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Abstract. Given an uncountable cardinal κ, we consider the question whether

subsets of the power set of κ that are usually constructed with the help of the
Axiom of Choice are definable by Σ1-formulas that only use the cardinal κ and

sets of hereditary cardinality less than κ as parameters. For limits of measur-

able cardinals, we prove a perfect set theorem for sets definable in this way and
use it to generalize two classical non-definability results to higher cardinals.

First, we show that a classical result of Mathias on the complexity of maximal

almost disjoint families of sets of natural numbers can be generalized to mea-
surable limits of measurables. Second, we prove that for a limit of countably

many measurable cardinals, the existence of a simply definable well-ordering

of subsets of κ of length at least κ+ implies the existence of a projective well-
ordering of the reals. In addition, we determine the exact consistency strength

of the non-existence of Σ1-definitions of certain objects at singular strong limit
cardinals. Finally, we show that both large cardinal assumptions and forcing

axioms cause analogs of these statements to hold at ω1.

1. Introduction

Mathematical objects whose existence is usually proved with the Axiom of Choice
are often referred to as pathological sets. Important examples of such objects are
Hamel bases of the vector space of real numbers over the field of rational num-
bers, non-principal ultrafilters on infinite sets and bistationary (i.e. stationary and
costationary) subsets of uncountable regular cardinals. For many types of patho-
logical sets of real numbers, it is possible to use results from descriptive set theory
to show that these objects cannot be defined by simple formulas in second-order
arithmetic. Moreover, many canonical extensions of the axioms of ZFC prove that
these objects are not definable in second-order arithmetic at all and this implica-
tion is often viewed as a desirable feature of such extensions, because it allows us
to clearly separate pathological sets of real numbers from the explicitly constructed
sets of reals.
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In this paper, we study the set-theoretic definability of pathological sets of higher
cardinalities. More specifically, we aim to generalize classical non-definability re-
sults for sets of reals numbers to subsets of the power set P(κ) of an uncountable
cardinal κ that are definable by Σ1-formulas1 with parameters in H(κ)∪ {κ}. This
bound on the complexity of the used formulas is motivated by the observation that
the assumption V = HOD implies the Σ2-definability of various pathological sets
(see [29, Proposition 3.9]) and this assumption is compatible with many canonical
extensions of ZFC. The restriction of the set of parameters is motivated by the ex-
istence of highly potent coding forcings at uncountable cardinals (see [28, Section
3]). Previous work in this direction (see [29], [32] and [45]) has already provided
important examples that show that we can achieve the above aim when we work in
one of the following scenarios:

• The cardinal κ is a limit of cardinals possessing certain large cardinal
properties, like measurability.

• The cardinal κ is the first uncountable cardinal ω1 and either certain large
cardinals exist above κ or strong forcing axioms hold.

In the following, we will derive structural results for simply definable sets that
will allow us to prove the non-definability of several types of pathological sets in
the above settings. These implications can again be seen as desirable features of
the corresponding axiom systems. Moreover, for most of our results about singular
limits of large cardinals, we proof that the used large cardinal assumption is optimal
for the corresponding non-definability statement at singular cardinals.

The starting point of our work is a perfect set theorem for Σ1-definable sets
at limits of measurable cardinals. In order to formulate this result, we generalize
some basic topological concepts to higher function spaces and power sets. Given a
cardinal κ > 0 and an infinite cardinal µ, we equip the set µκ of all functions from
µ to κ with the topology whose basic open sets consists of all functions that extend
a given function s : ξ −→ κ with ξ < µ. In the same way, we equip the power set
P(ν) of an infinite cardinal ν with the topology whose basic open sets consists of
all subsets of ν whose intersection with a given ordinal η < ν is equal to a fixed
subset of η. We then say that an injection ι : µκ −→ P(ν) is a perfect embedding
if it induces a homeomorphism between µκ and the subspace ran(ι) of P(ν). The
following result now shows that, analogously to the perfect set property of analytic
sets of reals, simply definable thin sets of subsets of limits of measurable cardinals
have small cardinality.

Theorem 1.1. Let κ be a limit of measurable cardinals and let D be a subset of
P(κ) that is definable by a Σ1-formula with parameters in H(κ) ∪ {κ}. If D has
cardinality greater than κ, then there is a perfect embedding ι : cof(κ)κ −→ P(κ)
with ran(ι) ⊆ D.

