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Abstract. We study the influence of strong forcing axioms on the complexity

of the non-stationary ideal on ω2 and its restrictions to certain cofinalities. Our
main result shows that the strengthening MM++ of Martin’s Maximum does

not decide whether the restriction of the non-stationary ideal on ω2 to sets of

ordinals of countable cofinality is ∆1-definable by formulas with parameters
in H(ω3). The techniques developed in the proof of this result also allow us

to prove analogous results for the full non-stationary ideal on ω2 and strong

forcing axioms that are compatible with CH. Finally, we answer a question
of S. Friedman, Wu and Zdomskyy by showing that the ∆1-definability of the

non-stationary ideal on ω2 is compatible with arbitrary large values of the

continuum function at ω2.

1. Introduction

The fact that closed unbounded subsets generate a proper normal filter, the club
filter on κ

Clubκ = {A ⊆ κ | ∃C ⊆ A closed and unbounded in κ},
is one of the most important combinatorial properties of uncountable regular cardi-
nals κ. The study of the structural properties of these filters and their dual ideals,
the non-stationary ideal on κ

NSκ = {A ⊆ κ | ∃C closed and unbounded in κ with A ∩ C = ∅}
plays a central role in modern set theory.

In [23] and [24], Mekler, Shelah and Väänänen initiated the study of the complex-
ity of club filters and non-stationary ideals, leading to various results establishing
interesting connections between the complexity of these objects and their struc-
tural properties. Given an uncountable regular cardinal κ, it is easy to see that
both Clubκ and NSκ are definable by a Σ1-formula with parameter κ, i.e. there
exist Σ1-formulas ϕ0(v0, v1) and ϕ1(v0, v1) such that Clubκ = {A | ϕ0(A, κ)} and
NSκ = {A | ϕ1(A, κ)}. The results of [24] show that under CH, the ∆1(H(ω2))-
definability of NSω1

(i.e. the assumption that NSω1
= {A | ψ1(A, z)} holds for

some Π1-formula ψ(v0, v1) and some z ∈ H(ω2)) is equivalent to several interesting
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combinatorial and model-theoretic assumptions about objects of size ω1. In partic-
ular, it is shown that this definability assumption is equivalent to the existence of
a so-called canary tree, a tree of height and cardinality ω1 without cofinal branches
that has specific properties with respect to the ordering of such trees under order-
preserving embeddings. Since the results of [23] show that the existence of a canary
tree is independent of ZFC+CH, it follows that this theory is not able to determine
the exact complexity of NSω1

.
The above results were later generalized to higher cardinals. If S is a stationary

subset of an uncountable regular cardinal κ, then we let NS � S = NSδ ∩ ℘(S)
denote the restriction of the non-stationary ideal on δ to S. Given infinite regular
cardinals λ < κ, we set Sκλ = {α < κ | cof(α) = λ}. In addition, if m < n < ω, then
we write Snm instead of Sωnωm . Results of Hyttinen and Rautila in [13] showed that if κ
is an infinite regular cardinal in a model of the GCH, then, in a cofinality-preserving

forcing extension, the set NS � Sκ
+

κ is ∆1(H(κ++))-definable. Furthermore, in [10],
S. Friedman, Wu and Zdomskyy showed that for every successor cardinal in Gödel’s
constructible universe L, there is a cardinality-preserving forcing extension of L in
which NSκ is ∆1(H(κ+))-definable. These results can be easily used to show that
the complexity of the non-stationary ideal and its restriction is not determined by
ZFC (see Lemma 1.1 and the subsequent discussion below). Finally, recent work
also unveiled several interesting consequences of the ∆1(H(κ+))-definability of re-
striction of NSκ at higher cardinals κ. In particular, this set-theoretic assumption
was shown to be closely connected to model-theoretic questions dealing with She-
lah’s Classification Theory and the complexity of certain mathematical theories
(see, for example, [8, Theorem 64]).

The above results strongly motivate the question whether canonical extensions of
ZFC decide more about the complexity of non-stationary ideals, and this question
turns out to be closely connected to important recent developments in set theory. In
[8], S. Friedman, Hyttinnen and Kulikov showed that, in the constructible universe
L, the sets of the form NS � S for some stationary subset S of an uncountable
regular cardinal κ are not ∆1(H(κ+))-definable. Using the notion of local club
condensation (see [7]), it is possible to extend this conclusion to larger canonical
inner models. In another direction, S. Friedman and Wu observed in [9] that strong
saturation properties of the non-stationary ideal on ω1, i.e. the assumption that
the poset ℘(ω1)/NSω1

has a dense subset of cardinality ω1, imply the ∆1(H(ω2))-
definability of NSω1

. Results of Woodin in [26, Chapter 6] show that NSω1
pos-

sesses these properties in certain forcing extensions of determinacy models. Finally,
Schindler and his collaborators recently studied the question whether forcing axioms
determine the complexity of NSω1

. In [19], Larson, Schindler and Wu showed that
Woodin’s Axiom (∗) (see [26, Definition 5.1]) implies that NSω1

is not ∆1(H(ω2))-
definable. In combination with recent results of Asperó and Schindler in [1], this
shows that MM++, a natural strengthening of Martin’s Maximum, implies that
NSω1

is not ∆1(H(ω2))-definable.
The work presented in this paper is motivated by the question whether strong

forcing axioms determine the complexity of the non-stationary ideal on ω2 and its
restrictions. The following result from [21] shows that all extensions of ZFC that are
preserved by forcing with <ω2-directed posets are compatible with the assumption
that for every stationary subset S of ω2, the set NS � S is not ∆1(H(ω3))-definable.
In particular, the results of [4], [17] and [18] show that this statement is compatible
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with all standard forcing axioms, like MM++. The lemma follows directly from
a combination of [21, Theorem 2.1], showing that no ∆1

1-definable set (see [20,
Definition 1.2]) separates Clubκ from NSκ in the given model of set theory, and [20,
Lemma 2.4], showing that ∆1

1-definability coincides with ∆1(H(κ+))-definability at
all uncountable regular cardinals κ.

Lemma 1.1. Let κ be an uncountable cardinal with κ<κ = κ and let G be Add(κ, κ+)-
generic over V. In V[G], no ∆1(H(κ+))-definable subset of ℘(κ) separates Clubκ
from NSκ, i.e. no set X definable in this way satisfies Clubκ ⊆ X ⊆ ℘(κ) \NSκ.

Note that, if S is a stationary subset of an uncountable regular cardinal κ,
then NS � S separates Clubκ from NSκ. This shows that, in Add(κ, κ+)-generic
extensions, sets of the form NS � S for stationary subsets S are not ∆1(H(κ+))-
definable.

In contrast, we will prove the following theorem that shows that strong forcing
axioms like MM++ are also compatible with the existence of a ∆1(H(ω3))-definable
set that separates the club filter on ω2 from the corresponding non-stationary ideal.
The proof of this result is based on a detailed analysis of the preservation properties
of a variation of a forcing iteration constructed by Hyttinen and Rautila in the
consistency proofs of [13]. Our construction will also allow us to produce such
models with arbitrary large 2ω2 . See Section 2 for the meaning of the “+µ” versions
of forcing axioms.1

Theorem 1.2. Let FA denote any one of the following forcing axioms:

• MM+µ, where µ is a cardinal and 0 ≤ µ ≤ ω1; or
• PFA+µ, where µ is a cardinal and 1 ≤ µ ≤ ω1.

Assume that FA holds, and let θ be a cardinal with θω2 = θ. Then there exists a
<ω2-directed closed, cardinal-preserving poset P with the property that whenever G
is P-generic over V, then, in V[G], the axiom FA still holds, 2ω2 = θ and the set
NS � S2

0 is ∆1(H(ω3))-definable.

We will also apply the techniques developed in the proof of the above result
to forcing axioms that are compatible with the continuum hypothesis, focusing
on the axiom FA+(σ-closed) and the subcomplete forcing axiom SCFA introduced
by Jensen in [16]. Note that both axioms are preserved by <ω2-directed closed
forcings (see [4] and [18]) and hence Lemma 1.1 above already shows that they are
compatible with the assumption that no ∆1(H(ω3))-definable set separates Clubω2

from NSω2
.

Theorem 1.3. Let FA denote either the axiom SCFA or the axiom FA+(σ-closed).
Assume that 2ω = ω1, 2ω1 = ω2 and FA holds. Let θ be a cardinal satisfying
θω2 = θ. Then there exists a <ω2-directed closed, cardinal-preserving poset P with
the property that whenever G is P-generic over V, then, in V[G], the axiom FA still
holds, 2ω2 = θ and the set NSω2

is ∆1(H(ω3))-definable.

This theorem also provides an affirmative answer to [10, Problem 3.3] posed by
S. Friedman, Wu and Zdomskyy, by showing that the ∆1-definability of NSω2 is
compatible with 2ω2 ≥ ω5.

1In keeping with the prevailing convention in the literature: MM+ refers to MM+1, but MM++

refers to MM+ω1 , not to MM+2 (and similarly for PFA and other forcing axioms).
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2. Preliminaries

This section covers well-known results, mostly related to the notions of internal
approachability and Shelah’s Approachability Ideal.

First we recall the “plus” versions of forcing axioms, which were first introduced
by Baumgartner [2] (though the prevailing notation has changed somewhat since
then). If Γ is a class of posets and µ is a cardinal, FA+µ

(
Γ
)

states that for every
poset P ∈ Γ, for every collection D of size ω1 of dense subsets of P and for every
sequence 〈σξ | ξ < µ〉 of P-names for stationary subsets of ω1, there is a D-generic
filter g on P with the property that the set {α < ω1 | ∃p ∈ g p 
P “ α̌ ∈ σξ ”} is
stationary in ω1 for every ξ < µ. If Γ is the class of posets that preserve stationary
subsets of ω1, we write MM+µ instead of FA+µ(Γ); and, as mentioned earlier,
MM++ refers to MM+ω1 , not to MM+2. Similar comments apply to the class of
proper posets and PFA.

Definition 2.1. Let P be a poset and let W ≺ (H(θ),∈,P) for some sufficiently
large regular cardinal θ.

(1) A condition p ∈ P is a (W, P)-master condition if

W [G] ∩V = W

holds whenever G is P-generic over V with p ∈ G.
(2) A set g is (W, P)-generic if g ⊆ P ∩ W , g is a filter on P ∩ W , and

D ∩ g 6= ∅ for every D ∈W that is a dense subset of P.2

(3) A condition p ∈ P is a (W, P)-total master condition if the set

{r ∈ P ∩W | p ≤P r}
is a (W,P)-generic filter.

The following result is well-known:

Lemma 2.2. Let P be a poset, let W ≺ (H(θ),∈,P), let µ be an ordinal with

µ ⊆ W , and let ḟ ∈ W be a P-name for a function from µ to the ground model V.
If p is a (W,P)-total master condition and G is P-generic over V with p ∈ G, then

ḟG ∈ V.

Proof. Fix a (W,P)-total master condition p and a filter G on P that is generic
over V and contains the condition p. Let g = {r ∈ P ∩W | p ≤P r} denote the
(W,P)-generic filter induced by p. Then G ∩W is a (W,P)-generic filter extending
g and therefore standard arguments show that G ∩W = g. By elementarity, there
is a sequence 〈Aξ | ξ < µ〉 ∈ W of maximal antichains in P with the property that

for every ξ < µ, each condition in Aξ decides the value of ḟ at ξ. Since µ ⊆ W ,
this shows that for all ξ < µ, the unique condition in Aξ ∩ g decides the value of

ḟ at ξ. But the sequence 〈Aξ | ξ < µ〉 and the filter g are both elements of V and

hence the function ḟG is also in the ground model. �

We state a definition that will be used extensively in the following arguments:

Definition 2.3. Given an infinite regular cardinal κ, we let IAκ denote the class

of all sets W with the property that there exists a sequence ~N = 〈Nα | α < κ〉 that
satisfies the following statements:

2Sometimes the requirement that g ⊆ W is dropped, but then one has the demand that
D ∩ g ∩W 6= ∅ holds for each dense D ∈W .
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(1) The sequence ~N is ⊆-increasing and ⊆-continuous.
(2) W =

⋃
{Nα | α < κ}.

(3) |Nα| < κ for all α < κ.

(4) Every proper initial segment of ~N is an element of W .

Remark 2.4. If ~N witnesses that W is an element of IAκ and W ≺ H(θ) for some

θ > κ, then κ ⊆ W . This is because we have ~N � α ∈ W for every α < κ, and the

domain of ~N � α, namely α, is definable from the parameter ~N � α.

In what follows, if τ is a regular uncountable cardinal, ℘τ (H) refers to the set of
all W ⊆ H with |W | < τ , and ℘∗τ (H) denotes the set

{W ∈ ℘τ (H) | W ∩ τ ∈ τ}.

The set ℘∗τ (H(θ)) contains a club in the sense of Jech (see [14]), but not necessarily
in the sense of Shelah (see [6]).

Remark 2.5. In the above situation, if W ∈ ℘∗τ (H(θ)), W ≺ H(θ), and x ∈ W
with |x| < τ , then x ⊆W .3

Lemma 2.6. If κ is a regular and uncountable cardinal, then IAκ is stationary in
℘κ+(H(θ)) for all sufficiently large regular θ.

Proof. Given a first-order structure A = (H(θ),∈, κ, . . .) in a countable language,

recursively construct a ⊆-continuous and ⊆-increasing sequence ~N = 〈Nα | α < κ〉
of elementary substructures of A of cardinality less than κ such that ~N � α ∈ Nα+1

for all α < κ. Then ~N witnesses that its union is contained in IAκ. �

Lemma 2.7. Let P be a poset, let κ < θ be infinite regular cardinals with P ∈ H(θ),
let C be a well-ordering of H(θ), let W ≺ (H(θ),∈,P,C) with W ∈ IAκ, and let
p ∈ P ∩W .

