type (u; | i <n) such that ¢(A) holds, there is
no elementary embedding of A into By. Since M is II,,(V,41)-correct and V) is sufficiently
elementary in V, it follows that both ¢(By) and ¢(j(Bp)) hold in V.. But we can now
use the elementarity of j to derive a contradiction, because j(Bp) is a structure of type
(i+2 | # < m), By is a structure of type (i;+1 | ¢ < 1) and the map j induces an elementary
embedding of By into j(By) that is an element of V). O

With the help of the above claim, we can apply Lemma 9.6 and Corollary 9.7 to conclude
that all statements listed in the theorem are equivalent. (]

Note that the above proof cannot be directly generalized to sequences of cardinals of
length w, because, if x is the least cardinal with the property that Hn—ESR(X) holds for
some strictly increasing sequence X = (M\i | i < w) of cardinals with Ao = x and supremum
A, we assume that & is not weakly parametrically n-exact for (A1 | i < w) and we repeat
the above construction to obtain a transitive, II,,(Vi41)-correct set M with V) U{\} C M
and an elementary embedding j : M — Vi with j(crit(j)) < x and j(A;) = Aiyq for all
i < w, then we do not know wheter the sequence (j°71(crit(j)) | ¢ < w) is contained in the
range of j and this stops us from repeating the above minimality argument.

Analogously to the above results, the statement of Theorem 1.9 can be generalized to the
context of this section.

Lemma 9.9. The following statements are equivalent for every natural number n > 0, every
ordinal 0 < n < w, every strictly increasing sequence X\ = (N\; | i <14+ mn) of uncountable
cardinals with supremum A, and all z € Vy,:

(i) nt1({2})-ESRe(X).
ii) For every A € Vg1, there exists a cardinal p, a cardinal k' € C™ greater than
+ p
p, a cardinal N € C"tY greater than X\, an elementary submodel X of H,/ with

V,U{p} C X, and an elementary embedding j : X — Hy with A € ran(j), j(z) = z,
J(p) =X and j(Ni) = Aiy1 for alli <.

Proof. Assume that (ii) holds. Pick a X, i-formula ¢(vg,v1) with the property that the
class C = {A | ¢(A4, z)} consists of suitable structures and fix a structure B in C of type
(Nix1 | i <mn). Since B € Vi1, there exists a cardinal p, a cardinal ' with p < &’ € C™),
a cardinal A’ with A < X € C»*Y an elementary submodel X of V,, with V, U {p} C X,
and an elementary embedding j : X — Hy with B € ran(j), j(z) = z, j(p) = X and
j(A;) = Xiyq for all i < n. Pick A € X such that j(A) = B. Since X € C"+D | we
know that ¢(B,z) holds in V). The elementarity of j then implies that ¢(A, z) holds in
V.. and, since ¥’ € C™, we may then conclude that A € C. Moreover, since J) = A
holds for all i < 7, elementarity allows us to conclude that A has type (\; | ¢ <n). Finally,
elementarity also implies that A has rank p and, since V,, is a subset of X, the map j induces
an elementary embedding of A into B.

Next, assume that (i) holds and fix A € V1. Let £ be the first-order language extending
L by predicate symbols P = (P; | i <n) and constant symbols A, A, z and (A; | i < 7).
Define C to be the class of all £-structures (D, F, ]3, a,b,c, J} for which there exists § € C(")
and an isomorphism 7 between (D, E) and an elementary substructure X of Hy with the
property that, if P = (P; | i <n) and d = (d; | i <n), then the following statements hold:

e k(D) is a cardinal and Vi (py U {rnk(D)} C X.

e 7(b) = rk(D), 7(c) = z and 7(d;) = rnk(P;) for all i < 7.

e (rmk(P;) | i <n) is a strictly increasing sequence of cardinals with supremum
rnk(D).
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Then the class C is then X, 1-definable with parameter z.

Pick A < X € O™t an elementary substructure Y of Hy of cardinality 3, with
VZU{A, A} CY and a bijection f: Y — V). If we now let R denote the binary relation on
V) induced by f, then the resulting L-structure

(Va, By (Aia [0 <w), f(A), F(A), £(2), (f(Xiga) | i <))
is an element of C of type (A1 | i <n). Set p = Sup; ., A;. By our assumptions, there
exists an elementary embedding i of a structure (D, E, P,a,b,c, cf) of type (\; | i <n)in C
into the above structure. Pick a cardinal x' € C(")| an elementary submodel X of H, and
an isomorphism 7 : (D, E) — (X, €) witnessing that the given structure is contained in C.
Then p is a cardinal with 7(b) = p = rnk(D) and V,U{p} C X. Moreover, we have 7(c) = z
and \; = rnk(P;) = 7(d;) for all i < n. If we now define

j:f_loiOT_liX%H)\/,
then j is an elementary embedding with A € ran(j), j(z) = z, j(p) = A and j(\;) = Aiy1
for all i < n. ]

Corollary 9.10. Let 0 < n < w, let 0 < n < w and let X = (N | i <14n) be a strictly
increasing sequence of cardinals.

(i) The cardinal X is n-exact for (\ip1 | i < n) if and only if Spiq-ESR(X) holds.

(ii) If Ao is parametrically n-exact for (Ai11 | i < n), then En+1(VA0)—ESR(X) holds. O
As above, we can now generalize Theorem 1.9 to the principle En+1-ESR(X) for finite
sequences of cardinals A.

