FORCING AXIOMS AND THE COMPLEXITY OF
NON-STATIONARY IDEALS

SEAN COX AND PHILIPP LUCKE

ABSTRACT. We study the influence of strong forcing axioms on the complexity
of the non-stationary ideal on w2 and its restrictions to certain cofinalities. Our
main result shows that the strengthening MM+ of Martin’s Maximum does
not decide whether the restriction of the non-stationary ideal on wa to sets of
ordinals of countable cofinality is Aj-definable by formulas with parameters
in H(w3). The techniques developed in the proof of this result also allow us
to prove analogous results for the full non-stationary ideal on ws and strong
forcing axioms that are compatible with CH. Finally, we answer a question
of S. Friedman, Wu and Zdomskyy by showing that the Aj-definability of the
non-stationary ideal on wsz is compatible with arbitrary large values of the
continuum function at ws.

1. INTRODUCTION

The fact that closed unbounded subsets generate a proper normal filter, the club
filter on K

Club, = {ACk|3C C A closed and unbounded in k},

is one of the most important combinatorial properties of uncountable regular cardi-
nals k. The study of the structural properties of these filters and their dual ideals,
the non-stationary ideal on k

NS, = {ACk|3C closed and unbounded in k with ANC = 0}

plays a central role in modern set theory.

In [23] and [24], Mekler, Shelah and VA&nénen initiated the study of the complez-
ity of club filters and non-stationary ideals, leading to various results establishing
interesting connections between the complexity of these objects and their struc-
tural properties. Given an uncountable regular cardinal k, it is easy to see that
both Club, and NS, are definable by a };-formula with parameter x, i.e. there
exist Xp-formulas ¢g(vg, v1) and ¢1(vg, v1) such that Club,, = {A | vo(A4, )} and
NS, ={A ]| ¢1(A,k)}. The results of [24] show that under CH, the A;(H(ws))-
definability of NS, (i.e. the assumption that NS,, = {A | ¥1(A,2)} holds for
some II;-formula 1 (vg, v1) and some z € H(ws)) is equivalent to several interesting
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combinatorial and model-theoretic assumptions about objects of size w;. In partic-
ular, it is shown that this definability assumption is equivalent to the existence of
a so-called canary tree, a tree of height and cardinality w; without cofinal branches
that has specific properties with respect to the ordering of such trees under order-
preserving embeddings. Since the results of [23] show that the existence of a canary
tree is independent of ZFC+ CH, it follows that this theory is not able to determine
the exact complexity of NS, .

The above results were later generalized to higher cardinals. If S is a stationary
subset of an uncountable regular cardinal x, then we let NS [ S = NS; N p(5)
denote the restriction of the non-stationary ideal on é to S. Given infinite regular
cardinals A < k, we set S5 = {a < k | cof(a) = A}. In addition, if m < n < w, then
we write Sy, instead of S&» . Results of Hyttinen and Rautila in [I3] showed that if «
is an infinite regular cardinal in a model of the GCH, then, in a cofinality-preserving
forcing extension, the set NS | %" is Aj(H(x+))-definable. Furthermore, in [10],
S. Friedman, Wu and Zdomskyy showed that for every successor cardinal in Godel’s
constructible universe L, there is a cardinality-preserving forcing extension of L in
which NS, is A;(H(x"))-definable. These results can be easily used to show that
the complexity of the non-stationary ideal and its restriction is not determined by
ZFC (see Lemma and the subsequent discussion below). Finally, recent work
also unveiled several interesting consequences of the A;(H(x™))-definability of re-
striction of NS at higher cardinals . In particular, this set-theoretic assumption
was shown to be closely connected to model-theoretic questions dealing with She-
lah’s Classification Theory and the complexity of certain mathematical theories
(see, for example, [8, Theorem 64]).

The above results strongly motivate the question whether canonical extensions of
ZFC decide more about the complexity of non-stationary ideals, and this question
turns out to be closely connected to important recent developments in set theory. In
[8], S. Friedman, Hyttinnen and Kulikov showed that, in the constructible universe
L, the sets of the form NS [ S for some stationary subset S of an uncountable
regular cardinal x are not Aj(H(k™))-definable. Using the notion of local club
condensation (see [7]), it is possible to extend this conclusion to larger canonical
inner models. In another direction, S. Friedman and Wu observed in [9] that strong
saturation properties of the non-stationary ideal on wy, i.e. the assumption that
the poset p(w1)/NS,, has a dense subset of cardinality wy, imply the A;(H(ws))-
definability of NS,,. Results of Woodin in [26, Chapter 6] show that NS, pos-
sesses these properties in certain forcing extensions of determinacy models. Finally,
Schindler and his collaborators recently studied the question whether forcing axioms
determine the complexity of NS, . In [19], Larson, Schindler and Wu showed that
Woodin’s Aziom (%) (see [26] Definition 5.1]) implies that NS, is not Aj(H(ws))-
definable. In combination with recent results of Asperé and Schindler in [I], this
shows that MM™™, a natural strengthening of Martin’s Mazimum, implies that
NS, is not Aj(H(ws))-definable.

The work presented in this paper is motivated by the question whether strong
forcing axioms determine the complexity of the non-stationary ideal on wy and its
restrictions. The following result from [2I] shows that all extensions of ZFC that are
preserved by forcing with <ws-directed posets are compatible with the assumption
that for every stationary subset S of wa, the set NS | S is not Ay (H(ws))-definable.
In particular, the results of [4], [I7] and [I8] show that this statement is compatible
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with all standard forcing axioms, like MM, The lemma follows directly from
a combination of [2I, Theorem 2.1], showing that no Al-definable set (see [20,
Definition 1.2]) separates Club,, from NS, in the given model of set theory, and [20,
Lemma 2.4], showing that Al-definability coincides with A;(H(x™))-definability at
all uncountable regular cardinals k.

Lemma 1.1. Let x be an uncountable cardinal with k<% = k and let G be Add(k, k™)-
generic over V. In V[G], no Aq(H(k™T))-definable subset of p(r) separates Club,
from NS,;, i.e. no set X definable in this way satisfies Club, C X C p(k) \ NS.

Note that, if S is a stationary subset of an uncountable regular cardinal &,
then NS | S separates Club,, from NS,. This shows that, in Add(k, x*)-generic
extensions, sets of the form NS | S for stationary subsets S are not A;(H(x"))-
definable.

In contrast, we will prove the following theorem that shows that strong forcing
axioms like MM ™™ are also compatible with the existence of a A;(H(ws))-definable
set that separates the club filter on wy from the corresponding non-stationary ideal.
The proof of this result is based on a detailed analysis of the preservation properties
of a variation of a forcing iteration constructed by Hyttinen and Rautila in the
consistency proofs of [I3]. Our construction will also allow us to produce such
models with arbitrary large 2¢2. See Section [2]for the meaning of the “+4” versions
of forcing axioms

Theorem 1.2. Let FA denote any one of the following forcing axioms:

° MM‘“‘, where p is a cardinal and 0 < p < wy; or
° PFA+“, where p is a cardinal and 1 < p < wy.

Assume that FA holds, and let 0 be a cardinal with 6“2 = 0. Then there exists a
<wsg-directed closed, cardinal-preserving poset P with the property that whenever G
is P-generic over V, then, in V|G|, the aziom FA still holds, 2“2 = 0 and the set
NS | S2 is Aj(H(ws))-definable.

We will also apply the techniques developed in the proof of the above result
to forcing axioms that are compatible with the continuum hypothesis, focusing
on the axiom FA™ (o-closed) and the subcomplete forcing aziom SCFA introduced
by Jensen in [I6]. Note that both axioms are preserved by <ws-directed closed
forcings (see [4] and [I8]) and hence Lemma [1.1] above already shows that they are
compatible with the assumption that no A;(H(ws))-definable set separates Club,,
from NS,.

Theorem 1.3. Let FA denote either the aziom SCFA or the aziom FA™ (o-closed).
Assume that 2 = wy, 2 = wy and FA holds. Let 0 be a cardinal satisfying
0“2 = 0. Then there exists a <ws-directed closed, cardinal-preserving poset P with
the property that whenever G is P-generic over V, then, in V[G], the axiom FA still
holds, 292 = 0 and the set NS, is A1(H(ws))-definable.

This theorem also provides an affirmative answer to [10, Problem 3.3] posed by
S. Friedman, Wu and Zdomskyy, by showing that the A;-definability of NS, is
compatible with 22 > ws.

n keeping with the prevailing convention in the literature: MM refers to MM, but MM T+
refers to MM 1«1, not to MM*2 (and similarly for PFA and other forcing axioms).
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2. PRELIMINARIES

This section covers well-known results, mostly related to the notions of internal
approachability and Shelah’s Approachability Ideal.

First we recall the “plus” versions of forcing axioms, which were first introduced
by Baumgartner [2] (though the prevailing notation has changed somewhat since
then). If T is a class of posets and p is a cardinal, FAT# (I‘) states that for every
poset P € T', for every collection D of size w; of dense subsets of P and for every
sequence (o¢ | & < p) of P-names for stationary subsets of wy, there is a D-generic
filter g on P with the property that the set {a <wy | IpegplFp “a@ € 0¢”} is
stationary in wy for every £ < u. If T is the class of posets that preserve stationary
subsets of wi, we write MM ™ instead of FAT#(I'); and, as mentioned earlier,
MM refers to MM1!, not to MM™*2. Similar comments apply to the class of
proper posets and PFA.

Definition 2.1. Let P be a poset and let W < (H(0),€,P) for some sufficiently
large regular cardinal 6.

(1) A condition p € P is a (W, P)-master condition if
WI[GINV = W
holds whenever G is P-generic over V with p € G.
(2) A set g is (W,P)-generic if g C PNW, g is a filter on PN W, and
Dng#0 for every D € W that is a dense subset of IP’E|
(3) A condition p € P is a (W, P)-total master condition if the set

{rePnwW |p<pr}
is a (W,P)-generic filter.
The following result is well-known:

Lemma 2.2. Let P be a poset, let W < (H(0),€,P), let p be an ordinal with
uw C W, and let f € W be a P-name for a function from p to the ground model V.
If p is a (W, P)-total master condition and G is P-generic over V with p € G, then
fGev.

Proof. Fix a (W,P)-total master condition p and a filter G on P that is generic
over V and contains the condition p. Let g = {r e PNW | p <pr} denote the
(W, P)-generic filter induced by p. Then GNW is a (W, P)-generic filter extending
g and therefore standard arguments show that G N W = ¢g. By elementarity, there
is a sequence (A¢ | £ < ) € W of maximal antichains in P with the property that
for every £ < p, each condition in A¢ decides the value of f at £ Since up C W,
this shows that for all £ < p, the unique condition in A¢ N g decides the value of
f at & But the sequence (Ae | € < p) and the filter g are both elements of V and
hence the function fG is also in the ground model. (I

We state a definition that will be used extensively in the following arguments:

Definition 2.3. Given an infinite reqular cardinal k, we let IA,, denote the class
of all sets W with the property that there exists a sequence N = (N, | a < k) that
satisfies the following statements:

2Sometimes the requirement that ¢ C W is dropped, but then one has the demand that
DnNgnNW # 0 holds for each dense D € W.
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(1) The sequence N s C-increasing and C-continuous.
(2) W=U{Ny | @ <k}

(3) |No| < Kk for all o < k.

(4) Every proper initial segment 0f1\7 is an element of W.

Remark 2.4. If N witnesses that W is an element of IA, and W < H(#) for some
6 > K, then k C W. This is because we have N [ o € W for every a < k, and the
domain of N | o, namely «, is definable from the parameter N | a.

In what follows, if 7 is a regular uncountable cardinal, p,(H) refers to the set of
all W C H with |W| < 7, and pX(H) denotes the set

{Wep(H) | WnterT}

The set p%(H(0)) contains a club in the sense of Jech (see [14]), but not necessarily
in the sense of Shelah (see [6]).