(1) If P is <κ-closed, then there exists a (W,P)-generic filter that contains p.
(2) If P is <κ+-closed, then there exists a (W,P)-total master condition below

p.

Proof. Let ~N = 〈Nα | α < κ〉 witness that W is an element of IAκ.
(1) Assuming that P is <κ-closed. Using the closure of P and the fact that each

Nα has cardinality less than κ, we can recursively construct a descending sequence
~p = 〈pα | α < κ〉 of conditions below p in P such that the following statements hold
for all α < κ:

(a) The condition pα+1 is the C-least element of P below pα that is an element
of every open dense set that belongs to Nα.4

(b) If α is a limit ordinal, then pα is the C-least lower bound of the sequence
〈p` | ` < α〉.

Then every proper initial segment of ~p is definable from a proper initial segment

of ~N , and hence every proper initial segment of ~p is in W . In particular, we know
that pα+1 ∈W for all α < κ. It follows that the filter in P generated by the subset
{pα | α < κ} is (W,P)-generic.

3Note that this could fail if W were allowed to have non-transitive intersection with τ .
4We do not require here that pα+1 is a total master condition for Nα. That is, if D ∈ Nα is

dense, the upward closure of pα+1 is only required to meet D, not necessarily D ∩Nα.
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(2) Now, assume that P is <κ+-closed and repeat the above construction of the
sequence ~p. Then ~p has a lower bound in P, and this lower bound is clearly a
(W,P)-total master condition. �

Next we discuss one variant of proper forcing.

Definition 2.8. Let κ be an infinite regular cardinal.

(1) A poset P is IAκ-proper if for all sufficiently large regular cardinals θ, all
W ≺ (H(θ),∈,P) with W ∈ IAκ and all p ∈ P∩W , there is a (W,P)-master
condition below p.

(2) A poset P is IAκ-totally proper if for all sufficiently large regular cardi-
nals θ, all W ≺ (H(θ),∈,P) with W ∈ IAκ and all p ∈ P ∩W , there is a
(W,P)-total master condition below p.

It is well-known that IAκ-proper posets preserve all stationary subsets of Sκ
+

κ

that lie in the approachability ideal I[κ+] defined below. Since we could not find a
reference for exactly what is needed in our arguments, we sketch the proof below.
Note that it is possible for IAκ-proper (even IAκ-totally proper) posets to destroy

the stationarity of some subsets of Sκ
+

κ (see [5]). So IAκ-total properness is, in
general, strictly weaker than κ+-Jensen completeness (defined in the next section),
because <κ+-closed forcings preserve all stationary subsets of κ+.

Definition 2.9 (Shelah). Let κ be an infinite regular cardinal.

(1) Given a sequence ~z = 〈zα | α < κ+〉 a sequence of elements of [κ+]<κ, an
ordinal γ < κ+ is called approachable with respect to ~z if there exists
a sequence

~α = 〈αξ | ξ < cof(γ)〉
cofinal in γ such that every proper initial segment of ~α is equal to zα for
some α < γ.

(2) The Approachability ideal I[κ+] on κ+ is the (possibly non-proper) nor-
mal ideal generated by sets of the form

A~z = {γ < κ+ | γ is approachable with respect to ~z }

for some sequence ~z ∈ κ+

([κ+]<κ).

Note that a subset X of κ+ is an element of I[κ+] if and only if there exists

some club D ⊆ κ+ and some sequence ~z ∈ κ+

([κ+]<κ) such that every γ ∈ D∩X is
approachable with respect to ~z. In the following, we will make use of several facts
about I[κ+]. Throughout this section, κ denotes a regular cardinal.

Lemma 2.10 ([5]). Suppose κ<κ ≤ κ+, and let 〈zα | α < κ+〉 be an enumeration
of [κ+]<κ.5 Define

M~z = {γ ∈ Sκ
+

κ | γ is approachable with respect to ~z }.
Then the following statements hold:

(1) M~z is a stationary subset of Sκ
+

κ .
(2) M~z ∈ I[κ+].

(3) M~z is a maximum element of I[κ+]∩℘(Sκ
+

κ ) mod NS, i.e. whenever S is a

stationary subset of Sκ
+

κ such that S ∈ I[κ+], then S\M~z is non-stationary.

5Note that such an enumeration exists by our cardinal arithmetic assumption.
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(4) If κ<κ = κ, then Sκ
+

κ \M~z is non-stationary. In particular, κ<κ = κ implies

that Sκ
+

κ ∈ I[κ+].

Proof. (1) Fix a sufficiently large regular cardinal θ and a well-ordering C of H(θ).
Fix W ∈ IAκ with W ≺ (H(θ),∈,C, ~z) and let 〈Nα | α < κ〉 be a sequence wit-
nessing that W ∈ IAκ. Given α < κ, set γα = sup(Nα ∩ κ+) < κ+. Then
~γ = 〈γα | α < κ〉 enumerates a cofinal subset of W ∩ κ+ of order-type κ and every
proper initial segment of this sequence is an element of W . Moreover, each proper
initial segment of ~γ is an element of [κ+]<κ, and hence an element of

W ∩ {zα | α < κ+} = {zα | α < W ∩ κ+}.

This shows that W ∩ κ+ is approachable with respect to ~z. Since Lemma 2.6
shows that there are stationarily-many W ∈ IAκ with W ≺ (H(θ),∈,C, ~z), these

computations allow us to conclude that M~z is a stationary subset of Sκ
+

κ .
(2) Since M~z ⊆ A~z ∈ I[κ+], the statement M~z ∈ I[κ+] holds trivially.

(3) Now, suppose that S ∈ I[κ+] is a stationary subset of Sκ
+

κ . By earlier
remarks, there is a sequence ~u = 〈uα | α < κ+〉 of elements of [κ+]<κ and club
subset D of κ+ with the property that every γ ∈ D ∩ S is approachable with
respect to ~u. Define

E = {γ ∈ S | Hull(H(θ),∈,~u,~z,D)(γ) ∩ κ+ = γ}.

Then S \ E is non-stationary. Fix γ ∈ E and set M(γ) = Hull(H(θ),∈,~u,~z,D)(γ).

Since γ ∈ S ∈ I[κ+], there is a cofinal sequence ~β = 〈β` | ` < κ〉 in γ such that

every proper initial segment of ~β appears in ~u � γ. But since ~z enumerates all of
[κ+]<κ, the fact that ~u, ~z ∈M(γ) ≺ (H(θ),∈) implies that for every α < γ there is
a k(α) < γ with uα = zk(α), i.e.

{uα | α < γ} ⊆ {zα | α < γ}.

In particular, every proper initial segment of ~β appears in ~z before γ and therefore
γ is approachable with respect to ~z. These computations show that S \M~z ⊆ S \E
is non-stationary in κ+.

(4) Now, assume that κ<κ = κ. Then |η<κ| = κ for every η < κ+ and hence there
is a function f : κ+ −→ κ+ with the property that for all η < κ+, every element
of [η]<κ is enumerated by ~z � f(η). Let D denote the club of all κ < γ < κ+ such
that

Hull(H(θ),∈,~z,f)(γ) ∩ κ+ = γ.

Pick γ ∈ D ∩ Sκ+

κ , and set W (γ) = Hull(H(θ),∈,~z,f)(γ). Fix a cofinal sequence ~α
in γ of order-type κ in γ, and some ξ < κ. Since cof(γ) = κ, there is η < γ with
α` < η for all ` < ξ and ~α � ξ = zζ for some ζ < f(η). Moreover, since η ∈ W (γ)
and |f(η)| ≤ κ ⊆ W (γ), elementarity implies that f(η) ∈ W (γ) and f(η) ⊆ W (γ).
Since ~z and ζ are both elements of W (γ), we can conclude that zζ ∈W (γ). Hence
γ is approachable with respect to ~z. �

The next few lemmas address stationary set preservation when GCH may fail to
hold.

Lemma 2.11. The class IAκ is projective stationary over

S = {T ⊆ Sκ
+

κ | T is stationary and T ∈ I[κ+]},
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i.e. if T ∈ S, then for every sufficiently large regular cardinal θ and every function
F : [H(θ)]<ω −→ H(θ), there exists W ∈ IAκ such that W ∩ κ+ ∈ T and W is
closed under F .

Proof. Fix T ∈ S. Then there is a club D in κ+ and a sequence ~z ∈ κ+

[κ+]<κ such
that every element of D ∩ T is approachable with respect to ~z.

Fix a regular ϑ with F ∈ H(ϑ), let C be a well-ordering of H(ϑ) and set

A = (H(ϑ),∈,C, ~z,D, F, T ).

Pick γ ∈ D ∩ T and W ≺ A with γ = W ∩ κ+, which is possible because T is

stationary. Since γ ∈ T ∩D, there is an increasing sequence ~β = 〈βα | α < κ〉 that

is cofinal in γ and has the property that every proper initial segment of ~β is equal to
zα for some α < γ. Since ~z ∈W and W ∩κ+ = γ, it follows that every proper initial

segment of ~β is an element of W . Recursively define a sequence ~N = 〈Nα | α < κ〉
as follows:

• Given α < κ, let Nα+1 be the C-least element of [H(θ)]<κ such that Nα+1 is
closed under F , 〈N` | ` ≤ α〉 ∈ Nα+1, α ⊆ Nα+1, and sup(Nα+1∩κ+) ≥ βα.
• If α < κ is a limit ordinal, then Nα =

⋃
{N` | ` < α}.

Set N =
⋃
{Nα | α < κ}. Then N ∈ IAκ, N is closed under F , and

sup(N ∩ κ+) ≥ sup
α<κ

βα = γ. (1)

On the other hand, for each α < κ, the sequence 〈N` | ` ≤ α〉 is definable in A
from the parameter 〈β` | ` ≤ α〉, which is an element of W by the above remarks.

Hence every proper initial segment of ~N is an element of W and, in particular, we
know that

sup(Nα ∩ κ+) < γ = W ∩ κ+

for all α < κ. It follows that sup(N ∩κ+) ≤ γ. Combined with (1), this shows that
sup(N ∩ κ+) = γ. Finally, since α ⊆ Nα+1 for all α < κ, it follows that κ ⊆ N and
hence we know that N ∩ κ+ is transitive. This allows us to conclude that

N ∩ κ+ = sup(N ∩ κ+) = γ,

completing the proof of the lemma. �

The following lemma is one way to salvage stationary set preservation in the
non-GCH context.

Lemma 2.12. Let P be a IAκ-proper poset and let T ⊆ Sκ
+

κ be stationary with
T ∈ I[κ+]. Then forcing with P preserves the stationarity of T .

Proof. Set τ = κ+. Let Ċ be a P-name for a club in τ , let p ∈ P and let θ
be a sufficiently large regular cardinal. Using Lemma 2.11, we find γ ∈ T and
W ≺ (H(θ),∈, p, Ċ,P) with W ∈ IAκ and W ∩ τ = γ. By our assumptions, there is
a (W,P)-master condition q below p in P. Let G be P-generic over V with q ∈ G.

Then W [G]∩τ = W ∩τ = γ. Moreover, since Ċ ∈W , we now know that ĊG∩W [G]

is unbounded in γ and hence γ ∈ ĊG ∩ T .
These computations show that, in the ground model V, we have

q 
P “ Ċ ∩ Ť 6= ∅”

for densely-many conditions q in P. �
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3. Generalizing a lemma of Jensen

The notion of IAκ-properness, defined in Section 2, is a non-GCH analogue of
the notion of κ-properness introduced in [13, Definition 3.4] . This notion will
be important to proving that tails of the iteration described in Section 4 do not
add cofinal branches to a certain tree, and that argument will closely follow the
corresponding arguments of [13].

However, IAκ-properness (in the case κ = ω1) is not sufficient for ensuring the
preservation of forcing axioms that we need for the proofs of our main results.
There are examples of IAω1

-proper forcings that destroy, for example, the Proper
Forcing Axiom.6 On the other hand, <ω2-directed closed posets preserve all stan-
dard forcing axioms (see [17] and [18]). In this section, we generalize a result of
Jensen, yielding a property that is forcing equivalent to <ω2-directed closure, but
often easier to verify than <ω2-directed closure.

In [16], Jensen defines a poset P to be complete if for every sufficiently large
θ, there are club-many W ∈ ℘ω1

(H(θ)) such that every (W,P)-generic filter has a
lower bound in P.7 He then proves:

Lemma 3.1 (Jensen). The following statements are equivalent for every poset P:

(1) The poset P is complete.
(2) The poset P is forcing equivalent to a σ-closed poset.

We will generalize a version of this lemma to larger cardinals, and, in fact,
characterize directed closure (see Lemma 3.6 below).8 However there are a few
technicalities to address. Note that for any W ∈ ℘ω1(H(θ)), the fact that W is
countable ensures that there always exist (W,P)-generic filters, regardless of what
P is. In particular, the phrase “ . . . every (W,P)-generic filter . . . ” is never vacuous,
if W is countable. Of course, for uncountable W , it may happen that (depending
on the poset P) there do not exist any (W,P)-generic filters at all; e.g. if W ≺ H(θ)
and ω1 ⊆W , then there does not exist a (W,Col(ω, ω1))-generic filter.

Definition 3.2. Given a regular uncountable cardinal τ , a poset P is τ -Jensen-
complete if the following statements hold for all sufficiently large regular cardinals
θ:

(1) For every p ∈ P, there are stationarily-many W ∈ ℘∗τ (H(θ)) with the prop-
erty that there exists a (W,P)-generic filter including p.