In the case of singular limits of measurable cardinals, we will use core model
theory developed in [26] and, for example, in [47] to show that the consistency
strength of the assumption of this theorem is optimal for its conclusion.

Theorem 1.2. Let κ be a singular strong limit cardinal with the property that for
every subset D of P(κ) of cardinality greater than κ that is definable by a Σ1-formula
with parameters in H(κ)∪{κ}, there is a perfect embedding ι : cof(κ)κ −→ P(κ) with

1See [23, p. 5] for the definition of the Levy hierarchy of formulas.
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ran(ι) ⊆ D. Then there is an inner model with a sequence of measurable cardinals
of length cof(κ).

The next type of pathological sets that we will study in this paper are almost
disjoint families of large cardinalities. Given an infinite cardinal κ, a set A of
unbounded subsets of κ is an almost disjoint family in P(κ) if x ∩ y is bounded in
κ for all distinct x, y ∈ A. In addition, we say that such a family A is maximal
if for every unbounded subset x of κ, there exists y ∈ A with the property that
x ∩ y is unbounded in κ. Motivated by a classical result of Mathias in [34] that
shows that all analytic maximal almost disjoint families in P(ω) are finite and
many additional influential results on maximal almost disjoint families by Mathias,
A. Miller, Törnquist, Horowitz and Shelah, Neeman and Norwood, Bakke-Haga,
Fischer, Schrittesser, Weinert, and others (see [3, 11, 19, 34, 35, 37, 39, 44]), we
will use the techniques developed in the proof of Theorem 1.1 to prove that, if a
cardinal κ possesses sufficiently strong large cardinal properties, then every simply
definable almost disjoint family in P(κ) has cardinality at most κ. In particular,
by a simple diagonalization argument, all simply definable maximal almost disjoint
families in P(κ) have cardinality less than κ in this case.

In order to reduce the large cardinal assumptions used in our arguments, we
recall the notion of iterable cardinals, introduced by Sharpe and Welch in [40] and
studied extensively in [15]. An uncountable cardinal κ is iterable if for every subset
x of κ, there exists a transitive model M of ZFC− of cardinality κ with κ, x ∈M and
a weakly amenable M -ultrafilter U on κ such that the structure 〈M,U〉 is iterable.
Note that all iterable cardinals are weakly compact and all Ramsey cardinals are
iterable (see, for example, [14, Theorem 1.3]). In particular, all measurable limits
of measurable cardinals satisfy the assumptions of the following result.

Theorem 1.3. Let κ be an iterable cardinal that is a limit of measurable cardinals
and let A be a subset of P(κ) that is definable by a Σ1-formula with parameters in
H(κ) ∪ {κ}. If A has cardinality greater than κ, then there exist distinct x, y ∈ A
with the property that x ∩ y is unbounded in κ.

The third type of pathological sets studied in this paper are long well-orders,
i.e. well-orderings of subsets of the power set P(κ) of an infinite cardinal κ of
order-type at least κ+. The study of the definability of these objects is motivated
by the classical fact that Projective Determinacy implies that all well-orderings
definable in second-order arithmetic have countable length. In the case of limits of
measurable cardinals κ, it is possible to use arguments contained in the proof of
[33, Lemma 1.3] to show that for every well-ordering of κ, the collection of proper
initial segments of the given order is not definable by a Σ1-formula with parameters
in H(κ) ∪ {κ}. In Section 7 below, we will show that it is possible to use classical
results of Dehornoy in [10] to show that for all such limits κ, no well-ordering of
P(κ) is definable in the above way (see Corollary 7.4). We will then proceed by
using ideas from the proof of Theorem 1.1 to prove results about well-orderings
whose domain is a large proper subset of P(κ). The following theorem provides a
scenario in which such orders have no simple definition.

Theorem 1.4. Let κ be a cardinal of countable cofinality that is a limit of mea-
surable cardinals. If there exists a well-ordering of a subset of P(κ) of cardinality
greater than κ that is definable by a Σ1-formula with parameter κ, then there is a
Σ1

3-well-ordering of the reals.
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In addition, the theory developed in this paper allow us to determine the ex-
act consistency strength of the non-existence of Σ1-definable long well-orderings
of subsets of a singular strong limit cardinal of countable cofinality. The following
theorem is proven by combining our techniques with results about short core models
from [26] in one direction and diagonal Prikry forcing in the other direction.