Remark 2.5. In the above situation, if W € p*(H(#)), W < H(f), and = € W
with |z| < 7, then z C WE|

Lemma 2.6. If x is a reqular and uncountable cardinal, then IA, is stationary in
o+ (H(0)) for all sufficiently large regular 6.

Proof. Given a first-order structure 2 = (H(0), €, k,...) in a countable language,
recursively construct a C-continuous and C-increasing sequence N = (No | 0 < k)
of elementary substructures of 2 of cardinality less than x such that N [ € Nog1
for all @ < k. Then N witnesses that its union is contained in TA,. (Il

Lemma 2.7. Let P be a poset, let k < 0 be infinite reqular cardinals with P € H(0),
let <1 be a well-ordering of H(), let W < (H(9), €,P, <) with W € IA,,, and let
pePNW.
(1) If P is <k-closed, then there exists a (W,P)-generic filter that contains p.
(2) If P is <k*-closed, then there exists a (W,P)-total master condition below
.

Proof. Let N = (N, | a < k) witness that W is an element of IA,.

(1) Assuming that P is <x-closed. Using the closure of P and the fact that each
N, has cardinality less than k, we can recursively construct a descending sequence
P = (pa | @ < k) of conditions below p in P such that the following statements hold
for all a < k:

(a) The condition p,41 is the <-least element of P below p,, that is an element
of every open dense set that belongs to Naﬁ
(b) If v is a limit ordinal, then p, is the <-least lower bound of the sequence
(pe | £ < a).
Then every proper initial segment of p is definable from a proper initial segment
of N , and hence every proper initial segment of p'is in W. In particular, we know
that pa+1 € W for all a < k. It follows that the filter in P generated by the subset
{Pa | @ < K} is (W, P)-generic.

3Note that this could fail if W were allowed to have non-transitive intersection with 7.
4We do not require here that po+1 is a total master condition for N,. That is, if D € Ny is
dense, the upward closure of po 41 is only required to meet D, not necessarily D N Ng.
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(2) Now, assume that P is <x™-closed and repeat the above construction of the
sequence p. Then p has a lower bound in P, and this lower bound is clearly a
(W, P)-total master condition. O

Next we discuss one variant of proper forcing.

Definition 2.8. Let k be an infinite reqular cardinal.
(1) A poset P is I A,-proper if for all sufficiently large reqular cardinals 6, all
W < (H(9), €,P) with W € IA,, and allp € PNW, there is a (W, P)-master
condition below p.
(2) A poset P is I A, -totally proper if for all sufficiently large regular cardi-
nals 8, all W < (H(0), €,P) with W € IA, and allp € PNW, there is a
(W, P)-total master condition below p.

It is well-known that IA,-proper posets preserve all stationary subsets of S}f
that lie in the approachability ideal I[x™] defined below. Since we could not find a
reference for exactly what is needed in our arguments, we sketch the proof below.
Note that it is possible for IA,-proper (even IA,-totally proper) posets to destroy
the stationarity of some subsets of S5 (see [B]). So IA,.-total properness is, in
general, strictly weaker than x*-Jensen completeness (defined in the next section),
because <k*-closed forcings preserve all stationary subsets of xT.

Definition 2.9 (Shelah). Let k be an infinite regular cardinal.
(1) Given a sequence Z = (zo | @ < k1) a sequence of elements of [kT]<", an
ordinal v < kT is called approachable with respect to Z if there exists

a sequence

a = (og | £ <cof(v))
cofinal in ~y such that every proper initial segment of & is equal to z, for
some a < 7.
(2) The Approachability ideal I[kT] on k™ is the (possibly non-proper) nor-
mal ideal generated by sets of the form

Az = {y <~k | v is approachable with respect to Z }
for some sequence Z € " ([kT]<").
Note that a subset X of k' is an element of I[x"] if and only if there exists
some club D C k' and some sequence Z € * ([x+]<*) such that every v € DN X is

approachable with respect to Z. In the following, we will make use of several facts
about I[xT]. Throughout this section, x denotes a regular cardinal.

Lemma 2.10 ([5]). Suppose <% < k™, and let (zo | @ < k1) be an enumeration
of [k*]<#[] Define
Mz = {y€ S,’f | v is approachable with respect to Z' }.

Then the following statements hold:

(1) Mz is a stationary subset of S,'f.

(2) Mz e [[I{Jr}.

(3) Mz is a maximum eclement of I[T]Np(S% ) mod NS, i.e. whenever S is a

stationary subset of S§+ such that S € I[kT], then S\ Mz is non-stationary.

5Note that such an enumeration exists by our cardinal arithmetic assumption.
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(4) If <% = K, then S&" \ My is non-stationary. In particular, k<% = x implies
that S:+ € Ikt].

Proof. (1) Fix a sufficiently large regular cardinal § and a well-ordering <1 of H(6).
Fix W € IA, with W < (H(0),€,<,2) and let (N, | a < k) be a sequence wit-
nessing that W € TA,. Given a < &, set 7, = sup(N, N k1) < kT. Then
¥ = (Yo | @ < k) enumerates a cofinal subset of W N k™ of order-type x and every
proper initial segment of this sequence is an element of W. Moreover, each proper
initial segment of 7 is an element of [x7]<#*, and hence an element of

Wn{za |la<k™} = {24 |a<WnkT}

This shows that W N xT is approachable with respect to Z. Since Lemma
shows that there are stationarily-many W € IA, with W < (H(0), €, <, 2), these
computations allow us to conclude that M3z is a stationary subset of .S Z+.

(2) Since Mz C Az € I[rT], the statement Mz € I[x"] holds trivially.

(3) Now, suppose that S € I[x"] is a stationary subset of S,’f. By earlier
remarks, there is a sequence @ = (uy | @ < k1) of elements of [xT]<* and club
subset D of kT with the property that every v € D N S is approachable with
respect to @. Define

E = {yes| HullHO-€82D) (1) ot = ~}.

Then S\ E is non-stationary. Fix v € E and set M(y) = Hull H®&85D) (),
Since v € S € I[x*], there is a cofinal sequence 5 = (B | £ < k) in 5 such that
every proper initial segment of E appears in @ [ . But since 2z’ enumerates all of
[£1]<%, the fact that @, Z € M(y) < (H(#), €) implies that for every a < ~y there is
a k(a) <y with uy = 2j(a), i.e.

{ua [ <} C {za | @<}

In particular, every proper initial segment of 5 appears in 2" before v and therefore
~ is approachable with respect to Z. These computations show that S\ Mz C S\ E
is non-stationary in x*.

(4) Now, assume that k<" = k. Then |n<"| = k for every n < kT and hence there
is a function f : kT — kT with the property that for all n < x™, every element
of []<* is enumerated by Z' | f(n). Let D denote the club of all kK < v < k* such
that

Hullm €20 () 0 gt = 4,
Pick v € DN S%", and set W(y) = Hull™@€%) () Fix a cofinal sequence &
in v of order-type « in v, and some £ < k. Since cof(y) = k, there is n < v with
ag <mnforall { <& and @ | &=z for some ¢ < f(n). Moreover, since n € W(7)
and |f(n)| < k € W(7), elementarity implies that f(n) € W(y) and f(n) C W(v).
Since Z and ¢ are both elements of W (v), we can conclude that z. € W(~). Hence
~ is approachable with respect to 7. (Il

The next few lemmas address stationary set preservation when GCH may fail to
hold.

Lemma 2.11. The class IA,, is projective stationary over

S ={Tc S,’:+ | T is stationary and T € I[x]},
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i.e. if T €8, then for every sufficiently large reqular cardinal 8 and every function
F : [H(9)]<* — H(0), there exists W € IA, such that W NkT € T and W is
closed under F'.

Proof. Fix T € 8. Then there is a club D in £+ and a sequence Z € *' [s7]<* such
that every element of D NT is approachable with respect to z.
Fix a regular ¥ with F' € H(¥), let < be a well-ordering of H(+}) and set

A = (HW),e,«,2,D, F,T).

Pick v € DNT and W < 2 with v = W N k™, which is possible because T is

stationary. Since v € T'N D, there is an increasing sequence 8 = (8, | @ < k) that

is cofinal in v and has the property that every proper initial segment of 3 is equal to

24 for some a < «y. Since 7 € W and WNk™ =+, it follows that every proper initial

segment of § is an element of W. Recursively define a sequence N = (N, | a < k)
as follows:

e Given a < K, let N,41 be the <-least element of [H()]<" such that N,y is

closed under F, (Ny | £ < a) € Nyy1, @ € Nyy1, and sup(Nyyp1N&T) > Ba.

e If o < & is a limit ordinal, then N, = [J{N¢ | £ < a}.
Set N =|J{Ny | @ < k}. Then N € IA,, N is closed under F, and
sup(NNkT) > supfBa = 7. (1)
a<k

On the other hand, for each a < k, the sequence (Ny | £ < «) is definable in A

from the parameter (8, | ¢ < «), which is an element of W by the above remarks.

Hence every proper initial segment of N is an element of W and, in particular, we
know that

sup(No N&T) < v = Wnk'
for all & < k. It follows that sup(N Nk*) <. Combined with (T)), this shows that
sup(N N k™) = v. Finally, since a C N, for all a < &, it follows that x € N and
hence we know that N N x™ is transitive. This allows us to conclude that

NNkt = sup(NNkT) = 7,
completing the proof of the lemma. O

The following lemma is one way to salvage stationary set preservation in the
non-GCH context.

Lemma 2.12. Let P be a IA, -proper poset and let T C S,’f be stationary with
T € I|sT]. Then forcing with P preserves the stationarity of T.

Proof. Set 7 = kt. Let C be a P-name for a club in 7, let p € P and let 6
be a sufficiently large regular cardinal. Using Lemma we find v € T and
W < (H(9),,p,C,P) with W € IA,, and W N7 = ~. By our assumptions, there is
a (W, P)-master condition ¢ below p in P. Let G be P-generic over V with ¢ € G.
Then W[G]N7 = WN7 = 5. Moreover, since C' € W, we now know that C¢NW|[G]
is unbounded in  and hence y € C¢ N T.

These computations show that, in the ground model V, we have

qlkp “CNT #0”

for densely-many conditions ¢ in P. [
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3. GENERALIZING A LEMMA OF JENSEN

The notion of TA,-properness, defined in Section [2] is a non-GCH analogue of
the notion of k-properness introduced in [I3| Definition 3.4] . This notion will
be important to proving that tails of the iteration described in Section [4] do not
add cofinal branches to a certain tree, and that argument will closely follow the
corresponding arguments of [I3].

However, IA-properness (in the case k = w1) is not sufficient for ensuring the
preservation of forcing axioms that we need for the proofs of our main results.
There are examples of A, -proper forcings that destroy, for example, the Proper
Forcing AxiomE] On the other hand, <ws-directed closed posets preserve all stan-
dard forcing axioms (see [I7] and [I8]). In this section, we generalize a result of
Jensen, yielding a property that is forcing equivalent to <ws-directed closure, but
often easier to verify than <ws-directed closure.

In [16], Jensen defines a poset P to be complete if for every sufficiently large
6, there are club-many W € g, (H(0)) such that every (W, P)-generic filter has a
lower bound in Pm He then proves:

Lemma 3.1 (Jensen). The following statements are equivalent for every poset P:

(1) The poset P is complete.
(2) The poset P is forcing equivalent to a o-closed poset.

We will generalize a version of this lemma to larger cardinals, and, in fact,
characterize directed closure (see Lemma below)ﬁ However there are a few
technicalities to address. Note that for any W € g, (H(0)), the fact that W is
countable ensures that there always exist (W, P)-generic filters, regardless of what
P is. In particular, the phrase “... every (W, P)-generic filter ... ” is never vacuous,
if W is countable. Of course, for uncountable W, it may happen that (depending
on the poset P) there do not exist any (W, P)-generic filters at all; e.g. if W < H(0)
and wy; C W, then there does not exist a (W, Col(w, wy))-generic filter.