(2) For all but non-stationarily many W ∈ ℘∗τ (H(θ)), every (W,P)-generic filter
has a lower bound in P.9

Remark 3.3. Note that clause (1) of Definition 3.2 always holds true for τ = ω1,
and is hence redundant in that case. In particular, for τ = ω1, Definition 3.2 is
equivalent to Jensen’s definition of completeness.

6E.g. if 2ω1 = ω2 then there is a natural IAω1 -proper poset that forces the Approachability

Property to hold at ω2, hence destroys the Proper Forcing Axiom. This poset is just the natural
poset to shoot an ω1-club through the set M described in Lemma 2.10.

7Jensen’s notes say this is equivalent to a definition of Shelah in [25, Chapter 10].
8Note that σ-closure is equivalent to σ-directed closure, so the distinction is only important at

larger cardinals.
9Note that this clause is allowed to be vacuously true for some elements W of ℘∗

τ (H(θ)), even
for stationarily-many such sets W .
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Remark 3.4. In combination, the clauses (1) and (2) of Definition 3.2 imply that
the poset P is totally proper on a stationary subset of ℘∗τ (H(θ)); i.e. that there are
stationarily-manyW ∈ ℘∗τ (H(θ)) such that every condition in P∩W can be extended
to a (W,P)-total master condition in the sense of Definition 2.1. This conclusion,
however, is strictly weaker than τ -Jensen-completeness, since (for example with
τ = ω1) shooting a club through a bistationary subset of ω1 has the latter property
but is not <ω1-closed. In the case τ = ω2, if 2ω1 = ω2, then shooting an ω1-club
through the set M described in Lemma 2.10 is IAω1 -totally proper, but forces the
approachability property to hold at ω2. In particular, this forcing destroys the
Proper Forcing Axiom, and PFA is preserved by ω2-Jensen-complete forcings (by
[17] and Lemma 3.6 below).

Lemma 3.5. If κ is an infinite cardinal and P is a <κ-closed poset, then clause
(1) of Definition 3.2 holds for τ = κ+ and P.

Proof. This follows immediately from Lemmas 2.6 and 2.7. �

Next, we state our generalization of Jensen’s lemma. Its Corollary 3.11 will be
used in the proof of Theorem 4.2 below.

Lemma 3.6. Given a poset P and a successor cardinal τ , the following statements
are equivalent:

(1) The poset P is forcing equivalent to a <τ -directed closed poset.
(2) The poset P is forcing equivalent to a τ -Jensen-complete poset.

Proof. First, assume that P is <τ -directed closed. Then, in particular, P is <τ -
closed, and hence Lemma 3.5 ensures that clause (1) of Definition 3.2 holds for P.
But then the directed closure of P ensures that any (W,P)-generic filter for any
W ∈ ℘∗τ (H(θ)) has a lower bound in P, and hence clause (2) of Definition 3.2 holds
for P as well. This shows that P is τ -Jensen-complete.

Now, suppose that P is τ -Jensen-complete. Let F : [H(θ)]<ω −→ H(θ) generate
a club witnessing clause (2) of Definition 3.2, i.e. whenever W ∈ ℘∗τ (H(θ)) and
W is closed under F , then any (W,P)-generic filter has a lower bound. We may
assume that F also codes a well-ordering C of H(θ), i.e. if W is closed under F ,
then W ≺ (H(θ),∈,C)) holds.

Define a poset Q, whose conditions are pairs (M, g) satisfying the following
statements:

• M ∈ ℘∗τ (H(θ)).
• M is closed under F .
• g ⊆M ∩ P is an (M,P)-generic filter.

and whose ordering is given by:

(N,h) ≤Q (M, g) ⇐⇒ N ⊇M ∧ h ∩M = g.

Note that ≤Q is transitive and clause (1) of Definition 3.2 ensures that Q is
nonempty.

Claim 3.7. Q is <τ -directed closed.

Proof of Claim 3.7. Let {(Mi, gi) | i ∈ I} be a directed set of conditions in Q with
|I| < τ . Set M =

⋃
i∈IMi and g =

⋃
i∈I gi. We will show that (M, g) is a condition

in Q below all (Mi, gi).



FORCING AXIOMS AND THE COMPLEXITY OF NON-STATIONARY IDEALS 11

The regularity of τ ensures thatM ∈ ℘∗τ (H(θ)), andM is closed under F , because
each Mi is closed under F and the collection 〈Mi | i ∈ I〉 is ⊆-directed. In addition,
we have g ⊆ M ∩ P and g clearly has the property that D ∩ g 6= ∅ for every dense
D ∈ M , because each such D lies in some Mi and gi ⊆ g is an (Mi,P)-generic
filter. Finally, the fact that g is a filter follows easily from the fact that the given
collection is directed and each gi is a filter. This shows that (M, g) is a condition
in Q.

Now, fix i ∈ I. Then M ⊇ Mi, g ∩Mi is a filter on Mi ∩ P, and g ∩Mi ⊇ gi.
But since gi is (Mi,P)-generic, we know that gi is a ⊆-maximal filter on Mi ∩ P.
In particular, we can conclude that g ∩Mi = gi. This computation shows that
(M, g) ≤Q (Mi, gi). �

Claim 3.8. The poset Q is forcing equivalent to P.

Proof of Claim 3.8. It is easy to see that the boolean completions of τ -Jensen-
complete posets are themselves τ -Jensen-complete. Therefore, we may assume that
P is a complete boolean algebra. For each condition (M, g) in Q, let pM,g be the
P-greatest lower bound of g. This conditions exists and is non-zero, because M is
closed under F , g is (M,P)-generic, P is a complete boolean algebra, and because
of clause (2) of Definition 3.2. In the following, we will show that the map

e : Q −→ P; (M, g) 7−→ pM,g

is a dense embedding, which will finish the proof of the claim.
First, we show that e is order-preserving. Suppose that (N,h) ≤Q (M, g). Then

N ⊇ M and g = h ∩M . Since g ⊆ h and pN,h is a lower bound of h, it follows
that pN,h is also a lower bound of g. But pM,g is the greatest lower bound of g,
and hence

e(N,h) = pN,h ≤P pM,g = e(M, g).

Next, we show that e preserves incompatibility. Suppose (M0, g0) and (M1, g1)
are conditions in Q with the property that there is a condition p in P that extends
both e(M0, g0) and e(M1, g1). By clause (1) of Definition 3.2, there we can find
W ∈ ℘∗τ (H(θ)) such that p, g0, g1,M0,M1 ∈ W , W is closed under F , and there
exists a (W,P)-generic filter G with p ∈ G. Since W ∩ τ is transitive and |Mi| < τ
for all i < 2, it follows that M0 ∪M1 ⊆ W . Furthermore, since p is below both
pM0,g0 and pM1,g1 and Mi ∩ P ⊆ W ∩ P for all i < 2, the fact that g0 and g1 are
maximal filters in M0 ∩ P and M1 ∩ P, respectively, implies that G ∩M0 = g0 and
G ∩M1 = g1. Hence (W,G) is a condition in Q that lies below both (M0, g0) and
(M1, g1).

Finally, we show that the range of e is dense in P. Fix a condition p in P. By
clause (1) of Definition 3.2, there is a W ∈ ℘∗τ (H(θ)) such that W is closed under
F , and there exists a (W,P)-generic filter G with p ∈ G. Then (W,G) is a condition
in Q, and e(W, g) = pW,G is stronger than p. �

This completes the proof of the lemma. �

Corollary 3.9. Given a successor cardinal τ , all τ -Jensen-complete posets are
<τ -distributive. �

Remark 3.10. Another common way to verify the <τ -distributivity of a given
poset P is the following weaker version of τ -Jensen completeness: if for every p ∈ P,
there are stationarily-many W ∈ ℘∗τ (H(θ)) such that there is a (W,P)-total master
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condition below p (see Definition 2.1), then P is <τ -distributive. Note that this
weaker version would not suffice for our purposes, however, because we seem to
need <τ -directed closure (or a close approximation of it) to prove Theorem 4.2.

Corollary 3.11. Let κ be an infinite regular cardinal and set τ = κ+. If P is <κ-
closed poset with the property that for all but non-stationarily many W ∈ ℘∗τ (H(θ)),
every (W,P)-generic filter has a lower bound in P, then the poset P is forcing equiv-
alent to a <τ -directed closed poset.

Proof. By Lemma 3.5, the <κ-closure of P ensures that clause (1) of Definition
3.2 holds. Since clause (2) of Definition 3.2 holds by assumption, this implies P is
τ -Jensen-complete and Lemma 3.6 yields the desired conclusion. �

In particular, if a poset P satisfies the assumptions of the above corollary for
κ = ω1, then forcing with P preserves all standard forcing axioms.

4. The main technical result

In this section, we will prove the main technical result of our paper. It directly
extends the main results of [13] and [23]. In the next section, we will use it to prove
the two theorems stated in the introduction.

Definition 4.1. If κ be an infinite regular cardinal and let S ⊆ Sκ
+

κ . Then we let

T (S) denote the tree that consists of all t ∈ <κ+

κ+ such that dom(t) is a successor
ordinal, ran(t) ⊆ S, t is strictly increasing, and t is continuous at all points of
cofinality κ in its domain and is ordered by end-extension.

Note that, in the situation of the above definition, the tree T (S) has height κ+

and contains a cofinal branch if and only if the set S contains a κ-club.
We are now ready to state the aspired result.

Theorem 4.2. Given an infinite regular cardinal κ, there is a partial order P with
the following properties:

(1) P is κ+-Jensen complete.10

(2) P satisfies the (2κ)+-chain condition.

(3) If G is P-generic over V, then, in V [G], there is a subtree T of <κ
+

κ+ of
height κ+ without cofinal branches such that the following statements hold:

(a) If S is bistationary in Sκ
+

κ and Sκ
+

κ \ S contains a stationary set in
I[κ+], then there is an order-preserving function from T (S) to T .

(b) Assume that κ<κ ≤ κ+ holds in V. If M ∈ V is a maximum element

of I[κ+]∩ ℘(Sκ
+

κ ) mod NS in V,11 then the following statements hold
in V[G]:

(i) M is a maximum element of I[κ+] ∩ ℘(Sκ
+

κ ) mod NS .

(ii) If S is a bistationary in Sκ
+

κ and M \S is stationary, then there
is an order-preserving function from T (S) to T .

Note that the above theorem directly generalizes the main result of [13]: if

κ<κ = κ holds, then part (4) of Lemma 2.10 shows that Sκ
+

κ is an element of I[κ+],

and hence Sκ
+

κ is a maximum element of I[κ+] ∩ ℘(Sκ
+

κ ) mod NS . Now, if G is

10In particular, Lemma 3.6 shows that the poset P is forcing equivalent to a <κ+-directed

closed poset.
11Such a subset M exists by Lemma 2.10.
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P-generic over V and T ∈ V[G] is the tree given by the theorem, then there is an
order-preserving function from the tree T (S) to T in V[G] for every bistationary

subset S of Sκ
+

κ in V[G]. In particular, this shows that T is a κ-canary tree (see

[13, Definition 3.1]) in V[G], i.e. if S is a stationary subset of Sκ
+

κ and P is a <κ+-
distributive poset that forces κ+ \ S to contain a club subset, then forcing with P
adds a cofinal branch to T .

For the remainder of this section, fix an infinite regular cardinal κ. Until further
notice, we do not make any cardinal arithmetic assumptions. In the following,
we closely follow the arguments on pages 1684–1692 of Hyttinen-Rautila in [13],
which assumed GCH (in particular, their arguments heavily rely on the assumption
κ<κ = κ). We also follow their notation as closely as possible.

Definition 4.3 ([13]). We let Q0 denote the poset that consists of functions f

such that dom(f) ⊆ Sκ
+

κ , |dom(f)| ≤ κ, f(δ) is a function from δ to δ for all
δ ∈ dom(f), and whenever δ < η are both in the domain of f , then f(δ) * f(η),12

and whose ordering is given by reversed inclusion.

Proposition 4.4. The poset Q0 is <κ+-directed closed.

Proof. This statement follows directly from the fact that the union f of a coherent
collection of conditions in Q0 still has the required property that f(η) * f(β) for
all η < β in the domain of f , and, if the union is of size less than κ+, then the
domain of f has size less than κ+ too. �

Definition 4.5 ([13]). If G0 is Q0-generic over V, then, in V[G0], we define the

following subtree of <κ
+

κ+:

T (G0) = {h ∈ <κ+

κ+ | ∀δ ∈ Sκ
+

κ h � δ 6= (
⋃
G0)(δ)}.

In the following, we let Ṫ (Ġ0) denote the canonical Q0-name for T (G0).

Remark 4.6. In the situation of the above definition, the tree T (G0) has height

κ+, since for any β ∈ Sκ+

κ , the function f with domain β and constant value β + 1

has the property that for all δ ∈ Sκ+

κ with δ ≤ dom(f), the restriction f � δ is not
a function from δ to δ and hence cannot be the same as the function (

⋃
G0)(δ).

Lemma 4.7. If G0 is Q0-generic over V, then the tree T (G0) has no cofinal
branches in V[G0].

Proof. Work in V and assume, towards a contradiction, that a condition f in Q0

forces a Q0-name ḃ to be a cofinal branch through Ṫ (Ġ0). Using Proposition 4.4,

easy closure arguments allow us to find λ ∈ Sκ
+

κ , a function h : λ −→ λ and
a condition g below f in Q0 such that λ = sup(dom(g)) and g forces h to be the

restriction of ḃ to λ. By the definition of T (G0), this implies that h � δ 6= g(δ) holds
for all δ ∈ dom(g) and we can conclude that g ∪{(λ, h)} is a condition in Q0 below

g. But this condition forces that h is not contained in Ṫ (Ġ0), a contradiction. �

The following poset, again taken from [13], adds an order preserving function
from T (S) to T (G0). The role of clause 3(a)i is to add such a function with initial
segments. However, the role of clauses 3(a)ii through 3(a)vi is not obvious; roughly,

12Since f(δ) : δ −→ δ and f(η) : η −→ η, this just means that f(δ) and f(η) disagree at some
ξ < δ.
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with the exception of clause 3(a)iv, these properties allow us to verify κ+-Jensen
completeness by ensuring the existence of lower bounds for any generic filter over
any κ-sized elementary submodel. The role of clause 3(a)iv is to ensure that no
cofinal branch is added to T (G0).