Theorem 1.5. The following statements are equiconsistent over ZFC:

(i) There exist infinitely many measurable cardinals.
(ii) There exists a singular cardinal κ with the property that no well-ordering of

a subset of P(κ) of cardinality greater than κ is definable by a Σ1-formula
with parameters in H(κ) ∪ {κ}.

We now continue by considering analogues of the above results for pathological
sets consisting of subsets of the first uncountable cardinal ω1. Using results of
Woodin in [46], a perfect subset theorem for subsets of P(ω1) definable by a Σ1-
formula with parameters in H(ℵ1) ∪ {ω1} is provided by [32, Theorem 4.9] that
shows that if the non-stationary ideal on ω1 is saturated and there is a measurable
cardinal, then every such subset either contains a continuous image of ω1ω1 or is a
subset of L(R). As observed in [32], it is, in general, not possible to strengthen the
second alternative to state that the given set has cardinality at most ℵ1, because
the failure of CH implies that {x ∈ ω1ω1 | ∀α < ω1 x(ω + α) = 0} is a subset of ω1ω1

of cardinality greater than ℵ1 that is definable by a Σ1-formula with parameter ω1

and does not contain a perfect subset. The following result now shows that analogs
of Theorems 1.3 and 1.4 for ω1 follow both from strong large cardinal assumptions
and the validity of strong forcing axioms.

Theorem 1.6. Assume that either there is a measurable cardinal above infinitely
many Woodin cardinals or Woodin’s Axiom (∗) holds.

(i) No well-ordering of a subset of P(ω1) of cardinality greater than ℵ1 is
definable by a Σ1-formula with parameters in H(ℵ1) ∪ {ω1}.

(ii) If A is a set of cardinality greater than ℵ1 that consists of unbounded
subsets of ω1 and is definable by a Σ1-formula with parameters in H(ℵ1)∪
{ω1}, then there exist distinct x, y ∈ A with the property that x ∩ y is
unbounded in ω1.

We will end this paper by observing that the above results cannot be generalized
from ω1 to ω2. More specifically, we will show that all large cardinal assumptions
are compatible with the existence of an almost disjoint family of cardinality 2ℵ2 in
P(ω2) that is definable by a Σ1-formula with parameter ω2 (see Proposition 10.6
below).

2. A perfect subset theorem for limits of measurable cardinals

In this section, we prove Theorem 1.1 with the help of iterated ultrapowers using
set-many measurable cardinals. Our treatment of these constructions follows [43,
Section 3]. Given a transitive model M of ZFC− and E ∈M with

M |= “E consists of normal ultrafilters on measurable cardinals”,

a linear iteration of 〈M, E〉 is a sequence I = 〈Uα | α < λ〉 with λ > 0 and the
property that there exists a directed system

〈〈Mα | α < λ〉, 〈iα,β : Mα −→Mβ | α ≤ β < λ〉〉
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of transitive ZFC−-models and elementary embeddings such that the following
statements hold:

(i) M0 = M .
(ii) Uα ∈ i0,α(E) for all α < λ.
(iii) If α is an ordinal with α+ 1 < λ, then Mα+1 is the (transitive collapse) of

the ultrapower of Mα constructed using Uα and iα,α+1 is the corresponding
ultrapower embedding.

(iv) If η < λ is a limit ordinal, then 〈Mη, 〈iα,η | α < η〉〉 is a direct limit of the
directed system 〈〈Mα | α < η〉, 〈iα,β : Mα −→Mβ | α ≤ β < η〉〉.

The ordinal λ is then called the length of I and we use lh(I) to refer to this ordinal.
It is easy to see that the above system is uniquely determined by the sequence I

and therefore we write U Iα = Uα, M I
α = Mα and iIα,β = iα,β for all α ≤ β < lh(I).