Definition 3.2. Given a regular uncountable cardinal T, a poset P is T-Jensen-
complete if the following statements hold for all sufficiently large regular cardinals

0:

(1) For every p € P, there are stationarily-many W € pX(H(0)) with the prop-
erty that there exists a (W, P)-generic filter including p.

(2) For all but non-stationarily many W € pX(H(0)), every (W, P)-generic filter
has a lower bound in PPl

Remark 3.3. Note that clause (1)) of Definition [3.2] always holds true for 7 = wy,
and is hence redundant in that case. In particular, for 7 = w;, Definition [3.2] is
equivalent to Jensen’s definition of completeness.

6E.g. if 2¥1 = wo then there is a natural IA., -proper poset that forces the Approachability
Property to hold at wa, hence destroys the Proper Forcing Axiom. This poset is just the natural
poset to shoot an wi-club through the set M described in Lemma

"Jensen’s notes say this is equivalent to a definition of Shelah in [25, Chapter 10].

8Note that o-closure is equivalent to o-directed closure, so the distinction is only important at
larger cardinals.

9Note that this clause is allowed to be vacuously true for some elements W of ©%(H(0)), even
for stationarily-many such sets W.
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Remark 3.4. In combination, the clauses and of Deﬁnition imply that
the poset P is totally proper on a stationary subset of p(H(0)); i.e. that there are
stationarily-many W € @ (H()) such that every condition in PNW can be extended
to a (W, P)-total master condition in the sense of Definition This conclusion,
however, is strictly weaker than 7-Jensen-completeness, since (for example with
7 = wy) shooting a club through a bistationary subset of w; has the latter property
but is not <wi-closed. In the case 7 = waq, if 2“' = wsy, then shooting an w;-club
through the set M described in Lemma is TA,, -totally proper, but forces the
approachability property to hold at wy. In particular, this forcing destroys the
Proper Forcing Axiom, and PFA is preserved by ws-Jensen-complete forcings (by
[I7] and Lemma [3.6| below).

Lemma 3.5. If k is an infinite cardinal and P is a <k-closed poset, then clause

of Definition holds for 7 = kT and P.
Proof. This follows immediately from Lemmas [2.6] and 2.7] O

Next, we state our generalization of Jensen’s lemma. Its Corollary will be
used in the proof of Theorem [£.2] below.

Lemma 3.6. Given a poset P and a successor cardinal T, the following statements
are equivalent:

(1) The poset PP is forcing equivalent to a <t-directed closed poset.
(2) The poset P is forcing equivalent to a T-Jensen-complete poset.

Proof. First, assume that P is <7-directed closed. Then, in particular, P is <7-
closed, and hence Lemma ensures that clause of Definition holds for P.
But then the directed closure of P ensures that any (W,P)-generic filter for any
W € pX(H(0)) has a lower bound in P, and hence clause (2]) of Definition [3.2| holds
for P as well. This shows that P is 7-Jensen-complete.
Now, suppose that P is 7-Jensen-complete. Let F' : [H(0)]<“ — H(0) generate
a club witnessing clause of Definition i.e. whenever W € p*(H(#)) and
W is closed under F, then any (W, P)-generic filter has a lower bound. We may
assume that F' also codes a well-ordering <1 of H(0), i.e. if W is closed under F,
then W < (H(#), €, <)) holds.
Define a poset Q, whose conditions are pairs (M, g) satisfying the following
statements:
o M € gt (H(D)).
e M is closed under F.
e g C MNPisan (M,P)-generic filter.

and whose ordering is given by:

(N,h)<g(M,9) <= N2OM AN hNM=g.
Note that <g is transitive and clause of Definition ensures that Q is
nonempty.

Claim 3.7. Q is <7-directed closed.

Proof of Claim[3.7 Let {(M;,g;) | i € I'} be a directed set of conditions in Q with
1| < 7. Set M = J;c; M; and g = U, 9;- We will show that (M, g) is a condition
in Q below all (M;, g;).
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The regularity of 7 ensures that M € p*(H(0)), and M is closed under F', because
each M; is closed under F' and the collection (M; | i € I) is C-directed. In addition,
we have ¢ C M NP and g clearly has the property that D N g # ) for every dense
D € M, because each such D lies in some M; and g; C ¢ is an (M;,P)-generic
filter. Finally, the fact that g is a filter follows easily from the fact that the given
collection is directed and each g; is a filter. This shows that (M, g) is a condition
in Q.

Now, fix i € I. Then M O M;, g N M; is a filter on M; NP, and g N M; 2 g;.
But since g; is (M;,P)-generic, we know that g; is a C-maximal filter on M; N P.
In particular, we can conclude that g N M; = g;. This computation shows that
(M, g) <q (Mi, g:). O

Claim 3.8. The poset Q is forcing equivalent to P.

Proof of Claim[3.8 1t is easy to see that the boolean completions of 7-Jensen-
complete posets are themselves 7-Jensen-complete. Therefore, we may assume that
P is a complete boolean algebra. For each condition (M, g) in Q, let pas 4 be the
P-greatest lower bound of g. This conditions exists and is non-zero, because M is
closed under F, g is (M, P)-generic, P is a complete boolean algebra, and because
of clause of Definition In the following, we will show that the map

e:Q—P; (M,g) — prmy

is a dense embedding, which will finish the proof of the claim.

First, we show that e is order-preserving. Suppose that (N, h) <g (M, g). Then
N DO M and g = hN M. Since g C h and py,p is a lower bound of h, it follows
that py,p is also a lower bound of g. But pys 4 is the greatest lower bound of g,
and hence

€(N, h’) = DPN,h S]P’ Pm,g = e(M,g)

Next, we show that e preserves incompatibility. Suppose (My, go) and (M, g1)
are conditions in Q with the property that there is a condition p in P that extends
both e(My, go) and e(Mi,g1). By clause of Definition there we can find
W € p*(H(0)) such that p,go, g1, Mo, M1 € W, W is closed under F, and there
exists a (W, P)-generic filter G with p € G. Since W N 7 is transitive and |M;| < 7
for all ¢ < 2, it follows that My U M; C W. Furthermore, since p is below both
DMo,go a0d Dary g, and M; NP C W NP for all i < 2, the fact that go and g; are
maximal filters in My NP and M; NP, respectively, implies that G N My = go and
G N M; = g;. Hence (W, G) is a condition in Q that lies below both (Mo, go) and
(M1, g1).

Finally, we show that the range of e is dense in P. Fix a condition p in P. By
clause of Definition there is a W € p*(H(#)) such that W is closed under
F, and there exists a (W, P)-generic filter G with p € G. Then (W, G) is a condition
in Q, and e(W, g) = pw, is stronger than p. O

This completes the proof of the lemma. O

Corollary 3.9. Given a successor cardinal 7, all T-Jensen-complete posets are
<T-distributive. a

Remark 3.10. Another common way to verify the <r-distributivity of a given
poset P is the following weaker version of 7-Jensen completeness: if for every p € P,
there are stationarily-many W € @ (H(6)) such that there is a (W, P)-total master
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condition below p (see Definition [2.1)), then P is <7-distributive. Note that this
weaker version would not suffice for our purposes, however, because we seem to
need <7-directed closure (or a close approximation of it) to prove Theorem

Corollary 3.11. Let k be an infinite reqular cardinal and set 7 = k+. If P is <k-
closed poset with the property that for all but non-stationarily many W € pX(H(9)),
every (W, P)-generic filter has a lower bound in P, then the poset P is forcing equiv-
alent to a <7-directed closed poset.

Proof. By Lemma the <k-closure of P ensures that clause (1) of Definition
holds. Since clause of Definition holds by assumption, this implies P is
7-Jensen-complete and Lemma [3.0] yields the desired conclusion. O

In particular, if a poset P satisfies the assumptions of the above corollary for
K = w1, then forcing with P preserves all standard forcing axioms.

4. THE MAIN TECHNICAL RESULT

In this section, we will prove the main technical result of our paper. It directly
extends the main results of [I3] and [23]. In the next section, we will use it to prove
the two theorems stated in the introduction.

Definition 4.1. If k be an infinite reqular cardinal and let S C S,’j+. Then we let

T(S) denote the tree that consists of allt € <5kt such that dom(t) is a successor
ordinal, ran(t) C S, t is strictly increasing, and t is continuous at all points of
cofinality K in its domain and is ordered by end-extension.

Note that, in the situation of the above definition, the tree T'(S) has height x*
and contains a cofinal branch if and only if the set S contains a x-club.
We are now ready to state the aspired result.

Theorem 4.2. Given an infinite regular cardinal x, there is a partial order P with
the following properties:
(1) P is kt-Jensen completem
(2) P satisfies the (27)F-chain condition.
(3) If G is P-generic over V, then, in V|G], there is a subtree T o <KT Rt of
height k+ without cofinal branches such that the following statements hold:
(a) If S is bistationary in S,’f and S,’f \ S contains a stationary set in
I[k™], then there is an order-preserving function from T(S) to T.
(b) Assume that k<% < kT holds in V. If M € V is a mazimum element

of I[k*]N p(S:Jr) mod NS in V then the following statements hold
in V[G]:

(i) M is a mazimum element of I[x*] N (S5 ) mod NS.

(ii) If S is a bistationary in S% and M\ S is stationary, then there
is an order-preserving function from T(S) to T.

Note that the above theorem directly generalizes the main result of [I3]: if
k<" = £ holds, then part (4] of Lemmashows that S is an element of I[xT],
and hence S*" is a maximum element of I[x*] N p(S% ) mod NS. Now, if G is

101y particular, Lemma shows that the poset P is forcing equivalent to a <xT-directed
closed poset.
1Such a subset M exists by Lemma m
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P-generic over V and T' € V[G] is the tree given by the theorem, then there is an
order-preserving function from the tree T'(S) to T' in V[G] for every bistationary
subset S of S5 in V[G]. In particular, this shows that T is a r-canary tree (see
[13, Definition 3.1]) in V[G], i.e. if S is a stationary subset of S,’j+ and Pis a <k*-
distributive poset that forces k™ \ S to contain a club subset, then forcing with P
adds a cofinal branch to T

For the remainder of this section, fix an infinite regular cardinal x. Until further
notice, we do not make any cardinal arithmetic assumptions. In the following,
we closely follow the arguments on pages 1684-1692 of Hyttinen-Rautila in [I3],
which assumed GCH (in particular, their arguments heavily rely on the assumption
k<" = k). We also follow their notation as closely as possible.

Definition 4.3 ([13]). We let Qo denote the poset that consists of functions f
such that dom(f) C S,'f, |[dom(f)| < &, f(0) is a function from & to & for all

§ € dom(f), and whenever § < n are both in the domain of f, then f(8) € f(n)m
and whose ordering is given by reversed inclusion.

Proposition 4.4. The poset Qg is <xT-directed closed.

Proof. This statement follows directly from the fact that the union f of a coherent
collection of conditions in Qg still has the required property that f(n) € f(8) for
all n < B in the domain of f, and, if the union is of size less than ¥, then the
domain of f has size less than ™ too. O
Definition 4.5 ([13]). If G is Qp-generic over V, then, in V[Go], we define the
following subtree of <" kT :

T(Go) = {he="w" | VS €SE h1d#(UG)O)).
In the following, we let 7(Gg) denote the canonical Qg-name for T(Gy).

KR

Remark 4.6. In the situation of the above definition, the tree 7(Gp) has height
kT, since for any 3 € S’,jJr, the function f with domain S and constant value 8+ 1
has the property that for all § € S,’f with § < dom(f), the restriction f [ § is not
a function from § to ¢ and hence cannot be the same as the function (| Go)(9).

Lemma 4.7. If Gy is Qg-generic over V, then the tree T(Go) has no cofinal
branches in V[Gp].