Definition 4.8 ([13]). Let G0 be Q0-generic over V and work in an outer model

of V[G0]13 with the same bounded subsets of κ+ as V. Let S be a subset of Sκ
+

κ .

(1) An element t of T (G0) is an S-node if t[δ] * δ holds for all δ ∈ Sκ+

κ \ S.

(2) Given a partial function h : T (S)
part−−−→ T (G0), we define

o(h) = sup{dom(t) | t ∈ ran(h)}.
(3) We let P(S,G0) denote the unique poset defined by the following clauses:

(a) A condition in P(S,G0) is a pair (h,X) satisfying the following state-
ments:

(i) h is an order-preserving partial function of cardinality at most
κ from the tree T (S) to the tree T (G0) with the property that
dom(h) is closed under initial segments.

(ii) X is a partial function from κ+ to
⋃
{β+1κ+ | β < κ+} of car-

dinality at most κ such that

o(h) ∩ Sκ
+

κ ⊆ dom(X)

and
X(α) ⊆ (

⋃
G0)(α)

for all α ∈ dom(X) ∩ Sκ+

κ .
(iii) dom(h(t)) = sup(ran(t)) for all t ∈ dom(h).
(iv) h(t) is an S-node for all t ∈ dom(h).
(v) X(α) * h(t) for all t ∈ dom(h) and α ∈ dom(X).

(vi) If 〈tζ | ζ < κ〉 is a strictly increasing sequence of elements of
dom(h), then

⋃
ζ<κ h(tζ) ∈ T (G0).

(b) A condition (h,X) is stronger than a condition (k, Y ) if and only if
k ⊆ h and Y ⊆ X hold.

(4) The order of a condition p = (h,X) in P(S,G0), denoted by o(p), is defined
to be the ordinal

max{
⋃

dom(X),
⋃
{dom(h(t)) | t ∈ dom(h)}}.

Remark 4.9. In the above definition, the requirements on X(α) differ depending

on whether or not cof(α) = κ. If α ∈ Sκ+

κ ∩ dom(X), then X(α) is a proper initial
segment of the function (

⋃
G0)(α).14 In combination with requirement (3(a)v) in

the above definition, this shows that for all α ∈ dom(X) ∩ Sκ+

κ , there is an ordinal
ηα < α such that no node in the range of h can extend (

⋃
G0)(α) � ηα. On the

other hand, if α ∈ dom(X) with cof(α) < κ, then the only requirement on X(α) is
that nothing in the range of h is allowed to extend X(α).

As pointed out near the bottom of page 1684 of [13], the poset P(S,G0) is <κ-
closed. Requirements (3(a)iii) and (3(a)vi) of Definition 4.8 are mainly needed for
the proof of Lemma 4.10 below.

13I.e. a model of ZFC in which V[G] is a transitive class.
14The domain of X(α) is required to be a successor ordinal, so X(α) cannot be the entire

function (
⋃
G0)(α).
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Lemma 4.10. Let G0 be Q0-generic over V, let V1 be an outer model of V[G0]
with the same bounded subsets of κ+ as V, and let K be P(S,G0)V1-generic over

V1 for some set S that is bistationary in Sκ
+

κ in V1. In V1[K], define

hK =
⋃
{h | (h,X) ∈ K}

and
XK =

⋃
{X | (g,X) ∈ K}.

Let δ = (κ+)V. Then the following statements hold:

(1) hK is a total, order-preserving function from (T (S))V1 to (T (G0))V[G0]

whose range consists entirely of S-nodes.
(2) XK is a total function from δ to (<δδ)V.
(3) No element of ran(hK) extends an element of ran(XK).
(4) Suppose M is an outer model of V1[K] and ~y = 〈yζ | ζ < λ〉 is an increasing

sequence of nodes in ran(hK) in M . If we set f~y =
⋃
ζ<λ yζ , then

f~y � γ 6= (
⋃
G0)(γ)

for all γ ∈ (Sδκ)V.

Proof. Statement (1) is [13, Claim 3.11].15 Statement (2) is an easy density argu-
ment, and statement (3) follows directly from requirement 3(a)v of Definition 4.8.
For Statement (4), let M and ~y ∈M be as stated, and suppose for a contradiction

there exists γ < δ with cof(γ)
V

= κ and f~y � γ = (
⋃
G0)(γ).

Work in M . The statements (1), (2), and (3) are obviously upward absolute
from V1[K] to M . By Statement (2), we know that γ is in the domain of XK , and,
by applying Remark 4.9 to some condition in K whose second coordinate has γ in
its domain, we can find ργ < γ with XK(γ) = (

⋃
G0)(γ) � ργ . Note that, by the

definition of Q0, we know that (
⋃
G0)(γ) is a total function on γ, and therefore

our assumption implies that γ ≤ dom(f~y). Then ργ ∈ dom(f~y), and there is some
ζ∗ < λ with ργ ∈ dom(yζ∗). In particular, we know that

yζ∗ � ργ = f~y � ργ = (
⋃
G0)(γ) � ργ = XK(γ).

But this implies that yζ∗ ∈ ran(hK) extends XK(γ) ∈ ran(XK), contradicting
Statement (3). �

We now describe the iteration that will witness the poset from Theorem 4.2.
This is a slight variant of the iteration described at the bottom of page 1684 of [13].
The main differences are:

• The length of our iteration is at least 22κ . This is to allow for the case

when, in the ground model, the cardinal 2κ
+

is very large.
• More significantly, at a given stage α of our iteration, when considering the

set Ṡα given to us by the bookkeeping device, we only force with the poset
P(Ṡα, G0) if the statement

“Sκ
+

κ \ Ṡα contains a stationary set in I[κ+] ” (2)

holds in the corresponding generic extension of the ground model. This
will ensure (via an application of Lemma 2.12) that the complements of

15This was the only place in the argument where requirement (3(a)iii) from Definition 4.8
played a role. This requirement was used to fix the error from [23]. It ensures that the function

hK is total.



16 SEAN COX AND PHILIPP LÜCKE

the Ṡα’s remain stationary throughout the iteration, which in turn will be
the key to showing that the tree T (G0) has no cofinal branch in the final
model.

Remark 4.11. In the GCH setting of [13], requiring (2) to hold is no restriction at

all, since in that scenario, this statement holds for every set bistationary in Sκ
+

κ .
But, if κ<κ > κ holds, then the requirement (2) seems to be needed in order to
prove that the iteration adds no cofinal branch to the tree T (G0).

In the following, we fix a cardinal ε satisfying ε2κ = ε. Let C denote the set of all
partial functions from ε to H(κ+) of cardinality at most κ. Then our assumptions
on ε imply that |C| = ε. Next, let N denote the set of all partial functions from

Sκ
+

κ × 2κ to C. Again, our assumptions imply that |N | = ε and we can pick an
ε-to-one surjection b : ε −→ N .

Definition 4.12. We define

〈Pα, Q̇ξ | α ≤ ε, ξ < ε〉
to be a <κ+-support iteration satisfying the following clauses:

(1) Q̇0 is chosen in a canonical way that ensures that the map

i : Q0 −→ P1; q 7−→ 〈q̌〉
is an isomorphism.

(2) Assume that α ∈ [1, ε) has the property that the poset Pα is <κ+-distributive
and there exists a sequence 〈qγ,ξ | (γ, ξ) ∈ dom(b(α))〉 of conditions in Pα
such that the following statements hold:
• If (γ, ξ) ∈ dom(b(α)), then sprt(qγ,ξ) = dom(b(α)(γ, ξ)).
• If (γ, ξ) ∈ dom(b(α)), ` ∈ sprt(qγ,ξ) and b(α)(γ, ξ)(`) = x, then
qγ,ξ(`) = x̌.

If we define

Ḃα = {(γ̌, qγ,ξ) | (γ, ξ) ∈ dom(b(α))},

then there exists a Pα-name Ṡα for a subset of Sκ
+

κ such that the following
statements hold in V[G] whenever G is Pα-generic over V and G0 is the
induced Q0-generic filter over V:
(a) Q̇Gα = P(ṠGα , G0)V[G].

(b) If the set Sκ
+

κ \ ḂGα contains a stationary set in I[κ+], then ṠGα = ḂGα .

(c) If the set Sκ
+

κ \ ḂGα does not contain a stationary set in I[κ+], then

ṠGα = ∅.
(3) Assume that α ∈ [1, ε) has the property that the poset Pα is <κ+-distributive

and there exists no sequence of conditions in Pα with the properties listed
in (2). Then Ṡα = ∅ and Q̇Gα = P(ṠGα , G0)V[G] whenever G is Pα-generic
over V and G0 is the induced Q0-generic filter over V.

(4) If α ∈ [1, ε) has the property that the poset Pα is not <κ+-distributive, then

Q̇α is a Pα-name for a trivial poset.

Remark 4.13. We include the cases (2c) and (3) in the above definition of the name

Ṡα to simplify notation later on. Note that, since we have T (∅) = ∅, conditions
in P(∅, G0) always have trivial first coordinate, and the poset P(∅, G0) is forcing
equivalent to Add(κ+, 1).
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Throughout the rest of this paper, P refers to the poset Pε. Moreover, in order
to conform to the notation from [13], if G is Pα-generic over V for some α ≤ ε, then
we let G0 denote the induced Q0-generic filter over V.

Definition 4.14. A condition p in P is called flat if there exists a sequence
〈xα | i ∈ sprt(p)〉 with the property that xα ∈ H(κ+) and

p � α 
Pα “p(α) = x̌α ”

hold for all α ∈ sprt(p) with the property that Pα is <κ+-distributive.

Just as in [13], the flat conditions turn out to be dense in P, as we will see in
Lemma 4.20 below. Although the density of the flat conditions is not needed to
prove the κ+-Jensen-completeness of P in Lemma 4.20, it will be crucial for the
proofs of the following statements:

• The “tails” of the above iteration are proper with respect to IAκ (see
Lemma 4.28), which in turn is important for the proof that the tree T (G0)
has no cofinal branches in P-generic extensions of V (see Lemma 4.30).
• If 2κ = κ+, then P satisfies the κ++-chain condition.

The function p(f0, g) defined in Definition 4.15 below is a natural attempt to
form a flat condition out of a (W,P)-generic filter for some elementary substructure
W of size κ.

Definition 4.15. Suppose W ≺ (H(θ),∈,P) with |W | = κ ⊆W , and g ⊆ P∩W is
a (W,P)-generic filter in V.

(1) Set g0 = {q ∈ Q0 | ∃p ∈ g p(0) = q̌}.16

(2) Given 0 < α ≤ ε, we define

gα = {p � α | p ∈ g}.
(3) Given 0 < α < ε with the property that the poset Pα is <κ+-distributive,

let ċg,α, ḣg,α and Ẋg,α denote the canonical Pα-names with the property
that,17 whenever G is Pα-generic over V, then
• ċGg,α = {p(α)G | p ∈ g},
• ḣGg,α =

⋃
{h | ∃X (h,X) ∈ ċGg,α}, and

• ẊG
g,α =

⋃
{X | ∃h (h,X) ∈ ċGg,α}.

(4) If f0 is a condition in Q0 extending
⋃
g0, then we define a function p(f0, g)

with domain W ∩ ε by setting

p(f0, g) = 〈f0〉_〈pairPα(ḣg,α, Ẋg,α) | α ∈W ∩ [1, ε) with Pα <κ+-distributive〉,

where pairPα(ḣg,α, Ẋg,α) denotes the canonical Pα-name for the ordered pair

of ḣg,α and Ẋg,α.

Note that, in the last part of the above definition, the function p(f0, g) may or
may not be a condition in P. The following lemma shows how we can ensure that
p(f0, g) is a flat condition below every condition in g.

16This notation is chosen to keep in line with the notational convention from [13] of identifying

P1 with Q0 and referring to the induced Q0-generic filter by G0. Notice that
⋃
g0 is easily a

condition in Q0.
17The idea behind this definition is that ċg,α names the evaluation of the α-th component of g

after forcing with Pα over V, and ḣg,α and Ẋg,α name the unions of the left and right components

(respectively) of that α-th component of g.
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Lemma 4.16. Suppose W , g, and f0 are as in Definition 4.15. Then one of the
following statements holds:

(1) p(f0, g) is a flat condition in P that extends every element of g.
(2) There is an α ∈W ∩ [1, ε) such that the following statements hold:

(a) p(f0, g) � α is a condition in Pα that extends every element of gα.
(b) If τ ∈W is a Pα-name for a function from κ to the ordinals, then

p(f0, g) � α 
Pα “τ ∈ W̌ ”.

(c) There is a condition q in Pα below p(f0, g) � α with the property that
the following statements hold true in V[G], whenever G is Pα-generic
over V with q ∈ G:

(i) cof(W ∩ κ+)
V

= κ. In particular, we have W∩κ+ ∈ dom(
⋃
G0).

(ii) Every proper initial segment of (
⋃
G0)(W ∩ κ+) is an element

of W , and is an ṠGα -node.
(iii) No proper initial segment of (

⋃
G0)(W ∩ κ+) is an element of

ran(ẊG
g,α).