We then let 〈M I
∞, 〈iIα,∞ : M I

α −→M I
∞ | α < lh(I)〉〉 denote the the direct limit of

the above system and, if the model M I
∞ is well-founded, then we identify it with its

transitive collapse. Finally, the pair 〈M, E〉 is called linearly iterable if the model
M I
∞ is well-founded for every linear iteration I of 〈M, E〉. Note that [43, Theorem

3.3] shows that, if every element of E is σ-complete in V, then the pair is 〈M, E〉 is
linearly iterable. In particular, the pair 〈V, E〉 is linearly iterable for every set E of
normal ultrafilters.

The following technical lemma about the existence of certain systems of linear
iterations is the starting point of the proofs of most of the results about limits of
measurable cardinals stated in the introduction:

Lemma 2.1. Let µ be an infinite regular cardinal, let κ be a limit of measurable
cardinals with cof(κ) = µ and let E denote the collection of all normal ultrafilters
on cardinals smaller than κ. Given an element z of H(κ) and a subset D of P(κ)
of cardinality κ+, there exists

• an element x of D,
• a system 〈νs | s ∈ <µκ〉 of inaccessible cardinals smaller than κ,
• a system 〈κs | s ∈ <µκ〉 of measurable cardinals smaller than κ,
• a system 〈Us | s ∈ <µκ〉 of elements of E, and
• a system 〈Is | s ∈ <µκ〉 of linear iterations of 〈V, E〉 of length less than κ

such that the following statements hold for all s, t ∈ <µκ:

(i) z ∈ H(ν∅) and µ < κ implies that µ < ν∅.
(ii) Us is an ultrafilter on κs.

(iii) Is is a linear iteration of 〈V, {Us�ξ | ξ ∈ dom(s)}〉.
(iv) The sequence 〈min{κs | s ∈ ξκ} | ξ < µ〉 is cofinal in κ.
(v) If Is is non-trivial, then lh(Is) ∈ Lim.

(vi) If s ( t, then lh(Is) < νs < κs < νt.

(vii) iIs0,∞(νs) = νs and iIs0,∞(κs) = κs.

(viii) iIs0,∞(µ) = µ, iIs0,∞(κ) = κ and iIs0,∞(z) = z.

(ix) If s ⊆ t, then lh(Is) ≤ lh(It) and U Isα = U Itα for all α < lh(Is).
2

2Note that this directly implies that MIs
α = MIt

α and iIsα,β = iItα,β holds for all α ≤ β < lh(Is).

Moreover, if 1 < lh(Is) < lh(It), then (v) implies that MIs∞ = MIt
lh(Is)

and iIs0,∞ = iIt
0,lh(Is)

.

Finally, if lh(Is) = 1 < lh(It), then MIs∞ = MIt
0 and iIs0,∞ = id

M
It
0

.
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(x) If s ⊆ t with lh(Is) < lh(It), then H(κs)
MIs
∞ = H(κs)

MIt
∞ and

iItlh(Is),∞ � H(κs)
MIs
∞ = id

H(κs)M
Is∞
.

(xi) If ξ ∈ dom(s) ∩ dom(t) satisfying s � ξ = t � ξ and s(ξ) < t(ξ), then
νs�(ξ+1) ≤ νt�(ξ+1) and

iIs0,∞(x) ∩ νs�(ξ+1) 6= iIt0,∞(x) ∩ νs�(ξ+1).

Proof. Pick a strictly increasing, cofinal sequence 〈κξ | ξ < µ〉 of measurable car-
dinals in κ with the property that µ < κ implies that µ < κ0. Given ξ < µ, fix a
normal ultrafilter Uξ on κξ and let

〈〈Nξ
α | α ∈ On〉, 〈jξα,β : Nξ

α −→ Nξ
β | α ≤ β ∈ On〉〉

denote the iteration of 〈V, Uξ〉. Given ξ < µ, we then have jξ0,κ(κξ) = κ and

jξ0,α(κ) = κ for all α < κ. In particular, we know that |P(κ)N
ξ
κ | = κ holds for all

ξ < µ. Therefore, we can find x ∈ D with x /∈ Nξ
κ for all ξ < µ. Given ξ < µ, we

then have x 6= jξ0,κ(x) ∩ κ and hence we know that

x ∩ jξ0,λ(κξ) 6= jξ0,λ(x ∩ κξ) (1)

holds for all sufficiently large λ < κ.
By earlier remarks, the pair 〈V, E〉 is linearly iterable. In the following, we

inductively construct systems with the properties listed above while also ensuring
that for every s ∈ <µκ, there exists dom(s) ≤ ξ < µ with κs = κξ and Us = Uξ.
Note that this additional property will directly ensure that (iv) holds in the end.