Theorem 9.11. The following statements are equivalent for every cardinal k and all natural
numbers n,n > 0:
(i) w is the least cardinal such that there ewists a strictly increasing sequence X\ =
(\i | i <n+1) of cardinals with Ao = & and the property that %, 41-ESR(X) holds.
(ii) & is the least cardinal such that there exists a strictly increasing sequence \ =
(N | i<n+1) of cardinals with Ay = r and the property that S, 41(V,)-ESR(X)
holds.
(i) & is the least cardinal that is n-exact for some strictly increasing sequence of cardi-
nals greater than k of length n.
(iv) k is the least cardinal that is parametrically n-exact for some strictly increasing
sequence of cardinals greater than k of length 7.

-

Proof. Assume that  is the least cardinal such that 3,1-ESR(X) holds for some strictly
increasing sequence XA = (\; | ¢ < n+ 1) of cardinals with \g = k. Set A = \,; and p = A, _;.
Pick X' > X with the property that V). is sufficiently elementary in V.

Claim.  is parametrically n-exact for (A\iy1 | i <n).

Proof of the Claim. Assume, towards a contradiction, that A € V1 witnesses that x is not
parametrically n-exact for (A\;+1 | i < 7). By Lemma 9.9, a cardinal " with p < &’ € O™,
a cardinal X' with A < X € C"*Y an elementary submodel X of H, with V, U {p} C X
and an elementary embedding j : X — Hy with A,k € ran(j) and j(\;) = A1 for all
i < 1. We then know that j(crit(j)) # « and, since x € ran(j) and j(x) > &, this allows
us to conclude j(crit(j)) < x. Given i < n+ 2, set y; = j*(crit(j)). Since py < k, the
minimality of k yields a ¥,,;1-formula ¢(v) with the property that the class C = {A | p(4)}
consists of structures of the same type and there exists a structure B of type {(ii12 | i <)
in C such that for every structure A of type (u;4+1 | ¢ < n) in C, there exists no elementary
embedding of A into B. Our set up now ensures that, in X, there exists a structure By of
type (ui+1 | ¢ <mn) with the property that ¢(Bg) holds and for every structure A of type
(u; | © <mn) such that ¢(A) holds, there is no elementary embedding of A into By. Then
both ¢(Bg) and ¢(j(By)) hold in V), and j induces an elementary embedding of By into
J(Byp) that is an element of V.. Since By has type (p;+1 |7 <n) = 7({i | ¢ <n)) and j(Bo)
has type (it | i <n) = j({(i+1 | # <n)), we can now use the elementarity of j to derive
a contradiction. ]
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A combination of this claim and Corollary 9.10 now yields the desired equivalences. [

10. OPEN QUESTIONS AND CONCLUDING REMARKS

We close this paper by discussing some questions raised by the above results.

First, recall that a cardinal x is superhuge if there is a proper class of cardinals A with the
property that k is huge with target A. In order to study principles of structural reflection
related to superhugeness, Proposition 8.4 suggests to study cardinals x that are weakly
l-exact for a proper class of cardinals A. By Corollary 5.5, this property is equivalent to
the assumption that the principle IT;-ESR(k, A) holds for a proper class of cardinals .
Therefore, it is natural to ask whether a variation of Theorem 1.7 can be proven for these
cardinals.

Question 10.1. Are the following statements equivalent for every cardinal k and every
natural number n > 09

(i) & is the least cardinal that is weakly parametrically n-exact for a proper class of
cardinals .

(ii) K is the least cardinal with the property that 11,,-ESR(k, X) holds for a proper class
of cardinals \.

Our next question deals with the exact position of n-exact and weakly n-exact cardinals
in the large cardinal hierarchy. By Corollary 8.2 and Proposition 8.9, these notions are
properly contained in the interval given by almost hugeness and almost 2-hugeness. More-
over, Corollary 8.5 shows that hugeness is strictly stronger than weak 1-exactness. Finally,
Proposition 8.6 implies that, if  is the least huge cardinal, then ¥o-ESR(k, \) fails for all
A > k. These results leave open the precise relationship between hugeness and exactness,
and motivate the following question:

Question 10.2. Does the consistency of the theory ZFC + “there exists a huge cardinal’
imply the consistency of the theory ZFC + “Yo-ESR(k) holds for some cardinal K7 ¢

The results of [For09, Section 2.2.1] might provide tools to derive a negative answer to
this question.

We finally discuss some questions left open about the infinite sequential versions of exact
structural reflection principles introduced in Section 9. In the light of Proposition 9.5, it
is natural to ask whether the consistency of principles of the form Zn—ESR(X) for infinite
sequences X of cardinals and natural numbers n > 1 can be established from some very
strong large cardinal assumption (like ZFC + ” There exists an 10-cardinal”), or whether
these principles are outright inconsistent with ZFC.

Question 10.3. Does ZFC prove that the principle ZQ—ESR(X) fails for every strictly in-
creasing sequence A of cardinals of length w?

However, if we only assume ZF and & is a Reinhardt cardinal, witnessed by an elementary
embedding j : V' — V, then for every natural number n > 0, the critical sequence A =
(\i | i <w), given by \; = j¢(crit(j)), witnesses that the principle IT,,(Vy,)-ESR(A) holds.

Finally, as noted in the discussion following Theorem 9.8, our techniques do not allow us
to generalize Theorem 1.7 to principles of the form ESR(A) for infinite sequences A. This
motivates the following question:

—

Question 10.4. If k is the least cardinal with the property that IL,-ESR(X) holds for some
strictly increasing sequence \ of cardinals of length w with minimum kK, is k weakly para-
metrically n-exact for some strictly increasing sequence of cardinals greater than k of length
w?
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