Proof. Set gε = g and, given β ≤ ε, let Φβ denote the statement asserting that
p(f0, g) � β is a flat condition in Pβ that lies below every element of gβ . Suppose
that Φε fails, i.e. that part (1) of the disjunctive conclusion of the statement of the
lemma fails. Let β ≤ ε be the least ordinal such that Φβ fails.

Claim 4.17. β is a successor ordinal and an element of W .

Proof of Claim 4.17. First, we have β > 0, because the 0th component of p(f0, g)
is f0, which is assumed to be a condition stronger than

⋃
g0, and g0 is a (W,Q0)-

generic filter. Now, assume, towards a contradiction, that β is a limit ordinal. Since
Φα holds for all α < β and since the support of p(f0, g) is contained in the κ-sized
set W ∩ε, it follows easily that p(f0, g) � β is a condition and is below every element
of gβ . Furthermore, for each α ∈W ∩ β, let

~xα = 〈xαξ | ξ ∈W ∩ α〉
witness flatness of p(f0, g) � α. Then for all α0 < α1 < β, it follows easily that
xα0

ξ = xα1

ξ holds for all ξ ∈ W ∩ α0. So the ~xα’s are coherent, and their union

witnesses flatness of p(f0, g) � β. This shows that Φβ holds, a contradiction.
The above computations yield an ordinal α with β = α+ 1. Assume, towards a

contradiction, that α /∈ W . Note that, if r ∈ g, then r ∈ W and, since sprt(r) is a
κ-sized element of W and κ ⊆ W , it follows that sprt(r) ⊆ W . Since α is not an
element of W , this shows that gα = gβ and p(f0, g) � β = p

(
f0, g) � α. But, since

Φα holds, this immediately implies that Φβ holds too, a contradiction. �

The above claim shows that there is an α ∈W ∩ [1, ε) with β = α+ 1. We claim
that this α witnesses part (2) of the conclusion of the lemma holds true. By the
minimality of β, we know that (2a) holds and Pα is <κ+-distributive. Moreover,
since p(f0, g) � α is a condition that extends the (W,Pα)-generic filter gα, part (2b)
holds by Lemma 2.2.

Claim 4.18. There is an x ∈ H(κ+) with

p(f0, g) � α 
Pα “p(f0, g)(α) = x̌”. (3)

Furthermore, if G is Pα-generic over V with p(f0, g) � α ∈ G, then the following
statements hold in V[G]:
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(1) The pair (ḣGg,α, Ẋ
G
g,α) satisfies all requirements to be a condition in the poset

P(ṠGα , G0), with the possible exception of requirement (3(a)vi) of Def-
inition 4.8. In particular, the following statements hold:
(a) Every element of ran(ḣGg,α) is an ṠGα -node (i.e. requirement (3(a)iv) of

Definition 4.8 is satisfied).

(b) No element of ran(ḣGg,α) extends an element of ran(ẊG
g,α) (i.e. require-

ment (3(a)v) of Definition 4.8 is satisfied).

(2) If the pair (ḣGg,α, Ẋ
G
g,α) is not a condition in P(ṠGα , G0), then the following

statements hold:
(a) cof(W ∩ κ+)

V
= κ. In particular, we have W ∩ κ+ ∈ dom(

⋃
G0)).

(b) Every proper initial segment of (
⋃
G0)(W ∩ κ+) is an element of W ,

and is an ṠGα -node.

(c) No proper initial segment of (
⋃
G0)(W∩κ+) is an element of ran(ẊG

g,α).

Proof of Claim 4.18. In order to make use of Lemma 4.10, it will be more conve-
nient to work with the transitive collapse of W instead of W itself. Let HW be
the transitive collapse of W , and let σ : HW −→ W ≺ H(θ) be the inverse of the
collapsing map. In the following, if b is a set, then we will write

b̄ = σ−1[b] ⊆ HW .

Note that b̄ = σ−1(b) holds for all b ∈W and we will frequently use this abbreviation
in the following arguments.

Since g is a (W,P)-generic filter, we know that ḡ is a P̄-generic over HW , and, in
particular, it follows that ḡγ is P̄γ-generic over HW for all γ ∈W ∩ ε. If we define

k = {q(ᾱ)ḡα | q ∈ ḡα+1} ⊆ HW [ḡα],

then k is σ−1(Q̇α)ḡα -generic over HW [ḡα] with HW [ḡα+1] = HW [ḡα][k].
Set δ = (κ+)HW , and note that δ = crit (σ), because |W | = κ ⊆ W . Since Φα

holds, we know that p(f0, g) � α is a condition in Pα that extends every element of
the (W,Pα)-generic filter gα. In particular, p(f0, g) � α it is a total master condition
for W . By Lemma 2.2, every Pα-name for a function from κ to the ordinals in W
is forced by p(f0, g) � α to be evaluated to an element of W . It follows that

HW ∩ κOrd = HW [ḡα] ∩ κOrd. (4)

Let hk be the union of the left coordinates of k and let Xk be the union of the
right coordinates of k. By (4), we can apply Lemma 4.10 with the ground model
HW and the outer model HW [ḡα] and derive the following statements:

• The function

hk : T (σ−1(Ṡα)ḡα)HW [ḡα] −→ σ−1(Ṫ (Ġ0))ḡ0

is order preserving and every element of its range is a σ−1(Ṡα)ḡα -node in
HW [ḡα].
• No element of ran(hk) extends an element of the range of the function

Xk : δ −→ (<δδ)HW .

Set x = (hk, Xk). In the following, we will show that p(f0, g) � α and x satisfy
(3), and p(f0, g) � α forces the other statements of the claim to hold true.

Let G be Pα-generic over V with p(f0, g) � α ∈ G. Work in V [G]. Since α ∈ W
and p(f0, g) � α is a W -total master condition that, in particular, extends every
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element of gα, it follows that W [G]∩V = W , G∩W = gα, and σ can be canonically
lifted to an elementary embedding

σ̂ : HW [ḡα] −→W [G] ≺ H(θ)[G].

satisfying

σ̂(τ ḡα) = σ(τ)G

for every P̄α-name τ in HW . Note that ran(σ̂) = W [G] holds.
Now, pick an element q of ḡα+1 ⊆ HW . By the definition of σ̂, we then have

σ̂(q(ᾱ)ḡα) = σ(q(ᾱ))G = (σ(q)(σ(ᾱ)))G = (σ(q)(α))G.

Since q ∈ ḡα+1 implies that σ(q) ∈ gα+1, we can now conclude that σ̂(q(ᾱ)ḡα) ∈ ċGg,α.

These computations show that σ̂[k] ⊆ ċGg,α.
Next, fix a condition p in g. Since g ∪ {α} ⊆ W = ran(σ), we then have

p̄ � (ᾱ+ 1) ∈ ḡα+1 and p̄(ᾱ)ḡα ∈ k. By the definition of σ̂, we now know that

p(α)G = σ(p̄(ᾱ))G = σ̂(p̄(ᾱ)ḡα) ∈ σ̂[k].

This shows that ċGg,α ⊆ σ̂[k] and, together with the above computations, we can
conclude that

σ̂[k] = ċGg,α. (5)

By (5) and the elementarity of σ̂, we also have σ̂[hk] = ḣGg,α and σ̂[Xk] = ẊG
g,α.

Note that conditions in σ−1(Q̇α)ḡα are elements of H(δ)HW [ḡα] and hence k is a
subset of H(δ)HW [ḡα]. Since the critical point of σ̂ is δ, it follows that k, hk and Xk

are all pointwise fixed by σ̂. In particular, we have

x = (hk, Xk) = (ḣGg,α, Ẋ
G
g,α). (6)

Since p(f0, g)(α) is, by definition, the Pα-name pairPα(ḣg,α, Ẋg,α), this completes
the proof of (3).

Part (1) of the claim follows by the properties of (hk, Xk) over HW [ḡα] discussed
above, together with the equality (6), elementarity of σ̂, and the fact that σ̂ fixes
bounded subsets of δ that lie in HW [ḡα]. For example, to verify requirement (3(a)iv)
of Definition 4.8, suppose t is in the range of hk. Then t is in the range of the left
coordinate of some condition in k ⊆ σ̂−1(P(ṠGα , G0)V[G]), and hence t is an σ̂−1(ṠGα )-
node in HW [ḡα]. By elementarity of σ̂ and the fact that σ̂ fixes y, it follows that

t is an ṠGα -node in V[G]. The remaining requirements of Definition 4.8, except for
requirement (3(a)vi), are easily verified for the pair displayed in (6) in a similar
manner.

Now, we prove that p(f0, g) � α forces the statements in part (2) of the claim.
Recall G is an arbitrary Pα-generic filter over V with p(f0, g) � α ∈ G. Assume that

the ordered pair (6) is not a condition in P(ṠGα , G0) in V[Gi]. In the following, we
show that the statements (2a), (2b), and (2c) of the claim hold true in V[G]. By
part (1) of the claim, it must be requirement (3(a)vi) of Definition 4.8 that fails. In
particular, there is an increasing sequence ~y = 〈yζ | ζ < κ〉 of nodes in the range of
hk in V[G] such that the function fȳ =

⋃
ζ<κ yζ is not an element of T (G0). Since

the elements of the range of hk are κ-sized objects in HW [ḡα] and hence in HW by
(4), this implies that the domain of f~y is at most δ = (κ+)HW . In summary, there

is some ordinal γ ∈ (Sκ
+

κ )V such that

V [G] |= “γ ≤ δ = (κ+)HW and f~y � γ = (
⋃
G0)(γ)”. (7)
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By part (4) of Lemma 4.10 – viewing HW as the ground model V, HW [ḡα] as
the outer model V1, k as the generic filter K, and V [G] as the outer model M
from the statement of that lemma – the ordinal γ cannot be strictly smaller than

δ, and hence we can conclude that γ = δ. But this implies that cof(W ∩ κ+)
V

=

cof(δ)
V

= cof(γ)
V

= κ, proving part (2a) of the claim.
In summary, we have shown that W ∩ κ+ = dom(f~y) and

f~y = (
⋃
G0)(W ∩ κ+). (8)

Since f~y is a union of functions in the range of hk, and (4) together with the fact
that the critical point of σ is δ imply that hk ⊆W , every proper initial segment of
f~y is an element of W . Furthermore, every proper initial segment of f~y is extended

by some y ∈ ran(hk), which is an ṠGα -node in V[G] by part (1) of the claim. Hence,

every proper initial segment of f~y is an ṠGα -node in V[G], and is an element of W .
Together with (8), this proves part (2b) of the claim.

Finally, to prove part (2c) of the claim, suppose γ ∈ dom(Xk), define η =
dom(Xk(γ)) and assume, towards a contradiction, that f~y � η = X̄(α). Note that
η < δ, because Xk ⊆ HW [ḡα]. In particular, we have yζ � η = Xk(α) for some
ζ < κ. But this contradicts the fact from part (1) that nothing in the range of hk
extends any function from the range of Xk. �

It remains to prove part (2c) of the lemma, which will essentially follow from
part (2) of Claim 4.18, though we first must dispense with a technicality. Recall
that Φα+1 fails, but Φα holds. Next, we observe that the failure of Φα+1 is due
to the function p(f0, g) � (α + 1) not being a condition at all (rather than being a
condition but failing to extend gα+1, or being a condition but failing to be flat):

Claim 4.19. Some condition in Pα below p(f0, g) � α forces that

p(f0, g)(α) = pairPα(ḣg,α, Ẋg,α) (9)

is not a condition in Q̇α.

Proof of Claim 4.19. Assume not, i.e. suppose that p(f0, g) � α forces that the pair

in (9) to be a condition in Q̇α. Since the components of the pair in (9) are given
by the union of the left and right coordinates of ċg,α, the fact that the ordering

of Q̇α is given reversed inclusion now implies that the condition p(f0, g) � α forces
p(f0, g)(α) to be stronger than every condition in ċg,α. Since the validity of Φα
implies that p(f0, g) � α is stronger than every condition in gα, it follows that

p(f0, g) � (α+ 1) = (p(f0, g) � α)_(α, pairPα(ḣg,α, Ẋg,α))

is stronger than every condition in gα+1.
Furthermore, by Claim 4.18, there is an xα ∈ V such that

p(f0, g) � α 
Pα “ x̌α = p(f0, g)(α)”.

Since Φα holds, we know that p(f0, g) � α is flat. Let 〈x` | ` ∈W ∩ α〉 witness
its flatness. Then the sequence 〈x` | ` ∈W ∩ (α+ 1)〉 witnesses the flatness of
p(f0, g) � (α + 1). In summary, p(f0, g) � (α + 1) is a flat condition below every
member of gα+1, contradicting the fact that Φα+1 fails. �

Part (2c) of the lemma now follows immediately from Claim 4.19, and part (2)
of Claim 4.18. �
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The above results now allow us to prove the following key lemma.

Lemma 4.20. The poset P is κ+-Jensen complete, and the flat conditions are
dense in P.

Before we prove this result, we make a couple of remarks.

Remark 4.21. In [13, Claim 3.13], a weaker version of Lemma 4.20, stating that
P is κ-proper, was proven. This concept was defined in [13, Definition 3.4] and only
makes sense under the assumption that κ<κ = κ. It, in particular, implies that the
given poset is <κ+-distributive.

In the non-GCH setting, in particular, when we do not assume κ<κ = κ, perhaps
the most natural analogue of κ-properness is our notion of IAκ-proper (Defininition
2.8). In fact, changing just a few words in the proof of [13, Claim 3.13] would
suffice to prove that (even without GCH) the poset P is proper for IAκ and is <κ+-
distributive. However, that conclusion does not suffice for applications in our main
theorems, since, for example, IAω1

-properness, even together with <ω2-strategic
closure, does not guarantee preservation of the Proper Forcing Axiom.18

We seem to need the stronger property of κ+-Jensen completeness (i.e. <κ+-
directed closure), which we prove in Lemma 4.20. This requires some reorganization
and strengthening of the argument of [13, Claim 3.13], but the main ideas of the
proof of Lemma 4.20 are very similar to the proof of [13, Claim 3.13].