First, we define I∅ to be the trivial iteration of 〈V, E〉. Moreover, we pick some
inaccessible cardinal ν∅ < κ such that z ∈ H(ν∅) and µ < κ implies µ < ν∅.

Next, assume that ζ ∈ Lim ∩ µ and the objects νt, κt, Ut and It are defined
for all t ∈ <ζκ. Fix s ∈ ζκ and define Is to be the unique linear iteration of

〈V, {Us�η | η < ζ}〉 of length supη<ζ lh(Is�η) < κ with the property that U Isα = U
Is�η
α

holds for all η < ζ and α < lh(Is�η). In addition, define νs to be an inaccessible
cardinal smaller than κ and bigger than both supη<ζ κs�η and lh(Is). This setup
ensures that lh(Is) > 1 implies that lh(Is) ∈ Lim, and therefore we know that (v)
holds. Moreover, these definitions directly ensure that the relevant parts of (vi)
and (vii) hold in this case. In addition, since lh(Is) < νs and Is only makes use of
ultrafilter on cardinals contained in the interval (ν∅, νs), the fact that the cofinality
of κ is not contained in this interval allows us to conclude that (viii) holds in this
case. Next, notice that our construction directly ensures that (ix) holds in this
case. Moreover, if η < ζ with lh(Is�η) < lh(Is), then the fact that (v) and (x) hold
for all η < ρ < ζ ensures that

H(κs�η)M
Is�η
∞ = H(κs�η)M

Is
∞

and

iIslh(Is�η),∞ � H(κs�η)M
Is
∞ = id

H(κs�η)M
Is∞
.

By the definition of Is, this shows that (x) also holds in this case. Finally, pick
t ∈ <µκ with dom(t) ≤ ζ and ξ ∈ dom(t) with s � ξ = t � ξ and s(ξ) 6= t(ξ). Set
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ρ = min(νs�(ξ+1), νt�(ξ+1)). Since we know that ρ < min(κs�(ξ+1), κt�(ξ+1)), we can
use (x) and (xi) to show that

iIs0,∞(x) ∩ ρ = i
Is�(ξ+1)

0,∞ (x) ∩ ρ 6= i
It�(ξ+1)

0,∞ (x) ∩ ρ = iIt0,∞(x) ∩ ρ.

By the properties of νs�(ξ+1) ensured by our induction hypothesis, these computa-
tions show that (xi) also holds in this case.

Now, assume that ζ < µ and the objects νt, κu, Uu and It are defined for all
t, u ∈ <µκ with dom(t) ≤ ζ and dom(u) < ζ. Fix s ∈ ζκ and pick ζ ≤ ξ < µ with
κξ > νs. Set κs = κξ and Us = Uξ. By (1), there exists a limit ordinal κs < λ < κ
with the property that

x ∩ jξ0,λ(κs) 6= jξ0,λ(x ∩ κs). (2)

Let 〈λβ | β < κ〉 denote the unique continuous sequence of ordinals with λ0 = 0

and λβ+1 = λβ + jξ0,λβ (λ) for all β < λ. Since κ is a limit of inaccessible cardinals,

we know that λβ < κ holds for all β < κ. Given β < κ, define Is_〈β〉 to be the

unique linear iteration of 〈V, E〉 of length lh(Is) + iIs0,∞(λβ) with U
Is_〈β〉
α = U Isα for

all α < lh(Is) and U
Is_〈β〉
α = i

Is_〈β〉
0,α (Us) for all lh(Is) ≤ α < lh(Is_〈β〉). That

means we linearly iterate Us on top of what we already have to obtain Is_〈β〉.
Moreover, for every β < κ, we define νs_〈β〉 to be the least inaccessible cardinal
greater than lh(Is_〈β+1〉). These definitions then directly ensure that (v) and (ix)
hold. In addition, for all β < κ, we have

lh(Is) < νs < κs < λ ≤ lh(Is_〈β+1〉) < νs_〈β〉

and this can be used to conclude that iIs0,∞(κs) = κs and i
Is_〈β〉
0,∞ (νs_〈β〉) = νs_〈β〉.