Proof. Work in V and assume, towards a contradiction, that a condition f in Qg
forces a Qg-name b to be a cofinal branch through 7/(Gy). Using Proposition
easy closure arguments allow us to find A € Sf, a function h : A — X and
a condition g below f in Qg such that A = sup(dom(g)) and g forces h to be the
restriction of b to A. By the definition of 7(Gy), this implies that h | § # g(8) holds
for all § € dom(g) and we can conclude that g U {(A, h)} is a condition in Qg below

¢. But this condition forces that h is not contained in T(Go), a contradiction. [

The following poset, again taken from [I3], adds an order preserving function
from T'(S) to T(Gy). The role of clause [3(a)ilis to add such a function with initial
segments. However, the role of clauses [3(a)ii| through|3(a)vi|is not obvious; roughly,

128ince £(8) : 6§ — 6 and f(n) : n —> 7, this just means that f(§) and f(n) disagree at some
£<0.
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with the exception of clause these properties allow us to verify xT-Jensen
completeness by ensuring the existence of lower bounds for any generic filter over
any k-sized elementary submodel. The role of clause |3(a)iv|is to ensure that no
cofinal branch is added to T(Gy).

Definition 4.8 ([I3]). Let Gy be Qq-generic over V and work in an outer model
of V[GO] with, the same bounded subsets of k™ as V. Let S be a subset of S& .
(1) An element t of T(Gyo) is an S-node if t[5] ¢ & holds for all § € 55T\ 8.
(2) Given a partial function h : T(S) part, T(Go), we define
o(h) = sup{dom(t) | t € ran(h)}.
(3) We let P(S,Gy) denote the unique poset defined by the following clauses:
(a) A condition in P(S,Gy) is a pair (h, X) satisfying the following state-
ments:
(i) h is an order-preserving partial function of cardinality at most
K from the tree T(S) to the tree T(Gy) with the property that
dom(h) is closed under initial segments.
(ii) X is a partial function from k* to | J{"T1k* | B < kt} of car-
dinality at most k such that

o(h)N S5 C dom(X)

and
X(a) € (UGo)(a)
for all a € dom(X) N S%".
(#4i) dom(h(t)) = sup(ran(t)) for all t € dom(h).
(v) h(t) is an S-node for all t € dom(h).
(v) X(a) € h(t) for allt € dom(h) and o € dom(X).
(vi) If (tc | ¢ < k) is a strictly increasing sequence of elements of
dom(h), then U, h(tc) € T(Go).
(b) A condition (h,X) is stronger than a condition (k,Y) if and only if
kChandY C X hold.
(4) The order of a condition p = (h, X) inP(S, Gy), denoted by o(p), is defined
to be the ordinal

max{Jdom(X), [J{dom(h(t)) | t € dom(h)}}.

Remark 4.9. In the above definition, the requirements on X («) differ depending
on whether or not cof(a) = k. If & € S N dom(X), then X (a) is a proper initial
segment of the function (| Go)(a)ﬁ In combination with requirement in
the above definition, this shows that for all @ € dom(X) N S,’f, there is an ordinal
Mo < a such that no node in the range of h can extend (|JGo)(a) [ no. On the
other hand, if a € dom(X) with cof(a) < &, then the only requirement on X («) is
that nothing in the range of h is allowed to extend X («).

As pointed out near the bottom of page 1684 of [L3], the poset P(S, Gp) is <k-
closed. Requirements (3(a)iii) and (3(a)vi) of Definition are mainly needed for
the proof of Lemma below.

I31.e. a model of ZFC in which V[G] is a transitive class.
14The domain of X(a) is required to be a successor ordinal, so X (a) cannot be the entire
function (|J Go)(«).



FORCING AXIOMS AND THE COMPLEXITY OF NON-STATIONARY IDEALS 15

Lemma 4.10. Let Gy be Qg-generic over V, let Vi be an outer model of V|G|
with the same bounded subsets of kT as V, and let K be P(S,Go)V-generic over

Vi for some set S that is bistationary in S,’j+ in V1. In V1[K], define
hie = |J{n | (h,X) € K}

and
Xk = (JIX|(9,X) e K}.
Let § = (k7)V. Then the following statements hold:

(1) hi is a total, order-preserving function from (T(S))V to (T(Gyg))VICol
whose range consists entirely of S-nodes.

(2) Xg is a total function from § to (<06)V.

(3) No element of ran(hg) extends an element of ran(Xg).

(4) Suppose M is an outer model of V1[K] and § = (y¢ | ¢ < A) is an increasing
sequence of nodes in ran(hx) in M. If we set fz = .., yc, then

fity # (UGo)()
for all v € (S%)V.

Proof. Statement is [I3, Claim 3.11HE| Statement is an easy density argu-
ment, and statement (3 follows directly from requirement of Definition
For Statement , let M and y € M be as stated, and suppose for a contradiction
there exists v < § with cof(y)" = k and fi Tv=(UGo)(v)-

Work in M. The statements (|1, , and are obviously upward absolute
from V1[K] to M. By Statement ([2]), we know that ~y is in the domain of Xk, and,
by applying Remark to some condition in K whose second coordinate has v in
its domain, we can find p, < v with Xx(v) = (UGo)(7) | py. Note that, by the
definition of Qg, we know that (|JGo)(7) is a total function on ~, and therefore
our assumption implies that v < dom(fy). Then p, € dom(fy), and there is some
G+ < A with p, € dom(yc,). In particular, we know that

ye. 1oy = fgley = UGV Tpy = Xk(v):
But this implies that y., € ran(hg) extends Xg(vy) € ran(Xg), contradicting
Statement (3)). O

We now describe the iteration that will witness the poset from Theorem (4.2
This is a slight variant of the iteration described at the bottom of page 1684 of [13].
The main differences are:

e The length of our iteration is at least 22°. This is to allow for the case
when, in the ground model, the cardinal 27" s very large.

e More significantly, at a given stage a of our iteration, when considering the
set S, given to us by the bookkeeping device, we only force with the poset
P(Sa, Go) if the statement

“ S,’_§+ \ S, contains a stationary set in I[x*]” (2)
holds in the corresponding generic extension of the ground model. This

will ensure (via an application of Lemma [2.12)) that the complements of

15This was the only place in the argument where requirement (3(a)iii) from Definition
played a role. This requirement was used to fix the error from [23]. It ensures that the function
hk is total.
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the S,’s remain stationary throughout the iteration, which in turn will be
the key to showing that the tree 7(Gp) has no cofinal branch in the final
model.

Remark 4.11. In the GCH setting of [13], requiring (2)) to hold is no restriction at
all, since in that scenario, this statement holds for every set bistationary in S’§+.
But, if s<% > k holds, then the requirement seems to be needed in order to
prove that the iteration adds no cofinal branch to the tree 7 (Gy).

In the following, we fix a cardinal e satisfying e2” = ¢. Let C denote the set of all
partial functions from e to H(xk™) of cardinality at most x. Then our assumptions
on ¢ imply that |C| = . Next, let A/ denote the set of all partial functions from
S,’f X 2% to C. Again, our assumptions imply that |A| = ¢ and we can pick an
e-to-one surjection b: & — N.

Definition 4.12. We define
<PQ7QE | O[S&, £<€>

to be a <k -support iteration satisfying the following clauses:

(1) Qo is chosen in a canonical way that ensures that the map
i: Qo — P15 ¢ ()

s an isomorphism.

(2) Assume that € [1,€) has the property that the poset Py, is <x™-distributive
and there exists a sequence (g, | (v,€) € dom(b(x))) of conditions in P,
such that the following statements hold:

o If (v,€) € dom(b(wv)), then sprt(g, ¢) = dom(b(c)(7,§)).

o If (7,§) € dom(b(e)), ¢ € sprt(gy,e) and b(a)(v,£)(¢) = z, then
Tye(l) = .

If we define

Ba = {(:ay6) | (7,€) € dom(b(e))},

then there exists a Po-name S, for a subset of S,’j+ such that the following
statements hold in V|G| whenever G is P,-generic over V. and Gq is the
induced Qqg-generic filter over V:
(a) QS = P(SC, Go)VI9).
(b) If the set S5\ BS contains a stationary set in I[x"], then S¢ = BC.
(c) If the set S§+ \ BS does not contain a stationary set in I[xt], then
SS = 0.
(3) Assume that o € [1,€) has the property that the poset Py, is <r™T-distributive
and there exists no sequence of conditions in P, with the properties listed
n . Then So = 0 and Qg = P(Sg,GO)V[G] whenever G is P,-generic
over V and Gy is the induced Qq-generic filter over V.
(4) If a € [1,€) has the property that the poset Py, is not <xT-distributive, then
Qq is a Py-name for a trivial poset.

Remark 4.13. We include the cases and (3)) in the above definition of the name
S, to simplify notation later on. Note that, since we have T()) = ), conditions
in P(, Go) always have trivial first coordinate, and the poset P((), Gy) is forcing
equivalent to Add(x™,1).
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Throughout the rest of this paper, P refers to the poset P.. Moreover, in order
to conform to the notation from [I3], if G is P,-generic over V for some « < ¢, then
we let G denote the induced Qg-generic filter over V.

Definition 4.14. A condition p in P is called flat if there exists a sequence
(xo | i € sprt(p)) with the property that x, € H(k™) and

113

plalp, “pla)=2,"
hold for all o € sprt(p) with the property that P, is <rx™-distributive.

Just as in [13], the flat conditions turn out to be dense in P, as we will see in
Lemma below. Although the density of the flat conditions is not needed to
prove the x'-Jensen-completeness of P in Lemma it will be crucial for the
proofs of the following statements:

e The “tails” of the above iteration are proper with respect to IA, (see
Lemma , which in turn is important for the proof that the tree T(Gy)
has no cofinal branches in P-generic extensions of V (see Lemma [£.30).

e If 28 = kT, then P satisfies the x*+-chain condition.

The function p(fo,g) defined in Definition below is a natural attempt to
form a flat condition out of a (W, P)-generic filter for some elementary substructure
W of size k.

Definition 4.15. Suppose W < (H(0),€,P) with [W|=x CW, and g CPNW is
a (W,P)-generic filter in V.

(1) Set go={q€ Qo | Ip € g p(0) = ¢} [
(2) Given 0 < a < ¢, we define

go = {plalpeg}

(8) Given 0 < a < € with the property that the poset P, is <wk™-distributive,
let ¢4 q, f.Lg@ and Xgﬂ denote the canonical P,-names with the property
that|" ‘| whenever G is Py-generic over V, then

o ¢go = {p(a)° | peg},
. hga = U{h|3X (h, X) €S}, and
o X§, = U{X | 3n (h,X)ec§,}

(4) If fo is a condition in Qg extending | go, then we define a function p(fo, g)

with domain W N e by setting

p(fo,9) = <f0>ﬂ(pairpa(hg’a,)'(g’a) | a € WN1,e) with Py <w™-distributive),

where pairp, (hg o, Xg,a) denotes the canonical Po-name for the ordered pair

of hg.o and Xy q.

Note that, in the last part of the above definition, the function p(fo, g) may or
may not be a condition in P. The following lemma shows how we can ensure that
p(fo,g) is a flat condition below every condition in g.

16This notation is chosen to keep in line with the notational convention from [13] of identifying
P; with Qp and referring to the induced Qo-generic filter by Go. Notice that Jgo is easily a
condition in Qq.

17The idea behind this definition is that ¢g,a Names the evaluation of the a-th component of g
after forcing with P, over V, and l.lg,a and Xg,a name the unions of the left and right components
(respectively) of that a-th component of g.
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Lemma 4.16. Suppose W, g, and fo are as in Definition [[.15 Then one of the
following statements holds:

(1) p(fo,9) is a flat condition in P that extends every element of g.