Remark 4.22. Iterations using <κ+-support, where each iterand is <κ+-directed
closed, are themselves <κ+-directed closed. However, this fact seems to not be
applicable to the iteration Pε constructed in Definition 4.12. That is, it is not
clear if, say, the first non-trivial poset used of the form P(S,G0) is equivalent to
a <κ+-directed closed from the point of view of V [G0] (and we suspect it is not,
in general). The key to Lemma 4.20 (and to the analogous, but weaker [13, Claim
3.13]) is the flexibility in having G0 not be decided yet.

Proof of Lemma 4.20. First, we check κ+-Jensen completeness. Since each iterand
is <κ-closed and the iteration uses κ-sized supports, the entire iteration is <κ-
closed. So by Corollary 3.11, to show that P is κ+-Jensen complete, it suffices to
show that whenever

• W ≺ (H(θ),∈,P) with |W | = κ and W ∩ κ+ ∈ κ+, and
• g ⊆W ∩ P is a (W,P)-generic filter,

then g has a lower bound in P. So fix such a filter g for the remainder of the proof.
Given α ∈W ∩ [0, ε], define gα as in Definition 4.15. Set δ = W ∩ κ+. We consider
two cases:

Case 1: cof(δ) < κ. Set f0 =
⋃
g0, and consider the function p(f0, g) from Defini-

tion 4.15. We claim that p(f0, g) is flat condition and lies below all members of g.
Assume not. Then, by Lemma 4.16, there is an α ∈W ∩ [1, ε) such that p(f0, g) � α
is a condition below all conditions in gα, and there is some qα ≤Pα p(f0, g) � α in
Pα that forces all the statements in part (2c) of Lemma 4.16 to hold. In particular,
by part (2(c)i), we know that cof(δ) = cof(W ∩ κ+) = κ, contrary to our case.

18E.g. if 2ω1 = ω2, one can code IAω1 ∩ ℘ω2 (H(ω2)) as a stationary subset S of S2
1 . Then,

shooting an ω1-club through S with initial segments is IAω1 -totally proper, but kills PFA.
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Case 2: cof(δ) = κ. Since |W | = κ < δ, we can fix t : δ −→ δ such that t � κ is not
an element of W . Define

f0 = (
⋃
g0) ∪ {(δ, t)}.

Given γ ∈ δ ∩ Sκ+

κ , we have t � γ /∈ W and (
⋃
g0)(γ) ∈ W . In particular, we have

t � γ 6= (
⋃
g0)(γ) for all γ ∈ δ ∩ Sκ+

κ . Since cof(δ) = κ, this shows that f0 is a
condition in Q0 that extends

⋃
g0.

Let p(f0, g) be the function defined in Definition 4.15. We claim that p(f0, g) is
a flat condition that lies below every element of g. Assume not. Then, by Lemma
4.16, there is an α ∈W ∩ [1, ε) such that p(f0, g) � α is a condition in Pα, and that,
by part (2(c)ii) of that lemma, there is some condition q ≤Pα p(f0, g) � α such that

q forces that every proper initial segment of (
⋃
Ġ0)(δ̌) is an element of W . But

the 0th component of p(f0, g) � α, and hence of q, extends the function f0, and
therefore

q(0) 
P0 “(
⋃
Ġ0)(δ̌) = ť”.

In particular, every proper initial segment of t is an element of W , contrary to our
choice of t.

This completes the proof of κ+-Jensen completeness. To see that the flat con-
ditions are dense in P, let p0 be any condition in P. Fix W ≺ (H(θ),∈,P, p0) such
that |W | = κ ⊆ W and W ∈ IAκ. By Lemma 2.7 and the <κ-closure of P, there
exists a (W,P)-generic filter g such that p0 ∈ g. Note that W ∈ IAκ implies that
cof(W ∩ κ+) = κ. This shows that we can repeat the argument from the above
Case 2, define f0 as above and conclude that the function p(f0, g) is a flat condition
that is below every member of g and therefore also below p0. �

Lemma 4.20 and Corollary 3.11 now immediately yield the following corollary:

Corollary 4.23. The poset P is forcing equivalent to a <κ+-directed closed forcing.
In particular, it adds no new sets of size κ, and, in the case κ = ω1, it preserves
all standard forcing axioms, such as MM++. �

Remember that the order o(p) of a condition in a poset of the form P(S,G0) was
defined in part (4) of Definition 4.8.

Lemma 4.24. If p is a flat condition in P, then there exists β < κ+ with the
property that

p � α 
Pα “o(p(α)) ≤ β̌ ”

holds for all 1 ≤ α ∈ sprt(p).

Proof. Let 〈xα | α ∈ sprt(p)〉 be a sequence witnessing the flatness of p. For each
α ∈ sprt(p), pick βα < κ+ such that βα is not in the transitive closure of xα. Since
|sprt(p)| ≤ κ, we know that

β = sup{βα | α ∈ sprt(p)} < κ+

has the desired properties. �

Our next task is to prove that tails of the iteration behave nicely. But first we
need tail versions of Definition 4.15 and Lemma 4.16. Note that in Definition 4.25
below, since α0 ≥ 1, the entire filter G0 has already been determined. So unlike
Definition 4.15, the candidate for a condition below g will not involve any f0.
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Definition 4.25. Suppose that α0 ∈ [1, ε) and Gα0
is Pα0

-generic over V. Working
in V[Gα0 ], suppose that W ≺ (H(θ)[Gα0 ],∈,P/Gα0) with |W | = κ ⊆ W , and
g ⊆ W ∩ P/Gα0 is a (W,P/Gα0)-generic filter. For each α ∈ W ∩ [α0, ε), define

Pα/Gα0
-names ċg,α, ḣg,α and Ẋg,α analogously to Definition 4.15, and define a

function p(g) with domain W ∩ [α0, ε) by setting

p(g) = 〈pairPα/Gα0
(ḣg,α, Ẋg,α) | i ∈W ∩ [α0, ε)〉.

We now also have a tail variant of Lemma 4.16:

Lemma 4.26. Suppose α0 ∈ [1, ε) and Gα0 is Pα0-generic over V. Work in V [Gi0 ]
and suppose W and g are as in Definition 4.25. Given α ∈ [α0, ε], set

gα = {p � α | p ∈ g}.

Then one of the following statements holds:

(1) p(g) is a flat condition in P/Gα0 that extends every element of g.
(2) There is an α ∈W ∩ [α0, ε) such that the following statements hold:

(a) p(g) � α is a flat condition in Pα/Gα0
that is stronger than every

element of gα.
(b) If τ ∈ W is a Pα/Gα0-name for a function from κ to the ordinals,

then

p(g) � α 
Pα/Gα0
“τ ∈ W̌ ”.

(c) There is a condition q in Pα/Gα0 below p(g) � α with the property
that the following statements hold true in V[Gα0 , G], whenever G is
Pα/Gα0

-generic over V[Gα0
] with q ∈ G:

(i) cof(W ∩ κ+) = κ.
(ii) Every proper initial segment of (

⋃
G0)(W ∩ κ+) is an element

of W , and is an ṠGα -node.
(iii) No proper initial segment of (

⋃
G0)(W ∩ κ+) is an element of

ran(ẊG
g,α).

Proof. The proof is almost identical to the proof of Lemma 4.16, except we work
in V[Gα0 ] instead of V. We leave the details to the reader. �

Lemma 4.27. If α < ε and G is Pα-generic over V, then the tail of the iteration
P/G is <κ-closed in V[G].

Proof. Let 〈qξ | ξ < µ〉 be a descending sequence with µ < κ in P/G in V[G]. Since
P/G ⊆ P and Lemma 4.20 shows that Pα is <κ-closed in V, this sequence is an

element of V. Let Ġ denote the canonical Pα-name for the generic filter in V. Fix
a condition p in G such that

p 
Pα “Every condition in Ġ is compatible with q̌ξ in P̌”

holds in V for all ξ < µ. Work in V. Given ξ < µ, a standard density argument
now shows that

p 
Pα “ q̌ξ � α̌ ∈ Ġ”

and the separativity of Pα allows us to conclude that p ≤Pα q � α holds.
Fix a condition r below p in Pα and set

rξ = r_(qξ � [α, ε))
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for all ξ < µ. Then 〈rξ | ξ < µ〉 is a descending sequence of conditions in P,
and, by the proof of Lemma 4.20, this sequence has a lower bound rµ in P. Then
rµ � α ≤Pα r and rµ ≤P qξ for all ξ < µ.

By genericity, we can now find a condition q in P with the property that q � α ∈ G
and q ≤P qξ for all ξ < µ. But then we can conclude that q is a condition in P/G
in V[G] with q ≤P/G qξ for all ξ < µ. �

The proof of the following lemma is similar to the proof of [13, Claim 3.14], but
there are some subtle differences since we do not assume that κ<κ = κ. Roughly,
we replace their use of κ-properness with IAκ-properness (Definition 2.8) and verify
that the argument still goes through.

Lemma 4.28. If α0 < ε and G is Pα0
-generic over V, then the tail of the iteration

P/G is IAκ-totally proper in V[G].

Proof. For α0 = 0, the statement of the lemma follows immediately from Lemmas
2.7 and 4.20. Therefore, we from now on assume that 1 ≤ α0 < ε.

Let Gα0
be Pα0

-generic over V and work in V[Gα0
]. Let θ be a sufficiently large

regular cardinal, let C be a well-ordering of H(θ) = H(θ)V[Gα0
], let

W ≺ (H(θ),∈, α0,P/Gα0 ,C)

with W ∈ IAκ, and let p0 be a condition in W ∩ (P/Gα0
). In the following, we will

find a (W,P/Gα0
)-total master condition below p0. Define

t = (
⋃
G0)(W ∩ κ+),

which is well-defined because W ∈ IAκ implies that cof(W ∩ κ+) = κ.

Case 1: There exists ζ ∈ W ∩ κ+ with t � ζ /∈ W . Since Lemma 4.27 implies
that P/Gα0 is <κ-closed, we can apply Lemma 2.7 to find a (W,P/Gα0)-generic
filter g that includes p0. Let p(g) be the function defined in Definition 4.25 and
assume, towards a contradiction, that p(g) is not a condition in P/Gα0

that is
stronger than every element of g. Then, by part (2(c)ii) of Lemma 4.26, there is an
α ∈ W ∩ [α0, ε) and some condition in Pα/Gα0

below p(g) � α forcing that every
proper initial segment of (

⋃
G0)(W ∩κ+) is an element of W . But this implies that

every proper initial segment of t is an element of W , contrary to our case. This
allows us to conclude that p(g) is a (W,P/Gα0)-total master condition below p0.

Case 2: If ζ ∈W ∩ κ+, then t � ζ ∈W . Since W ∈ IAκ, there is a sequence

~D = 〈Dξ | ξ < κ〉

listing all open dense subsets of P/Gα0
that are elements of W , and such that every

proper initial segment of ~D is an element of W . Recursively define a descending
sequence ~p = 〈pξ | ξ < κ〉 of conditions in P/Gα0

as follows:

• Given ξ < κ, let p∗ξ be the C-least flat condition in P/Gα0
below pξ that

is an element of Dξ. Such a condition exists by Lemma 4.20 and the open
density of Dξ. By Lemma 4.24, there exists β < κ+ with

p∗ξ � α 
Pα “o(p∗ξ(α)) ≤ β̌ ”

for all 1 ≤ α ∈ sprt(p∗ξ). Given α ∈ [α0, ε), let ḟα and Ẏα denote the

canonical Pα/Gα0
-names with the property that

p∗ξ(α)G = (ḟGα , Ẏ
G
α )
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holds whenever G is (Pα/Gα0
)-generic over V[Gα0

] with p∗ξ � α ∈ G. Note

that, by the choice of β, for each α ∈ sprt(p∗ξ), the condition p∗ξ � α forces

that β is larger than all domains of elements of the range of ḟα, and larger
than all elements in the domain of Ẏα. In particular, if α0 ≤ α ∈ sprt(p∗ξ)

and G is (Pα/Gα0
)-generic over V[Gα0

] with p∗ξ � α ∈ G, then

(ḟGα , Ẏ
G
α ∪ {(β + 1, t � (β + 1))}) (10)

is a condition in Q̇Gα below p∗ξ(α)G.19 This shows that there is a condi-

tion pξ+1 below p∗ξ in P with sprt(pξ+1) = sprt(p∗ξ) and the property that

whenever α0 ≤ α ∈ sprt(pξ+1) and G is (Pα/Gα0
)-generic over V[Gα0

] with
p∗ξ � α ∈ G, then pξ+1(α)G is equal to the condition in (10).

Now, assume that pξ is an element of W . Then p∗ξ is obviously definable

in (H(θ)[Gα0 ],∈,P, Gα0 ,C) using the parameters pξ and Dξ, which are both
contained in W . Since p∗ξ ∈W , then β can also be taken to be an element

of W . Finally, the condition pξ+1 is definable from p∗ξ , β, and t � (β+1), all
of which are elements of W because of the case we are in. These arguments
show that pξ ∈W implies that pξ+1 ∈W .
• If ξ < κ is a limit ordinal, then we define pξ be the C-least lower bound of

the sequence 〈pζ | ζ < ξ〉 in P.20

Note that every proper initial segment of ~p is an element of W , because W
contains all proper initial segments of t and each proper initial segment of ~p is
definable in the structure (H(θ)[Gα0

],∈,C,P) using the parameter p0 and some
sufficiently long21 proper initial segment of t. Hence, not only is each pξ+1 an
element of Dξ, but is in fact an element of Dξ∩W . In particular, the set {pξ | ξ < κ}
generates a (W,P/Gα0

)-generic filter. Let g denote this filter, and let p(g) be the
function defined in Definition 4.25.

Now, assume, towards a contradiction, that p(g) is not a condition below every
member of g. Then by part (2(c)iii) of Lemma 4.26, there is an α ∈ W ∩ [α0, ε)
and a condition q in Pα/Gα0 below p(g) � α with the property that whenever
G is (Pα/Gα0

)-generic over V[Gα0
] with q ∈ G, then no proper initial segment

of t = (
⋃
G0)(W ∩ κ+) is an element of ran(ẊG

g,α). Since α ∈ W and the set
{pξ | ξ < κ} generates the (W,P/Gα0

)-generic filter g, we can find ξα < κ with
the property that α ∈ sprt(pξα+1). Then q ≤ pξα+1 � α. Let G be (Pα/Gα0

)-
generic over V [Gα0

] with q ∈ G. Work in V [Gα0
, G]. Since pξα+1 ∈ g, we know

that pξα+1(α)G ∈ ċGg,α and hence ẊG
g,α extends the right coordinate of pξα+1(α)G.

By construction, the range of the right coordinate of pξα+1(α)G contains a proper
initial segment of t, contradicting the properties of α and q.

Again, we can conclude that p(g) is a (W,P/Gα0
)-total master condition below

the condition p0. �

Corollary 4.29. Let G be P-generic over V, let α ∈ (0, ε), let Gα be the filter on

Pα induced by G, and let S = ṠGαα . Then (Sκ
+

κ \ S)V[Gα] is stationary in V [G].

19Recall Remark 4.9 showing that, for successor ordinals, the right coordinate of a condition

does not have to agree with G0).
20Such a lower bound exists by Lemma 4.27
21The length of this initial segment of t might depend on the given initial segment of ~p.
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Proof. First, if S = ∅, then the conclusion of the lemma holds trivially, because

Corollary 4.23 implies that (Sκ
+

κ )V[Gα] = (Sκ
+

κ )V[G]. In the other case, we know

that Sκ
+

κ \ S contains a stationary set in I[κ+] in V[Gα], and hence a combination

of Lemma 2.12, Corollary 4.23 and Lemma 4.28 ensures that Sκ
+

κ \ S remains
stationary in V[G]. �

Lemma 4.30. If G is P-generic over V, then the tree T (G0) has no cofinal branches
in V[G].

Our proof of this lemma is similar to the proof of [13, Claim 3.15], but we must
make the following changes:

• Whereas the proof of [13, Claim 3.15] makes use of <κ-closed elementary
submodels of size κ (whose existence requires the assumption κ<κ = κ), we
instead use elementary submodels in IAκ.
• We use Corollary 4.29 to ensure that the complement of each Ṡα is station-

ary in the final model (this is used to get the right analogue of statement
(8) on page 1691 of [13]).

Proof of Lemma 4.30. Let ḃ be a P-name for a function from κ+ to κ+. Assume,
towards a contradiction, that there is a condition p in P that forces ḃ to be a
cofinal branch through T (Ġ). Fix W ≺ (H(θ),∈,P, ḃ, p) with W ∈ IAκ. Set
δW = W ∩ κ+. By the <κ-closure of P and Lemma 2.7, there exists a (W,P)-
generic filter g containing p. By the (W,P)-genericity of g, the <κ+-distributivity

of P, and the fact that ḃ ∈ W , it follows that for every γ < δW , some condition pγ
in g decides the value of ḃ � γ. Define

t =
⋃
{s ∈ <κ+

κ+ | ∃γ < δW pγ 
P “ š = ḃ � γ̌ ”}. (11)

Then t is a function from δW to δW . Moreover, by the (W,P)-genericity of g and

the fact that ḃ is forced to be a branch through Ṫ (Ġ0), we know that

∀γ ∈ δW ∩ Sκ
+

κ ∃p ∈ g p 
P “ ḃ � γ 6= (
⋃
Ġ0)(γ)”. (12)

Hence, if we let g0 denote the 0-th component of the (W,P)-generic filter g, then
we have t � γ 6= (

⋃
g0)(γ) for all γ < δW . It follows that

f0 = (
⋃
g0) ∪ {(δW , t)}

is a condition in Q0.
Let p(f0, g) be the function defined in Definition 4.15. Then p(f0, g) is not a

condition in P that extends every element of g, because otherwise it would force
that ḃ � δW = t = (

⋃
Ġ0)(δW ) and hence it would also force that ḃ � δW /∈ Ṫ (Ġ0),

contradicting our assumptions on p.
In this situation, Lemma 4.16 yields an α ∈ W ∩ [1, ε) such that p(f0, g) � α

is a condition in Pα below every member of gα and there is a condition q below
p(f0, g) � α in Pα with the property that whenever G is Pα-generic over V with
q ∈ G, then every proper initial segment of (

⋃
G0)(δW ) is an element of W , and is

an ṠGα -node. Since the 0-th coordinate of q extends f0, we know that

q 
Pα “(
⋃
Ġ0)(δ̌W ) = ť”. (13)

Let HW denote the transitive collapse of W , and let σ : HW −→ W ≺ H(θ)
denote the inverse of the transitive collapsing map of W . Set ḡ = σ−1[g], ḡα =
σ−1[gα], P̄ = σ−1(P) and P̄α = σ−1(Pα).
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Let G be Pα-generic over V with q ∈ G. Since q extends every element of the
(W,Pα)-generic filter gα, it follows that G ∩W = gα, ḡα is P̄α-generic over HW ,
and the map σ can be lifted to an elementary

σ̂ : HW [ḡα] −→ H(θ)[G]

by setting σ̂(τ̄ ḡα) = (σ(τ̄))G for all P̄α-names τ̄ in HW . Moreover, we know that ḡ
is P̄-generic over HW and the function

b̄ = σ−1(ḃ)ḡ : δW −→ δW

is an element of HW [ḡ], but not necessarily an element of its inner model HW [ḡα].

Claim 4.31. t = b̄.

Proof of Claim 4.31. Fix γ < δW , and set s = t � γ. By earlier remarks, we
know that s ∈ W and, by the definition of t in (11), there is p ∈ g ⊆ W with

p 
P “ ḃ � γ̌ = š”. We now know that p, ḃ, γ, and s are elements of W = ran(σ),
and since crit (σ) = δW , it follows that σ fixes γ and s. The elementarity of σ now
implies that

σ−1(p) 
P̄ “σ−1(ḃ) � γ̌ = š”

holds in HW . Moreover, since p ∈ g, we have σ−1(p) ∈ ḡ and hence b̄ � γ = s holds
in HW [ḡ]. �

Let S̄ = σ−1(Ṡα)ḡα . By Corollary 4.29 and the elementarity of σ : HW −→ H(θ),
we know that (SδWκ \ S̄)HW [ḡα] remains stationary when going from HW [ḡα] to
HW [ḡ]. Since b̄ maps from δW to δW and (SδWκ \ S̄)HW [ḡα] is stationary in HW [ḡ],
there is an ` < δW such that the following statements hold in HW [ḡ]:

• cof(`) = κ.
• ` is closed under b̄.
• ` /∈ S̄.

Then b∗ = b̄ � ` maps from ` to `, and, by the <δW -distributivity of P̄ over
HW , we know that b∗ is an element of HW . Moreover, since crit (σ̂) = δW , we
have σ̂(b∗) = b∗. In addition, since ` = dom(b∗) ∈ (SδWκ \ S̄)HW [ḡα] and ` is closed
under b∗, we can conclude that HW [ḡα] believes that b∗ is not a S̄-node.22 Then the

elementarity of σ̂ : HW [ḡα] −→ H(θ)[G] implies that σ̂(b∗) = b∗ is not a ṠGα -node

in H(θ)[G]. By Claim 4.31, we now have b∗ = t � `. So t � ` is not a ṠGα -node,
contradicting our earlier arguments. �

We are now ready to complete the proof of the main technical result of this
paper.

Proof of Theorem 4.2. Let κ be an infinite regular cardinal and let P = Pε be the
poset constructed in Definition 4.12. Then Lemma 4.20 shows that part (1) of the
theorem holds.

Next, we prove part (2) of the theorem. We will prove that the poset P is (2κ)+-
stationarily layered (see [3, Definition 29]) in V, which, by [3, Lemma 4], implies
that P is (2κ)+-Knaster. A poset R is λ-stationarily layered if for some sufficiently
large regular cardinal θ, there are stationarily-many M ∈ ℘∗λ(H(θ)) such that M∩R
is a regular suborder of R. Equivalently, we can demand that every condition p in

22Recall from Definition 4.8 that a function s is an S-node if no element of Sκ
+

κ \ S is closed
under s
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R has a reduction into M ∩ R, i.e. there exists q ∈ M ∩ R such that all extensions
of q in M ∩ R are compatible with p in P.

For all sufficiently large regular cardinals θ, the set

R = {M ∈ ℘∗(2κ)+(H(θ)) | M ≺ H(θ), κM ⊆M, P ∈M}

is stationary in ℘(2κ)+(H(θ)). We prove that R witnesses the (2κ)+-stationary
layeredness of P. Fix M ∈ R and a condition p in P. By the density of flat
conditions in P, we we may assume that there exists a sequence 〈xα | α ∈ sprt(p)〉
that witnesses that p is flat. Furthermore, we may assume that

p(α) = x̌α ⇐⇒ p(α) 6= ∅̌ ⇐⇒ p � α 
Pα “ x̌α ∈ Q̇α ”

holds for all α ∈ sprt(p), because redefining p in this way results in a condition
equivalent to p. Set s = M ∩ sprt(p) and define q = p � s.

Claim 4.32. The condition q is a reduction of p into M ∩ P.

Proof of Claim 4.32. First, we verify that q is an element of M . Since we have
xα ∈ H(κ+) ⊆ M for all α ∈ sprt(p), the closure properties of M imply that the
sequence 〈xα | α ∈ s〉 is an element of M . Since the condition q is definable from
the sequence 〈xα | α ∈ s〉, it follows that q is also an element of M .

Next, assume r is a condition in M ∩ P below q. Let p ∧ r denote the natural
amalgamation of p and r, i.e. we have (p ∧ r)(β) = r(β) for all β ∈ sprt(r), and
(p∧ r)(j) = p(β) for all β ∈ sprt(p) \ sprt(r). Since p∧ r is clearly a function whose
support has size at most κ, it is a condition in P. We verify that p ∧ r is below
both p and r in P by checking inductively that (p ∧ r) � β is below both p � β and
p � β for all β ≤ ε. Suppose this statement holds at all α < β ≤ ε. Clearly, if β is
a limit ordinal, then it holds at β as well. Hence, we may assume that β = α + 1
and that (p ∧ r) � α lies below both p � α and r � α. If α is not in the support of
either p or r, then the above statement trivially holds at β as well. Hence, we have
to consider the following two cases:

Case 1: α ∈ sprt(r). By definition of the condition p∧r, we have (p∧r)(α) = r(α)
and r ≤P q implies that r � α 
Pα “r(α) ≤Q̇α q(α)”. Since (p ∧ r) � α ≤Pα r � α by
our induction hypothesis, this shows that

(p ∧ r) � α 
Pα “(p ∧ r)(α) ≤Q̇α q(α)”. (14)

Moreover, since r ∈ M and |sprt(r)| ≤ κ ⊆ M , we have α ∈ sprt(r) ⊆ M . In
particular, if α ∈ sprt(p), then α ∈ s and hence p(α) = q(α). In combination with
(14), this yields

(p ∧ r) � α 
Pα “(p ∧ r)(α) ≤Q̇α p(α)”. (15)

In the other case, if α /∈ sprt(p), then (15) holds trivially.

Case 2: α ∈ sprt(p)\sprt(r). By the definition of (p∧r), we have (p∧r)(α) = p(α).
Since α /∈ sprt(r), it follows trivially that

(p ∧ r) � α 
Pα “(p ∧ r)(α) ≤Q̇α p(α) ≤Q̇α r(α)”.

These computations show that q is a reduction of p into M ∩ P. �

This concludes the proof that the poset is P is (2κ)+-stationarily layered, and
hence (2κ)+-Knaster.

We now verify part (3a) of the theorem. Let G be P-generic over V. Suppose

S is a bistationary subset of Sκ
+

κ in V[G] such that Sκ
+

κ \ S contains a stationary
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set T in I[κ+] in V[G]. Pick a club D in κ+ and a κ+-sequence ~z of sets from
[κ+]<κ witnessing that T is an element of I[κ+] in V[G]. A combination of Lemma
4.20 and part (2) of this theorem now shows that there is a subset P ∈ V of

Sκ
+

κ × 2κ and a sequence 〈qγ,ξ | (γ, ξ) ∈ P 〉 ∈ V of flat conditions in P such that

ḂG = S, where Ḃ is the P-name {(γ̌, qγ,ξ) | (γ, ξ) ∈ P}. Pick an element s of the
set N defined before Definition 4.12 such that dom(s) = P and, if (γ, ξ) ∈ P , then
dom(s(γ, ξ)) = sprt(qγ,ξ) and qγ,ξ(`) = x̌ for all ` ∈ dom(s(γ, ξ)) with b(γ, ξ)(`) =
x. By our assumptions on ε and b, part (2) of this theorem allows us to find

0 < α < ε with the property that Ḃ is a Pα-name, b(α) = s and ~z,D, T ∈ V[Gα],
where Gα is the filter on Pα induced by G. Clearly, the fact that T is bistationary
in V[G] implies that T is bistationary in V[Gα]. Moreover, since V[G] and V[Gα]
have the same κ-sequences of ordinals, every element of D∩T is also approachable

with respect to ~z in V[Gα]. Hence, we know that Sκ
+

κ \ S contains a stationary set

in I[κ+] in V[Gα]. Since our choice of α ensures that Ḃα = Ḃ, we can conclude

that ṠGαα = ḂGαα = ḂG = S and hence forcing with Q̇Gαα over V[Gα] adds an
order-preserving function from T (S) to T (G0).