(2) There is an « € W N[1,&) such that the following statements hold:
(a) p(fo,9) | @ is a condition in P, that extends every element of gq.
(b) If 1 € W is a Py-name for a function from k to the ordinals, then

p(fo,9) | alFp, “T € w7

(c) There is a condition q in P, below p(fo,g) | a with the property that
the following statements hold true in V[G], whenever G is P,-generic
over V with q € G:

(i) cof(W N k+)Y = k. In particular, we have WNk+ € dom(|J Go).
(i1) Ewery proper initial segment of (JGo)(W N k™) is an element
of W, and is an Sf—node,
(111) No proper initial segment of (JGo)(W N k™) is an element of
ran(Xga).

Proof. Set g. = g and, given 8 < ¢, let ®g denote the statement asserting that
p(fo,g) | B is a flat condition in Pg that lies below every element of gz. Suppose
that @, fails, i.e. that part of the disjunctive conclusion of the statement of the
lemma fails. Let 8 < e be the least ordinal such that ®4 fails.

Claim 4.17. [ is a successor ordinal and an element of W.

Proof of Claim[{.17 First, we have 8 > 0, because the O0th component of p(fo, g)
is fo, which is assumed to be a condition stronger than | go, and go is a (W, Qp)-
generic filter. Now, assume, towards a contradiction, that g is a limit ordinal. Since
®,, holds for all & < 8 and since the support of p(fo, g) is contained in the x-sized
set WnNe, it follows easily that p(fo,g) | £ is a condition and is below every element
of gg. Furthermore, for each a € W N g, let

To = (zg | E€WNQ)

witness flatness of p(fo,9) | @. Then for all ap < a3 < B, it follows easily that
x?o = xg‘l holds for all £ € W N ag. So the Z,’s are coherent, and their union
witnesses flatness of p(fo,g) [ 8. This shows that ®3 holds, a contradiction.

The above computations yield an ordinal o with = o + 1. Assume, towards a
contradiction, that o ¢ W. Note that, if r € g, then r € W and, since sprt(r) is a
k-sized element of W and k C W, it follows that sprt(r) C W. Since « is not an
element of W, this shows that g, = gs and p(fo,9) [ 8 = p(fmg) [ «. But, since
®, holds, this immediately implies that ®g holds too, a contradiction. ([l

The above claim shows that there is an « € WN[l,¢e) with § = o+ 1. We claim
that this a witnesses part of the conclusion of the lemma holds true. By the
minimality of 8, we know that holds and P, is <xT-distributive. Moreover,
since p(fo,g) | « is a condition that extends the (W, P, )-generic filter g,, part
holds by Lemma,

Claim 4.18. There is an x € H(k™) with

p(fo,9) I alFp, “p(fo,9)(a) =7 . (3)

Furthermore, if G is P,-generic over V. with p(fo,q9) | « € G, then the following
statements hold in V[G|:
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(1) The pair (hga, chfa) satisfies all requirements to be a condition in the poset

P(SS,GQ), with the possible exception of requirement of Def-
inition[{.8 In particular, the following statements hold:
(a) Every element ofran(hga) is an SS -node (i.e. requirement of
Definition is satisfied).
(b) No element of ran(hga) extends an element ofran(Xga) (i.e. require-
ment of Definition is satisfied).
(2) If the pair (hga, chfa) is not a condition in P(SS,Gy), then the following
statements hold:

(a) cof (W N m"’)v = k. In particular, we have W N k™ € dom(|J Go)).

(b) Every proper initial segment of ((JGo)(W N k™) is an element of W,
and is an SS-node.

(¢) No proper initial segment of ({J Go)(WNk™) is an element ofran(Xnga).

Proof of Claim[{.18 In order to make use of Lemma [£.10] it will be more conve-
nient to work with the transitive collapse of W instead of W itself. Let Hy be
the transitive collapse of W, and let o : Hyy — W < H(6) be the inverse of the
collapsing map. In the following, if b is a set, then we will write

b = Uﬁl[b} - Hw.

Note that b = o~1(b) holds for all b € W and we will frequently use this abbreviation
in the following arguments. B

Since g is a (W, P)-generic filter, we know that g is a P-generic over Hy,, and, in
particular, it follows that g, is IP,-generic over Hy for all v € W Ne. If we define

k = {Q(@)ga | ¢ € Gat1} © Hwlgal,

then k is 0~ (Qq )% -generic over Hyy [ga] with Hyy [Gat1] = Hw[gal[k].

Set § = (k)W and note that § = crit (o), because |W| = x C W. Since ®,
holds, we know that p(fo, g) | « is a condition in P, that extends every element of
the (W, P,,)-generic filter g,. In particular, p(fo,g) | « it is a total master condition

for W. By Lemma [2.2] every P,-name for a function from x to the ordinals in W
is forced by p(fo,9) | a to be evaluated to an element of W. It follows that

Hy N"0rd = HW[ga} N *Ord. (4)

Let hj be the union of the left coordinates of k& and let X} be the union of the
right coordinates of k. By , we can apply Lemma with the ground model
Hy and the outer model Hyy [g,] and derive the following statements:

e The function
By - T(o71(Sa)%)HWIel s 6= 1(T(Gp))%
is order preserving and every element of its range is a 0~ (Sy)9%-node in

Hw [ga]'
e No element of ran(hy) extends an element of the range of the function

X, 10— (Z08)Hw.

Set = (hg, Xk). In the following, we will show that p(fo,g) | @ and z satisfy
, and p(fo,g) | a forces the other statements of the claim to hold true.

Let G be P,-generic over V with p(fo,g) [ « € G. Work in V[G]. Since a € W
and p(fo,9) | « is a W-total master condition that, in particular, extends every
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element of g,, it follows that W[G]|NV = W, GNW = g,, and ¢ can be canonically
lifted to an elementary embedding
6 : Hw|do) — W[G] < H(9)[G].
satisfying
6(t92) = o(1)¢
for every P,-name 7 in Hyy. Note that ran(6) = W[G] holds.
Now, pick an element ¢ of go11 C Hy . By the definition of &, we then have

3(q(@)%) = o(g(a)® = (o(@)(0(@)® = (o(g)())®.
Since ¢ € gor1 implies that o(q) € gai1, we can now conclude that 6(q(a)%«) € ¢
These computations show that &[k] C éﬁa.
Next, fix a condition p in g. Since g U {a} C W = ran(c), we then have
Pl (@+1) € gor1 and p(a@)%> € k. By the definition of &, we now know that

p(@) = o(p(@)® = o(p(@)™) € olkl.

This shows that éga C o[k] and, together with the above computations, we can
conclude that

G

g,a”

olk] = éfa. ()
By and the elementarity of &, we also have 6[hy] = h?a and 6[Xy] = XgGa

Note that conditions in ¢~ (Qqu)% are elements of H(8)#w[9] and hence k is a
subset of H(§)#w 9], Since the critical point of & is 8, it follows that k, hj and X
are all pointwise fixed by . In particular, we have

z = (b, Xp) = (h§a X(l0)- (6)

g, "7 g,«x

Since p(fo,9)() is, by definition, the P,-name pairﬂma(i’zg,a,Xga), this completes
the proof of .

Part of the claim follows by the properties of (hy, Xi) over Hyy [gq] discussed
above, together with the equality @, elementarity of &, and the fact that ¢ fixes
bounded subsets of § that lie in Hyy[gs]. For example, to verify requirement
of Definition [£.8] suppose ¢ is in the range of hy. Then ¢ is in the range of the left
coordinate of some condition in k C 6~ (P(SS, Go)VIE!), and hence ¢ is an 61 (SS)-
node in Hy[gs]. By elementarity of 6 and the fact that & fixes y, it follows that
t is an S$-node in V[G]. The remaining requirements of Definition |4.8] except for
requirement , are easily verified for the pair displayed in (6) in a similar
manner.

Now, we prove that p(fo,g) | « forces the statements in part of the claim.
Recall G is an arbitrary P,-generic filter over V with p(fo,g) | « € G. Assume that
the ordered pair (6) is not a condition in P(S$, Gy) in V[G,]. In the following, we
show that the statements , , and of the claim hold true in V[G]. By
part of the claim, it must be requirement of Deﬁnition that fails. In
particular, there is an increasing sequence § = (y¢ | ¢ < ) of nodes in the range of
hi in V[G] such that the function fy = |J._, yc is not an element of 7(Gy). Since
the elements of the range of hy are k-sized objects in Hyy [go] and hence in Hy, by
, this implies that the domain of f; is at most § = (x7)”W. In summary, there

is some ordinal v € (S5 )V such that

VIGIE“y <6 = (v5)™ and f1v = (UGo)()". (7)
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By part of Lemma [4.10] - viewing Hy as the ground model V, Hw [ga] as
the outer model Vi, k as the generic filter K, and V[G] as the outer model M
from the statement of that lemma — the ordinal v cannot be strictly smaller than
J, and hence we can conclude that v = §. But this implies that cof(W N I<L+)V =
cof(8)" = cof(7)¥ = &, proving part of the claim.

In summary, we have shown that W N« = dom(f;) and

fi = UGo)(WNkT). (8)
Since fy is a union of functions in the range of hj, and together with the fact
that the critical point of ¢ is é imply that hy C W, every proper initial segment of
fy is an element of W. Furthermore, every proper initial segment of f; is extended
by some y € ran(hy,), which is an S"S—node in V[G] by part of the claim. Hence,
every proper initial segment of fy is an S’S -node in V[G], and is an element of W.
Together with (), this proves part of the claim.

Finally, to prove part of the claim, suppose v € dom(Xy), define n =
dom(Xk(7)) and assume, towards a contradiction, that f; | n = X (). Note that
n < 6, because X, € Hw[ga). In particular, we have yc [ n = Xi(«) for some
¢ < k. But this contradicts the fact from part that nothing in the range of hy,
extends any function from the range of Xj. O

It remains to prove part of the lemma, which will essentially follow from
part of Claim though we first must dispense with a technicality. Recall
that ®,4; fails, but &, holds. Next, we observe that the failure of ®,4; is due
to the function p(fo,g) | (a + 1) not being a condition at all (rather than being a
condition but failing to extend g41, or being a condition but failing to be flat):

Claim 4.19. Some condition in P, below p(fo,g) | « forces that

p(fo,9)(a) = pairp, (hg,a, Xg,a) 9)
is not a condition in Q.

Proof of Claim[{.19 Assume not, i.e. suppose that p(fo,g) | « forces that the pair
in @[) to be a condition in Q. Since the components of the pair in @ are given
by the union of the left and right coordinates of ¢4, the fact that the ordering
of Q, is given reversed inclusion now implies that the condition p(fo, g) | a forces
p(fo,9)(a) to be stronger than every condition in ¢, . Since the validity of @,
implies that p(fo,g) | « is stronger than every condition in g,, it follows that

p(fo,9) [ (a+1) = (p(fo,9) I @)™ (a,pairp, (hg.a Xg.a))

is stronger than every condition in go41.
Furthermore, by Claim there is an z, € V such that

p(fo.9) o IFp, “Zo = p(fo,9)(a)”.

Since ®, holds, we know that p(fo,g) | « is flat. Let (x¢ | £ € W Na) witness
its flatness. Then the sequence (xy | £ € W N (a+ 1)) witnesses the flatness of
p(fo,9) | (a+1). In summary, p(fo,g) | (o + 1) is a flat condition below every
member of g,+1, contradicting the fact that ®,,; fails. ]

Part (2c) of the lemma now follows immediately from Claim and part
of Claim [4.18 O
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The above results now allow us to prove the following key lemma.

Lemma 4.20. The poset P is k' -Jensen complete, and the flat conditions are
dense in P.

Before we prove this result, we make a couple of remarks.

Remark 4.21. In [13, Claim 3.13], a weaker version of Lemma stating that
P is k-proper, was proven. This concept was defined in [I3] Definition 3.4] and only
makes sense under the assumption that k<% = k. It, in particular, implies that the
given poset is <x*-distributive.

In the non-GCH setting, in particular, when we do not assume k<" = k, perhaps
the most natural analogue of k-properness is our notion of IA ,-proper (Defininition
2.8). In fact, changing just a few words in the proof of [I3| Claim 3.13] would
suffice to prove that (even without GCH) the poset P is proper for TA, and is <x*-
distributive. However, that conclusion does not suffice for applications in our main
theorems, since, for example, IA,,, -properness, even together with <ws-strategic
closure, does not guarantee preservation of the Proper Forcing A:m‘om@

We seem to need the stronger property of x-Jensen completeness (i.e. <rx™-
directed closure), which we prove in Lemma This requires some reorganization
and strengthening of the argument of [13, Claim 3.13], but the main ideas of the
proof of Lemma are very similar to the proof of [I3] Claim 3.13].

Remark 4.22. Iterations using <xT-support, where each iterand is <xT-directed
closed, are themselves <xT-directed closed. However, this fact seems to not be
applicable to the iteration P. constructed in Definition [4.12] That is, it is not
clear if, say, the first non-trivial poset used of the form P(S,Gy) is equivalent to
a <kT-directed closed from the point of view of V|[Gy] (and we suspect it is not,
in general). The key to Lemma (and to the analogous, but weaker [13, Claim
3.13]) is the flexibility in having G not be decided yet.

Proof of Lemma[{.20. First, we check x*-Jensen completeness. Since each iterand
is <r-closed and the iteration uses k-sized supports, the entire iteration is <k-
closed. So by Corollary to show that P is kT-Jensen complete, it suffices to
show that whenever

e W < (H(M),€,P) with [W|=x and WNkt € kT, and
e g CWnNPisa (W, P)-generic filter,

then g has a lower bound in P. So fix such a filter g for the remainder of the proof.
Given a € WN|0,¢], define g, as in Definition Set § = W N k™. We consider
two cases:

Case 1: cof(d) < k. Set fo = Jgo, and consider the function p(fo, g) from Defini-
tion We claim that p(fo, g) is flat condition and lies below all members of g.
Assume not. Then, by Lemma there is an & € WN[L,e) such that p(fo,9) | @
is a condition below all conditions in g, and there is some ¢, <p_, p(fo,9) | @ in
P, that forces all the statements in part of Lemma to hold. In particular,
by part , we know that cof(d) = cof (W N k™) = k, contrary to our case.

1SE.g. if 291 = w9, one can code IA,,; N pw, (H(w2)) as a stationary subset S of Sf. Then,
shooting an wi-club through S with initial segments is IA, -totally proper, but kills PFA.
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Case 2: cof(d) = k. Since |W| =k < 4, we can fix t : § — J such that ¢ | & is not
an element of W. Define
fo = (Ugo) U{(4,0)}.

Given v € 6N S, we have ¢ | v ¢ W and (Jgo)(y) € W. In particular, we have
t1v# (Ugo)(y) for all v € 6N S5 . Since cof(8) = k, this shows that fo is a
condition in Qg that extends | go.

Let p(fo, g) be the function defined in Definition We claim that p(fo, g) is
a flat condition that lies below every element of g. Assume not. Then, by Lemma
there is an o € WN[1,¢) such that p(fy, g) | @ is a condition in P,, and that,
by part of that lemma, there is some condition ¢ <p_ p(fo,¢g) | a such that
q forces that every proper initial segment of (JGo)(d) is an element of W. But
the Oth component of p(fo,9) | «, and hence of g, extends the function fy, and
therefore

q(0) IFe, “(UGo)(8) = 7.
In particular, every proper initial segment of ¢ is an element of W, contrary to our
choice of t.

This completes the proof of x*-Jensen completeness. To see that the flat con-
ditions are dense in P, let pg be any condition in P. Fix W < (H(0), €,P, pg) such
that [W| =k C W and W € IA,.. By Lemma 2.7 and the <x-closure of P, there
exists a (W, P)-generic filter g such that py € g. Note that W € IA, implies that
cof (W NkT) = k. This shows that we can repeat the argument from the above
Case 2, define fjy as above and conclude that the function p(fo, g) is a flat condition
that is below every member of g and therefore also below py. O

Lemma [£:20 and Corollary now immediately yield the following corollary:

Corollary 4.23. The poset P is forcing equivalent to a <k -directed closed forcing.
In particular, it adds no new sets of size k, and, in the case Kk = wy, it preserves
all standard forcing azioms, such as MM ™. ([l

Remember that the order o(p) of a condition in a poset of the form P(S, Gy) was
defined in part of Definition

Lemma 4.24. If p is a flat condition in P, then there exists B < w* with the
property that

plals, “o(p)<pf”
holds for all 1 < « € sprt(p).
Proof. Let (x, | a € sprt(p)) be a sequence witnessing the flatness of p. For each

a € sprt(p), pick B, < kT such that (3, is not in the transitive closure of z,. Since
|sprt(p)| < k, we know that

B = sup{Ba | @ €sprt(p)} < k"
has the desired properties. (Il

Our next task is to prove that tails of the iteration behave nicely. But first we
need tail versions of Definition [£.15] and Lemma Note that in Definition .25
below, since ag > 1, the entire filter Gy has already been determined. So unlike
Definition the candidate for a condition below g will not involve any fo.
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Definition 4.25. Suppose that ag € [1,€) and G, is Py, -generic over V. Working
in V[Ga,], suppose that W < (H(0)[Gq,l, €,P/Gq,) with |W| = k C W, and
g CWNP/G,, is a (W,P/G,,)-generic filter. For each o € W N [, €), define

Po/Gay-names ég o, hgao and Xy analogously to Definition and define a
function p(g) with domain W N [, €) by setting

plg) = (pairp_/q,, (hgo, Xga) | i€ WD [ap,e)).
‘We now also have a tail variant of Lemma [4.106]

Lemma 4.26. Suppose ag € [1,¢) and G, is Py, -generic over V. Work in V[G,,]
and suppose W and g are as in Definition . Given o € [ag, €], set

go = {plalpeg}
Then one of the following statements holds:
(1) p(g) is a flat condition in P/Gq, that extends every element of g.
(2) There is an o € W N [, €) such that the following statements hold:

(a) p(g) | « is a flat condition in Py/G,, that is stronger than every
element of gq.

(b)) If T € W is a Py/Go,-name for a function from k to the ordinals,
then

p(9) I alrp,jc,, “TEW?

(c) There is a condition q in P, /G4, below p(g) | o with the property
that the following statements hold true in V|Gq,, G|, whenever G is
Po/Ga,-generic over V[Gq,| with ¢ € G:

(i) cof(WNkt) = k.
(i) Every proper initial segment of (JGo)(W N %) is an element
of W, and is an SS -node.
(iti) No proper initial segment of (JGo)(W N k1) is an element of
ran(Xga).

Proof. The proof is almost identical to the proof of Lemma [{.16] except we work
in V[G,,] instead of V. We leave the details to the reader. O

Lemma 4.27. If a < € and G is Py-generic over V, then the tail of the iteration
P/G is <k-closed in V[G].

Proof. Let (ge | £ < ) be a descending sequence with 1 < x in P/G in V[G]. Since
P/G C P and Lemma shows that P, is <k-closed in V, this sequence is an
element of V. Let G denote the canonical Py-name for the generic filter in V. Fix
a condition p in G such that

plkp, “Every condition in G is compatible with de m P

holds in V for all £ < p. Work in V. Given ¢ < pu, a standard density argument
now shows that
p H‘]}»a “(jf [d c G”
and the separativity of PP, allows us to conclude that p <p_, ¢ | a holds.
Fix a condition r below p in P, and set

re = 17 (g [ [€))
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for all £ < p. Then (r¢ | € < p) is a descending sequence of conditions in P,
and, by the proof of Lemma this sequence has a lower bound r, in IP. Then
Ty [ a<p, randr, <p g for all { < pu.

By genericity, we can now find a condition ¢ in [P with the property that ¢ [ « € G
and g <p g¢ for all £ < p. But then we can conclude that ¢ is a condition in P/G
in V[G] with q <p,g g¢ for all £ < p. O

The proof of the following lemma is similar to the proof of [13, Claim 3.14], but
there are some subtle differences since we do not assume that k<% = k. Roughly,
we replace their use of k-properness with IA.-properness (Definition and verify
that the argument still goes through.

Lemma 4.28. Ifay < € and G is P, -generic over V, then the tail of the iteration
P/G is IA-totally proper in V[G].

Proof. For ag = 0, the statement of the lemma follows immediately from Lemmas
and Therefore, we from now on assume that 1 < o < €.

Let G4, be Py, -generic over V and work in V[G,,]. Let 6 be a sufficiently large
regular cardinal, let <I be a well-ordering of H() = H(0)V[G,,], let

W < (H(0), €,a0,P/Gqoy, Q)

with W € TA,;, and let pg be a condition in W N (P/G,, ). In the following, we will
find a (W, P/G,,)-total master condition below pg. Define

t = (UGo)(Wnr"),
which is well-defined because W € IA,, implies that cof (W N k™) = k.

Case 1: There exists ¢ € W N kT with t | ¢ ¢ W. Since Lemma implies
that P/G, is <k-closed, we can apply Lemma to find a (W,P/G,,)-generic
filter ¢ that includes py. Let p(g) be the function defined in Definition and
assume, towards a contradiction, that p(g) is not a condition in P/G,, that is

stronger than every element of g. Then, by part (2(c)ii)) of Lemma |4.26] there is an
a € WNJ[ag,e) and some condition in P,/G,, below p(g) | « forcing that every

proper initial segment of (|JGo)(W Nk™) is an element of W. But this implies that
every proper initial segment of ¢ is an element of W, contrary to our case. This
allows us to conclude that p(g) is a (W,P/G,,)-total master condition below py.

Case 2: If( e WNk™, thent | ¢ € W. Since W € TA,, there is a sequence
D = (D¢ |€&<k)

listing all open dense subsets of P/G,,, that are elements of W, and such that every
proper initial segment of D is an element of W. Recursively define a descending
sequence p = (pe | £ < k) of conditions in P/G,, as follows:
e Given £ < £, let p; be the <-least flat condition in P/G,, below p¢ that
is an element of D¢. Such a condition exists by Lemma [£.20]and the open
density of D¢. By Lemma there exists 8 < k™ with

pe T alke, “o(pi(a)) < B7

for all 1 < a € sprt(pg). Given a € [ag,€), let fa and Y, denote the
canonical P, /Gq,-names with the property that

pe(@)® = (f&,YS)
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holds whenever G is (Po/Gq, )-generic over V[Gq,] with pf [ a € G. Note
that, by the choice of g, for each a € sprt(pz), the condition p§ [ « forces

that 8 is larger than all domains of elements of the range of fa, and larger
than all elements in the domain of Y,,. In particular, if ag < a € sprt(pz)
and G is (Po/Go, )-generic over V[Gq,] with pf | o € G, then

(J& Y& uA{B+1L 1 (B+1)}) (10)

is a condition in QS below pz(a)GH This shows that there is a condi-
tion pey1 below pg in P with sprt(pey1) = sprt(pz) and the property that
whenever g < a € sprt(pey1) and G is (Po/Ga, )-generic over V|G, ] with
pelace G, then p£+1(0z)G is equal to the condition in .