Finally, we prove part (3b) of the theorem. Hence, assume that κ<κ ≤ κ+ holds
in V and fix an enumeration ~z = 〈zξ | ξ < κ+〉 of all elements of [κ+]<κ in V. By

Lemma 2.10, the set M of all γ ∈ Sκ+

κ that are approachable with respect to ~z is a

maximal element of I[κ+]∩℘(Sκ
+

κ ) mod NS in V. Since P is <κ+-distributive and
therefore ~z still enumerates all of [κ+]<κ in V[G], it follows that M is still the set of

all γ ∈ Sκ+

κ that are approachable with respect to ~z in V [G], and hence M is still a

maximal element of I[κ+]∩℘(Sκ
+

κ ) mod NS in V[G]. Now, suppose that S ∈ V[G]

is bistationary in Sκ
+

κ and M \ S is stationary. Since M ∈ I[κ+] and I[κ+] is an
ideal, it follows that M \S ∈ I[κ+]. So M \S is a stationary set in I[κ+]. Hence by
part (3a) of the theorem, there is an order-preserving function from T (S) to T (G0)
in V [G]. �

5. Applications

We now apply Theorem 4.2 to prove the results presented in the introduction of
the paper.

Corollary 5.1. Let κ be an infinite regular cardinal satisfying κ<κ ≤ κ+, let P
be the partial order given by Theorem 4.2 and let M be a maximum element of

I[κ+] ∩ ℘(Sκ
+

κ ) mod NS . If G is P-generic over V, then the set NS � M is
∆1(H((2κ)+))-definable in V[G].

Proof. Work in V[G] and let T be the subtree of <κ+

κ+ given by Theorem 4.2.

Then T ⊆ <κ+

κ+ ∈ H((2κ)+). Define S to be the collection of all subsets A of M
such that either there exists a closed unbounded subset C of κ+ with C ∩M ⊆ A
or there exists an order-preserving function from the tree T (Sκ

+

κ \A) into the tree

T . Then the set S is definable by a Σ1-formula with parameters M , T and <κ+

κ+.

Claim 5.2. The set S is equal to the collection of all subsets of M that are sta-
tionary in κ+.

Proof of Claim 5.2. First, let A ⊆ M be stationary in κ+ with the property that
there is no club C in κ+ with C ∩M ⊆ A. Since M is stationary in κ+, this shows

that A is bistationary in Sκ
+

κ , M \A is stationary, and hence Theorem 4.2 yields an
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order-preserving function from T (Sκ
+

κ \A) into T that witnesses that A is contained
in S. This argument shows that S contains all stationary subsets of M .

Now, assume, towards a contradiction, that there is a non-stationary subset A
of κ+ that is contained in S. Then there is an order-preserving embedding of

T (Sκ
+

κ \ A) into T and a closed unbounded subset C of κ+ with A ∩ C = ∅. But

then C∩Sκ+

κ is a κ-club that is a subset of Sκ
+

κ \A and, by earlier remarks, the tree

T (Sκ
+

κ \ A) contains a cofinal branch. But then the tree T also contains a cofinal
branch, a contradiction. �

By the above claim, the set NS � M = ℘(M) \ S is definable by a Π1-formula
with parameters in H((2κ)+). �

In particular, the above corollary directly shows how the definability results of
[13] and [23] can be derived from Theorem 4.2.

Corollary 5.3. Let κ be an infinite regular cardinal satisfying κ<κ = κ and let P
be the poset given by Theorem 4.2. If G is P-generic over V, then NS � Sκ

+

κ is
∆1(H((2κ)+))-definable in V[G].

Proof. By Lemma 2.10, if κ<κ = κ holds in V, then Sκ
+

κ is a maximum element of

I[κ+] ∩ ℘(Sκ
+

κ ) mod NS . Since forcing with P does not change cofinalities below
κ+, the desired conclusion directly follows from Corollary 5.1. �

The following lemma establishes a connection between principles of stationary
reflection and the Π1-definability of restrictions of the non-stationary ideals that
will be crucial for proofs of our main results.

Lemma 5.4. Let S be a stationary subset of an uncountable regular cardinal δ and
let E be a set of stationary subsets of Sδ>ω with the property that for every stationary
subset A of S, there exists E ∈ E such that A reflects at every element of E. If E
is definable by a Σ1-formula with parameter p, then the set NS � S is definable by
a Π1-formula with parameters p, S and H(δ).

Proof. Let S denote the collection of all subsets A of S with the property that there
exists E ∈ E such that A ∩ α is stationary in α for all α ∈ E. By our assumptions
on E , the set S is definable by a Σ1-formula with parameters p, S and H(δ). If
A ⊆ S is stationary in δ, then our assumptions on E ensure that A is contained in
S. In the other direction, if E ∈ E witnesses that A is an element of S and C is
closed unbounded in δ, then there is α ∈ E ∩ Lim(C) with A ∩ α stationary in α
and hence ∅ 6= A ∩ C ∩ α ⊆ A ∩ C. Together, this shows that S is equal to the
collection of all subsets of S that are stationary in δ and hence NS � S = ℘(δ) \ S
is definable by a Π1-formula with parameters p, S and H(δ). �

The above lemma directly shows that strong forms of stationary reflection cause
restrictions of non-stationary ideals to be ∆1-definable.

Corollary 5.5. Let δ be an uncountable regular cardinal, let E be a stationary
subset of Sδ>ω and let S be a stationary subset of δ such that every stationary subset
of S reflects almost everywhere in E (i.e. for every stationary subset A of S, there
is a closed unbounded subset C of δ with the property that A reflects at every element
of C ∩ E). Then the set NS � S is definable by a Π1-formula with parameters E,
S and H(δ).
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Proof. If we define E = {C ∩ E | C club in δ}, then E is definable by a Σ1-formula
with parameter E and this shows that the sets E and S satisfy the assumptions of
Lemma 5.4. �

Note that a classical result of Magidor in [22] shows that, starting with a weakly
compact cardinal, it is possible to construct a model of set theory in which every
stationary subset of S2

0 reflects almost everywhere in S2
1 . The above corollary shows

that the set NS � S2
0 is ∆1(H(ω3))-definable in Magidor’s model.

The next theorem will be used to derive Theorem 1.2.

Theorem 5.6. Assume that 2ω1 = ω2, and θ is a cardinal with θω2 = θ. Then
there exists a <ω2-directed closed, cardinal-preserving poset P with the property that
the following statements hold in V[G] whenever G is P-generic over V:

(1) 2ω2 = θ.
(2) If for every stationary subset A of S2

0 , there is a stationary subset R of
IAω1 such that W ≺ H(ω3) and A reflects at W ∩ ω2 for all W ∈ R, then
the set NS � S2

0 is ∆1(H(ω3))-definable.

Proof. Let G be Add(ω2, θ)-generic over V. Since 2ω1 = ω2 holds in V, we know
that Add(ω2, θ) satisfies the ω3-chain condition in V and hence all cofinalities are
preserved in V[G]. Work in V[G]. Then our assumptions ensure that 2ω1 = ω2 and
2ω2 = θ = θω2 . Let P be the poset given by Theorem 4.2 for κ = ω1 and ε = θ,
and let M be a maximum element of I[ω2] ∩ ℘(Sω2

ω1
) mod NS , which exists due to

the assumption that 2ω ≤ ω2 (see Lemma 2.10). Then Lemma 3.6 and part (1)
of Theorem 4.2 show that P is forcing equivalent to a <ω2-directed closed poset.
Moreover, since 2ω1 = ω2 holds, part (2) of Theorem 4.2 shows that P satisfies
the ω3-chain condition. Finally, Lemma 4.20 shows that P has a dense subset of
cardinality θ.

Now, let H be P-generic over V[G] and work in V[G,H]. By the above obser-
vations, we then have 2ω2 = θ. In addition, part (3b) of Theorem 4.2 shows that
M is the maximum element of I[ω2] ∩ ℘(Sω2

ω1
) mod NS . Moreover, Corollary 5.1

shows that NS � M is ∆1(H(ω3))-definable. In the following, assume that for
every stationary subset A of S2

0 , there is a stationary subset R of IAω1 such that
W ≺ H(ω3) and A reflects at W ∩ ω2 for all W ∈ R. Set E = ℘(M) \NSω2 . Then
E is definable by a Σ1-formula with parameters in H(ω3).

Claim 5.7. For every stationary subset A of S2
0 , there is an element E of E with

the property that A reflects at every element of E.

Proof of the Claim. By our assumption, there is a stationary subset R of IAω1

such that W ≺ H(ω3) and A reflects at W ∩ ω2 for every W ∈ R. If we now
define E0 = {W ∩ ω2 | W ∈ R}, then E0 is a stationary subset of Sω2

ω1
. Moreover,

since 2ω ≤ ω2, each W ∈ R has (as an element) an enumeration ~z = 〈zξ | ξ < ω2〉
of [ω2]ω and therefore the internal approachability of W and the fact that ~z ∈ W
imply that W ∩ω2 is approachable with respect to ~z. Hence, the set E0 is stationary
and an element of I[ω2]. Since M is the largest such element mod NS , we have in
particular that E = E0 ∩M is a stationary subset of M . �

Using Lemma 5.4, we can now conclude that NS � S2
0 is definable by a Σ1-

formula with parameters in H(ω3). �
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Proof of Theorem 1.2. Assume that FA holds, where FA is one of the following
axioms:

• MM+µ, where µ is a cardinal and 0 ≤ µ ≤ ω1; or
• PFA+µ, where µ is a cardinal and 1 ≤ µ ≤ ω1.

Let θ be a cardinal with θω2 = θ. Since PFA implies that 2ω = 2ω1 = ω2 holds (see
[15, Theorem 16.20 & 31.23]), our assumption allows us to apply Theorem 5.6 to
obtain a <ω2-directed closed poset with the properties listed in the conclusion of
theorem. Let G be P-generic over V. Then [4, Theorem 4.7] ensures that FA holds
in V[G]. Since FA holds in V[G], there exists a stationary subset R of IAω1

with
the property that for all W ∈ R, we have W ≺ H(ω3) and A reflects at W ∩ ω2.23

Then Theorem 5.6 allows us to conclude that NS � S2
0 is ∆1(H(ω3))-definable in

V[G]. �

The next theorem will be used to derive Theorem 1.3.

Theorem 5.8. Assume that 2ω = ω1, 2ω1 = ω2, and θ is a cardinal with θω2 =
θ. Then there exists a <ω2-directed closed, cardinal-preserving poset P with the
property that the following statements hold in V[G] whenever G is P-generic over
V:

(1) 2ω2 = θ.
(2) If every stationary subset of S2

0 reflects to a point in S2
1 , then the set NSω2

is ∆1(H(ω3))-definable.

Proof. Let G be Add(ω2, θ)-generic over V, let P be the poset produced by an
application of Theorem 4.2 with κ = ω1 and ε = θ in V[G], and let H be P-generic
over V[G]. As above, we have (2ω2)V[G,H] = θ and, since 2ω = ω1 holds in V[G], part
(4) of Lemma 2.10 and part (3b) of Theorem 4.2 imply that (S2

1)V[G] = (S2
1)V[G,H]

is a maximum element of I[ω2] ∩ ℘(S2
1) mod NS in both V[G] and V[G,H]. In

particular, Corollary 5.1 implies that NS � S2
1 is ∆1(H(ω3))-definable in V[G,H].

Now, work in V[G,H] and assume that every stationary subset of S2
0 reflects

to a point in S2
1 . Then every stationary subset of S2

0 reflects to stationary-many
points in S2

1 and we can apply Lemma 5.4 with S2
0 and ℘(S2

1) \NSω2
to show that

NS � S2
0 is ∆1(H(ω3))-definable. Since it is easy to see that

NSω2 = {A ⊆ ω2 | A ∩ S2
0 ∈ NS � S2

0 and A ∩ S2
1 ∈ NS � S2

1},
these computations allow us to conclude that NSω2

is ∆1-definable. �

Proof of Theorem 1.3. Assume that 2ω = ω1, 2ω1 = ω2 and either FA+(σ-closed)
or SCFA holds. Let θ be a cardinal with θω2 = θ, let P be the poset produced by
an application of Theorem 5.8 and let G be P-generic over V. Then (2ω2)V[G] = θ
holds. Moreover, by Theorem 4.7 of [4], either FA+(σ-closed) or SCFA holds in
V[G]. In the case of SCFA, the fact that CH also holds ensures (by [11, Theorem
2.7 and Observation 2.8]) that, in V[G], every stationary subset of S2

0 reflects in a
point in S2

1 .24 In the case where FA+
(
σ-closed

)
holds, the proof of Theorem 8.3 of

[2] ensures the same kind of stationary reflection. By Theorem 5.8, this shows that
NSω2

is ∆1-definable in V[G]. �

23For the case corresponding to MM, this follows by the proof of [6, Theorem 13]. For the
case corresponding to PFA+µ where µ ≥ 1, it follows from the remark on [6, p. 20]. The ω1-

enumerations in both proofs are easily seen to be internally approachable enumerations.
24Note that the CH assumption seems to be required for this consequence of SCFA; see Fuchs

[12] for some corrections on previous literature.
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