Now, assume that pe is an element of W. Then pz is obviously definable
in (H(0)[Ga,l, €,P, Ga,, <) using the parameters pe and Dy, which are both
contained in W. Since pg € W, then (8 can also be taken to be an element
of W. Finally, the condition p¢44 is definable from p¢, 5, and ¢ [ (B+1), all
of which are elements of W because of the case we are in. These arguments
show that pe € W implies that pey1 € W.

o If £ <k is a limit ordinal, then we define pe be the <-least lower bound of
the sequence (p¢ | ¢ < &) in ]P’H

Note that every proper initial segment of p’ is an element of W, because W
contains all proper initial segments of ¢ and each proper initial segment of p’ is
definable in the structure (H(0)[Gq,], €, <,P) using the parameter py and some
sufficiently longlﬂ proper initial segment of ¢. Hence, not only is each p¢1 an
element of Dg, but is in fact an element of DeNW. In particular, the set {pg | £ < K}
generates a (W,P/G,, )-generic filter. Let g denote this filter, and let p(g) be the
function defined in Definition [£.25

Now, assume, towards a contradiction, that p(g) is not a condition below every
member of g. Then by part of Lemma there is an « € W N [ap, &)
and a condition ¢ in P,/G,, below p(g) | « with the property that whenever
G is (Py/Gq,)-generic over V[G,,] with ¢ € G, then no proper initial segment
of t = (UGo)(W N k™) is an element of ran(Xga). Since @ € W and the set
{pe | £ < k} generates the (W,P/Gq,)-generic filter g, we can find &, < k with
the property that o € sprt(pe,+1). Then ¢ < pe 41 | a. Let G be (Po/Ga,)-
generic over V[Gq,] with ¢ € G. Work in V[G4,,G]. Since pe, 41 € g, we know
that pe,41(a)¢ € c'g’:a and hence Xg’:a extends the right coordinate of pe_ 11 ().
By construction, the range of the right coordinate of p5a+1(a)G contains a proper
initial segment of ¢, contradicting the properties of o and gq.

Again, we can conclude that p(g) is a (W, P/G,, )-total master condition below
the condition pg. O

Corollary 4.29. Let G be P-generic over V, let a € (0,¢), let G, be the filter on
P, induced by G, and let S = S%=. Then (S5 \ S)VICa] is stationary in V|G).

9Recall Remark showing that, for successor ordinals, the right coordinate of a condition
does not have to agree with Go).

203uch a lower bound exists by Lemma

21The length of this initial segment of ¢t might depend on the given initial segment of p.
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Proof. First, if S = (), then the conclusion of the lemma holds trivially, because
Corollary implies that (S,’;””Jr)V[G“] = (S,’§+)V[G]. In the other case, we know
that S5 \ S contains a stationary set in I[k7] in V[G4], and hence a combination
of Lemma 2.12L Corollary and Lemma @l ensures that S,'f \ S remains
stationary in V[G]. O

Lemma 4.30. If G is P-generic over V, then the tree T (Go) has no cofinal branches
in V[G].

Our proof of this lemma is similar to the proof of [I3] Claim 3.15], but we must
make the following changes:

e Whereas the proof of [I3, Claim 3.15] makes use of <x-closed elementary
submodels of size k (whose existence requires the assumption k<" = k), we
instead use elementary submodels in TA,..

e We use Corollary to ensure that the complement of each S, is station-
ary in the final model (this is used to get the right analogue of statement
(8) on page 1691 of [13]).

Proof of Lemma[£.30. Let b be a P-name for a function from &t to x*. Assume,
towards a contradiction, that there is a condition p in P that forces b to be a
cofinal branch through 7(&). Fix W < (H(0),e,P,b,p) with W € IA,. Set
dw = Wnkt. By the <k-closure of P and Lemma there exists a (W, P)-
generic filter g containing p. By the (W, P)-genericity of g, the <xT-distributivity
of P, and the fact that b € W, it follows that for every v < 8y, some condition Doy
in ¢ decides the value of b | . Define

t = J{se<wt | Iy <owopy ke “5=b15"} (11)

Then ¢ is a function from dy to dy. Moreover, by the (W, P)-genericity of g and
the fact that b is forced to be a branch through 7(Gy), we know that

¥y eowNSE Fpegplre by # (UGo)(). (12)
Hence, if we let go denote the 0-th component of the (W, P)-generic filter g, then
we have t [ v # (U go)(7) for all v < dy. It follows that

fo = (Ugo) U {(6w.1)}
is a condition in Q.

Let p(fo,g) be the function defined in Definition m Then p(fo,g) is not a
condition in P that extends every element of g, because otherwise it would force
that b | o =t = (U Go)(dw) and hence it would also force that b | o ¢ T(Go),
contradicting our assumptions on p.

In this situation, Lemma yields an « € W N [1,¢) such that p(fo,9) | «
is a condition in P, below every member of g, and there is a condition ¢ below
p(fo,9) | @ in P, with the property that whenever G is P,-generic over V with
q € G, then every proper initial segment of (| J Go)(dw ) is an element of W, and is
an Sg—node. Since the 0-th coordinate of ¢ extends fy, we know that

qlre, “(U GO)(5W) =1, (13
Let Hy denote the transitive collapse of W, and let ¢ : Hy — W < H(6

denote the inverse of the transitive collapsing map of W. Set g = o~ '[g], ga
0 ga), P =0~ 1(P) and P, = o~ 1(P,).

—_ —
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Let G be P,-generic over V with ¢ € G. Since g extends every element of the
(W, P, )-generic filter g,, it follows that G N W = g4, Jo is Py-generic over Hyy,
and the map o can be lifted to an elementary

¢ : Hwl[ga] — H(0)[G]
by setting &(79+) = (0(7))¢ for all P,-names 7 in Hyy. Moreover, we know that g
is P-generic over Hyy and the function

b=0o"1b)9 : 6w — dw
is an element of Hyy[g], but not necessarily an element of its inner model Hyy [gq].

Claim 4.31. t = b.

Proof of Claim[{.31} Fix v < dw, and set s = ¢t | . By earlier remarks, we
know that s € W and, by the definition of ¢ in , there is p € ¢ € W with
plFp “b [ 9 =38". We now know that p, b, v, and s are elements of W = ran(o),
and since crit (o) = oW, it follows that o fixes v and s. The elementarity of o now
implies that

o7 (p) ks “oH(B) 17 =57
holds in Hy. Moreover, since p € g, we have 0~ *(p) € g and hence b | v = s holds

Let S = 07 1(S4)%. By Corollaryand the elementarity of o : Hy — H(#),
we know that (S°W \ §)Hwl9] remains stationary when going from Hyy[gs] to
Hy[g]. Since b maps from dy to sy and (S2W \ S)fwldal ig stationary in Hyy[g],
there is an ¢ < dy such that the following statements hold in Hy [g]:

e cof({) = k. B
e /is (Elosed under b.
o (¢5.

Then b, = b | £ maps from ¢ to ¢, and, by the <&y -distributivity of P over
Hyy, we know that b, is an element of Hy. Moreover, since crit (6) = dw, we
have &(bs) = b.. In addition, since £ = dom(b,) € (S2W \ S)wldal and ¢ is closed
under b*, we can conclude that Hyy [g,] believes that b, is not a g—nodem Then the
elementarity of & : Hy [g.] — H(#)[G] implies that &(b,) = b, is not a SS-node
in H(0)[G]. By Claim [4.31) we now have b, =t [ £. So t | £ is not a S$-node,
contradicting our earlier arguments. O

We are now ready to complete the proof of the main technical result of this
paper.

Proof of Theorem[{.3 Let k be an infinite regular cardinal and let P = P, be the
poset constructed in Definition Then Lemma shows that part of the
theorem holds.

Next, we prove part of the theorem. We will prove that the poset P is (27)%-
stationarily layered (see [3, Definition 29]) in V, which, by [3, Lemma 4], implies
that P is (27)"-Knaster. A poset R is A-stationarily layered if for some sufficiently
large regular cardinal 6, there are stationarily-many M € @} (H(#)) such that M NR
is a regular suborder of R. Equivalently, we can demand that every condition p in

22Recall from Deﬁnitionthat a function s is an S-node if no element of S,'§+ \ S is closed
under s
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R has a reduction into M N R, i.e. there exists ¢ € M NR such that all extensions
of ¢ in M NR are compatible with p in P.
For all sufficiently large regular cardinals 6, the set

R = {M€ @}y (H(9)) | M < H(9), "M C M, P M)}

is stationary in @(os)+(H(f)). We prove that R witnesses the (2%)*-stationary
layeredness of P. Fix M € R and a condition p in P. By the density of flat
conditions in P, we we may assume that there exists a sequence (z,, | @ € sprt(p))
that witnesses that p is flat. Furthermore, we may assume that

p(a) =Tq < p(Oé) 7é® D ra”_IP’a “To 6@04”

holds for all a € sprt(p), because redefining p in this way results in a condition
equivalent to p. Set s = M Nsprt(p) and define g =p | s.

Claim 4.32. The condition q is a reduction of p into M NP.

Proof of Claim[{.33 First, we verify that ¢ is an element of M. Since we have
To € H(kT) C M for all « € sprt(p), the closure properties of M imply that the
sequence (z, | a € s) is an element of M. Since the condition q is definable from
the sequence (z,, | a € s), it follows that ¢ is also an element of M.

Next, assume r is a condition in M NP below q. Let p A r denote the natural
amalgamation of p and r, i.e. we have (p A r)(8) = r(B) for all 8 € sprt(r), and
(pAT)(G) = p(B) for all 8 € sprt(p) \ sprt(r). Since p Ar is clearly a function whose
support has size at most k, it is a condition in P. We verify that p A r is below
both p and r in P by checking inductively that (p A7) [ 8 is below both p | 8 and
p | B for all B < e. Suppose this statement holds at all @ < g < e. Clearly, if 3 is
a limit ordinal, then it holds at 8 as well. Hence, we may assume that 8 = a + 1
and that (p A7) [ « lies below both p [ a and r [ a. If a is not in the support of
either p or r, then the above statement trivially holds at 3 as well. Hence, we have
to consider the following two cases:

Case 1: « € sprt(r). By definition of the condition p Ar, we have (pAr)(a) = r(a)
and r <p ¢ implies that r | a lFp_ “r(a) <. q(a)”. Since (pAr) [ a <p_ r [ a by
our induction hypothesis, this shows that

(pAr) [ alke, “(pAT)(a) <. q(a)”. (14)

Moreover, since r € M and |sprt(r)] < k C M, we have a € sprt(r) C M. In
particular, if « € sprt(p), then o € s and hence p(a) = ¢(@). In combination with

, this yields
(pAT) Talkp, “(pAT)(a) <o, pla)”. (15)
In the other case, if « ¢ sprt(p), then holds trivially.
Case 2: «a € sprt(p) \sprt(r). By the definition of (pAr), we have (pAr)(a) = p(a).
Since « ¢ sprt(r), it follows trivially that
(pAT) Talke, “(pAT)(a) <g, pla) <g_ r(a)”.
These computations show that ¢ is a reduction of p into M N P. (Il

This concludes the proof that the poset is P is (2¢)T-stationarily layered, and
hence (2%)*-Knaster.
We now verify part of the theorem. Let G be P-generic over V. Suppose

S is a bistationary subset of Sl’f in V[G] such that S*" \ S contains a stationary
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set T in I[k*] in V[G]. Pick a club D in k™ and a xk*-sequence Z of sets from
[kT]<* witnessing that T is an element of I[x"] in V[G]. A combination of Lemma
and part of this theorem now shows that there is a subset P € V of
S x 2% and a sequence (gy.¢ | (7,§) € P) € V of flat conditions in P such that
B® = S, where B is the P-name {(¥,¢y.¢) | (7,€) € P}. Pick an element s of the
set N defined before Definition such that dom(s) = P and, if (v,£) € P, then
dom(s(7,£)) = sprt(gy,e) and g,¢(¢) = & for all £ € dom(s(v,§)) with b(v,§)(¢) =
x. By our assumptions on € and b, part of this theorem allows us to find
0 < a < e with the property that B is a P,-name, b(a) = s and Z,D,T € V[Ga],
where G, is the filter on P,, induced by G. Clearly, the fact that T is bistationary
in V[G] implies that T is bistationary in V[G,]. Moreover, since V[G] and V[G,]
have the same k-sequences of ordinals, every element of D NT is also approachable
with respect to Z in V[G4]. Hence, we know that S%* \ S contains a stationary set
in I[s*] in V[G4]. Since our choice of a ensures that B, = B, we can conclude
that S¢« = BS« = BS = § and hence forcing with QG~ over V[G,] adds an
order-preserving function from T'(S) to T (Go).

Finally, we prove part of the theorem. Hence, assume that <% < 1 holds
in V and fix an enumeration Z = (z¢ | £ < k1) of all elements of [x]<* in V. By
Lemma the set M of all vy € S:Jr that are approachable with respect to 2'is a
maximal element of I[x*]N p(S,’f) mod NS in V. Since P is <xT-distributive and
therefore 7 still enumerates all of []<* in V[G], it follows that M is still the set of
ally e S ,’§+ that are approachable with respect to Z in V[G], and hence M is still a
maximal element of I[*]N (S5 ) mod NS in V[G]. Now, suppose that S € V[G]
is bistationary in S5 and M \ S is stationary. Since M € I[x*] and I[x*] is an
ideal, it follows that M\ S € I[sT]. So M\ S is a stationary set in I[x"]. Hence by
part of the theorem, there is an order-preserving function from 7'(.S) to T (Gy)
in V[G]. O

5. APPLICATIONS

We now apply Theorem [£.2] to prove the results presented in the introduction of
the paper.

Corollary 5.1. Let x be an infinite reqular cardinal satisfying k<% < k¥, let P
be the partial order given by Theorem [[.3 and let M be a mazimum element of
Ikt N p(S,’j+) mod NS. If G is P-generic over V, then the set NS | M s
A (H((2%)T))-definable in V[G].

Proof. Work in V[G] and let T be the subtree of <% k* given by Theorem
Then T C <*" k* € H((2%)"). Define S to be the collection of all subsets A of M
such that either there exists a closed unbounded subset C of kT with C N M C A
or there exists an order-preserving function from the tree 7'(S ,’f \ A) into the tree
T. Then the set S is definable by a ¥;-formula with parameters M, T and <t

Claim 5.2. The set S is equal to the collection of all subsets of M that are sta-

tionary in k7.

Proof of Claim[5.3 First, let A C M be stationary in T with the property that
there is no club C in k* with CN M C A. Since M is stationary in £, this shows
that A is bistationary in S ,’f, M\ A is stationary, and hence Theorem yields an
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order-preserving function from T(Sg+ \ A) into T that witnesses that A is contained
in §. This argument shows that S contains all stationary subsets of M.

Now, assume, towards a contradiction, that there is a non-stationary subset A
of kT that is contained in S. Then there is an order-preserving embedding of
T(S%" \ A) into T and a closed unbounded subset C of x with AN C = . But
then C DSS+ is a k-club that is a subset of S§+ \ A and, by earlier remarks, the tree
T(S5" \ A) contains a cofinal branch. But then the tree T also contains a cofinal
branch, a contradiction. (Il

By the above claim, the set NS | M = p(M) \ S is definable by a II;-formula
with parameters in H((2")%). O

In particular, the above corollary directly shows how the definability results of
[13] and [23] can be derived from Theorem 4.2

be the poset given by Theorem . If G is P-generic over V, then NS | S§+ 18
A4 (H((27)T))-definable in V[G].

Corollary 5.3. Let k be an inﬁt@ reqular cardinal satisfying k<% = k and let P

Proof. By Lemma if k<" = k holds in V, then S§+ is a maximum element of
Ikt N p(S,’f) mod NS. Since forcing with P does not change cofinalities below
kT, the desired conclusion directly follows from Corollary [5.1 ]

The following lemma establishes a connection between principles of stationary
reflection and the II;-definability of restrictions of the non-stationary ideals that
will be crucial for proofs of our main results.

Lemma 5.4. Let S be a stationary subset of an uncountable reqular cardinal § and
let £ be a set of stationary subsets of Siw with the property that for every stationary
subset A of S, there exists E € £ such that A reflects at every element of E. If £
is definable by a 31-formula with parameter p, then the set NS [ S is definable by
a 1Ty -formula with parameters p, S and H(J).

Proof. Let S denote the collection of all subsets A of S with the property that there
exists F € & such that AN « is stationary in « for all a € F. By our assumptions
on &, the set S is definable by a ¥;-formula with parameters p, S and H(§). If
A C S is stationary in 4, then our assumptions on £ ensure that A is contained in
S. In the other direction, if F € £ witnesses that A is an element of S and C' is
closed unbounded in §, then there is & € E'NLim(C) with A N « stationary in «
and hence @ # ANC Na C AN C. Together, this shows that S is equal to the
collection of all subsets of S that are stationary in § and hence NS [ S = p(§) \ S
is definable by a II;-formula with parameters p, S and H(9). O

The above lemma directly shows that strong forms of stationary reflection cause
restrictions of non-stationary ideals to be Aj-definable.

Corollary 5.5. Let § be an uncountable reqular cardinal, let E be a stationary
subset of Siw and let S be a stationary subset of § such that every stationary subset
of S reflects almost everywhere in E (i.e. for every stationary subset A of S, there
is a closed unbounded subset C of § with the property that A reflects at every element
of CNE). Then the set NS | S is definable by a I1;-formula with parameters E,
S and H(9).
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Proof. If we define &€ = {CNE | C club in §}, then & is definable by a X;-formula
with parameter E' and this shows that the sets £ and S satisfy the assumptions of
Lemma 5.4 O

Note that a classical result of Magidor in [22] shows that, starting with a weakly
compact cardinal, it is possible to construct a model of set theory in which every
stationary subset of Sg reflects almost everywhere in S7. The above corollary shows
that the set NS | S2 is A;(H(ws))-definable in Magidor’s model.

The next theorem will be used to derive Theorem [[.21

Theorem 5.6. Assume that 2“* = ws, and 0 is a cardinal with 62 = 0. Then
there exists a <wq-directed closed, cardinal-preserving poset P with the property that
the following statements hold in V[G] whenever G is P-generic over V:
(1) 2«2 =46.
(2) If for every stationary subset A of Sg, there is a stationary subset R of
IA,,, such that W < H(ws) and A reflects at W Nwy for all W € R, then
the set NS | SZ is Aq(H(ws))-definable.

Proof. Let G be Add(ws, #)-generic over V. Since 2“1 = wy holds in V, we know
that Add(ws, #) satisfies the ws-chain condition in V and hence all cofinalities are
preserved in V[G]. Work in V[G]. Then our assumptions ensure that 2“1 = wy and
2¢2 = § = “2. Let P be the poset given by Theorem [£.2] for k = wy and ¢ = 6,
and let M be a maximum element of Iws] N p(SE?) mod NS, which exists due to
the assumption that 2¢ < w, (see Lemma . Then Lemma and part
of Theorem show that P is forcing equivalent to a <ws-directed closed poset.
Moreover, since 2¥* = ws holds, part (2)) of Theorem shows that P satisfies
the ws-chain condition. Finally, Lemma [4.20] shows that P has a dense subset of
cardinality 6.

Now, let H be P-generic over V[G] and work in V|G, H]. By the above obser-
vations, we then have 22 = §. In addition, part of Theorem shows that
M is the maximum element of I[ws] N p(S%?) mod NS. Moreover, Corollary
shows that NS | M is A;(H(ws))-definable. In the following, assume that for
every stationary subset A of SZ, there is a stationary subset R of IA,, such that
W < H(ws) and A reflects at W Nws for all W € R. Set £ = p(M)\ NS,,. Then
€ is definable by a ¥;-formula with parameters in H(ws).

Claim 5.7. For every stationary subset A of SZ, there is an element E of £ with
the property that A reflects at every element of E.

Proof of the Claim. By our assumption, there is a stationary subset R of IA,,
such that W < H(ws) and A reflects at W Nwq for every W € R. If we now
define Ey = {W Nws | W € R}, then Ej is a stationary subset of S%2. Moreover,
since 2¥ < wsq, each W € R has (as an element) an enumeration 2 = (z¢ | £ < wo)
of [wz]“ and therefore the internal approachability of W and the fact that 2 € W
imply that W Nwsy is approachable with respect to 2. Hence, the set Ej is stationary
and an element of I[wsy]. Since M is the largest such element mod NS, we have in
particular that £ = Eqg N M is a stationary subset of M. [

Using Lemma we can now conclude that NS | S2 is definable by a ¥;-
formula with parameters in H(ws). O
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Proof of Theorem[I-4 Assume that FA holds, where FA is one of the following
axioms:

° MM+”, where p is a cardinal and 0 < pu < wq; or

° PFA+“, where p is a cardinal and 1 < p < w;.
Let 6 be a cardinal with 6“2 = . Since PFA implies that 2 = 2“1 = ws holds (see
[15, Theorem 16.20 & 31.23]), our assumption allows us to apply Theorem to
obtain a <ws-directed closed poset with the properties listed in the conclusion of
theorem. Let G be P-generic over V. Then [4, Theorem 4.7] ensures that FA holds
in V[G]. Since FA holds in V]G], there exists a stationary subset R of IA,, with
the property that for all W € R, we have W < H(w3) and A reflects at W N WQE
Then Theorem allows us to conclude that NS | S3 is A;(H(ws))-definable in
VIG]. O

The next theorem will be used to derive Theorem

Theorem 5.8. Assume that 2% = wq, 2 = wy, and 0 is a cardinal with 6“2 =
0. Then there exists a <ws-directed closed, cardinal-preserving poset P with the
property that the following statements hold in V|G| whenever G is P-generic over
V:
(1) 2¢2 = 6.
(2) If every stationary subset of Sg reflects to a point in S7, then the set NS,
is A1(H(ws))-definable.

Proof. Let G be Add(ws,0)-generic over V, let P be the poset produced by an
application of Theorem [4.2| with K = w; and € = 6 in V[G], and let H be P-generic
over V[G]. As above, we have (2+2)VI¢H] = § and, since 2* = w; holds in V[G], part
of Lemma and part of Theorem [4.2| imply that (S7)VI¢] = (§7)VIG.H]
is a maximum element of I[ws] N p(S7) mod NS in both V[G] and V[G, H]. In
particular, Corollary [5.1] implies that NS | S? is A;(H(w3))-definable in V|G, H].

Now, work in V[G, H] and assume that every stationary subset of SZ reflects
to a point in S?. Then every stationary subset of S reflects to stationary-many
points in S7 and we can apply Lemma [5.4| with S3 and p(S?)\ NS,, to show that
NS | 8% is Aj(H(ws))-definable. Since it is easy to see that

NS,, = {ACw |ANSEZ € NS |S2and ANS? e NS | S},
these computations allow us to conclude that NS, is A;-definable. O

Proof of Theorem[I.3 Assume that 2¥ = w;, 2“1 = wy and either FA™ (o-closed)
or SCFA holds. Let 6 be a cardinal with 6“2 = 0, let P be the poset produced by
an application of Theorem and let G' be P-generic over V. Then (2+2)VI¢] = ¢
holds. Moreover, by Theorem 4.7 of [4], either FA™ (o-closed) or SCFA holds in
VI[G]. In the case of SCFA, the fact that CH also holds ensures (by [1I, Theorem
2.7 and Observation 2.8]) that, in V[G], every stationary subset of SZ reflects in a
point in S%@ In the case where FA™ (O’—ClOSGd) holds, the proof of Theorem 8.3 of
[2] ensures the same kind of stationary reflection. By Theorem this shows that
NS, is Aj-definable in V[G]. O

23For the case corresponding to MM, this follows by the proof of [6] Theorem 13]. For the
case corresponding to PFAT# where y > 1, it follows from the remark on [6, p. 20]. The wi-
enumerations in both proofs are easily seen to be internally approachable enumerations.

24Note that the CH assumption seems to be required for this consequence of SCFA; see Fuchs
[12] for some corrections on previous literature.
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