This shows that the relevant instances of (vi) and (vii) hold in this case. Moreover,
the fact that all iterations of the form Is_〈β〉 with β < κ have length less than
κ and only make use of ultrafilters on cardinals contained in the interval [κ0, κ)
directly implies that (viii) holds in this case as µ < κ0 in case µ < κ. Next, notice
that, if 0 < β < κ and lh(Is) ≤ α < lh(Is_〈β〉), then our construction ensures that

H(κs)
MIs
∞ = H(κs)

M
Is_〈β〉
lh(Is) = H(κs)

M
Is_〈β〉
α

and

i
Is_〈β〉
lh(Is),α

� H(κs)
MIs
∞ = id

H(κs)M
Is∞
.

This directly implies that (x) holds in this case. Finally, fix β < γ < κ. Then
lh(Is_〈β+1〉) < lh(Is_〈γ+1〉) and hence we know that νs_〈β〉 ≤ νs_〈γ〉.

Claim. i
Is_〈β〉
0,∞ (x) ∩ νs_〈β〉 6= i

Is_〈γ〉
0,∞ (x) ∩ νs_〈β〉.

Proof of the Claim. Let

〈〈Nα | α ∈ On〉, 〈jα0,α1
: Nα0

−→ Nα1
| α0 ≤ α1 ∈ On〉〉

denote the linear iteration of 〈M Is
∞ , i

Is
0,∞(Us)〉. Given δ < κ and α < iIs0,∞(λδ), the

definition of Is_〈δ〉 ensures that the following statements hold:

• M Is_〈δ〉
lh(Is)+α

= Nα and M
Is_〈δ〉
∞ = NiIs∞(λδ)

.

• iIs_〈δ〉0,lh(Is)+α
= j0,α ◦ iIs0,∞ and i

Is_〈δ〉
0,∞ = j0,iIs0,∞(λδ)

◦ iIs0,∞.
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Now, set M∗ = M
Is_〈β〉
∞ , x∗ = i

Is_〈β〉
0,∞ (x), κ∗ = i

Is_〈β〉
0,∞ (κs), λ∗ = i

Is_〈β〉
0,∞ (λ) and

U∗ = i
Is_〈β〉
0,∞ (Us). Note that elementarity ensures that

iIs0,∞(jξ0,λβ (λ)) = j0,iIs0,∞(λβ)(i
Is
0,∞(λ)) = i

Is_〈β〉
0,∞ (λ) = λ∗

and this allows us to conclude that

iIs0,∞(λγ) ≥ iIs0,∞(λβ+1) = iIs0,∞(λβ + jξ0,λβ (λ)) = iIs0,∞(λβ) + λ∗.

In particular, we know that

lh(Is_〈β〉) + λ∗ ≤ lh(Is_〈γ〉). (3)

Now, define

〈〈N∗α | α ∈ On〉, 〈j∗α0,α1
: N∗α0

−→ N∗α1
| α0 ≤ α1 ∈ On〉〉

to be the linear iteration of 〈M∗, U∗〉. Given ordinals α0 ≤ α1, we then have
N∗α0

= NiIs∞(λβ)+α0
and j∗α0,α1

= jiIs∞(λβ)+α0,i
Is
∞(λβ)+α1

. In particular, we can use (3)

to find an ordinal α ≥ λ∗ with M
Is_〈γ〉
∞ = N∗α and i

Is_〈γ〉
0,∞ = j∗0,α ◦ i

Is_〈β〉
0,∞ .

By elementarity, the inequality (2) implies that

x∗ ∩ j∗0,λ∗(κ∗) 6= j∗0,λ∗(x∗ ∩ κ∗).
Moreover, our setup ensures that

νs_〈β〉 > lh(Is_〈β+1〉) ≥ iIs0,∞(λβ+1) ≥ iIs0,∞(jξ0,λβ (λ)) = λ∗ > κ∗

and
νs_〈β〉 = j∗0,λ∗(νs_〈β〉) > j∗0,λ∗(κ∗).

Since for α ≥ λ∗ as above

i
Is_〈γ〉
0,∞ (x) = j∗0,α(i

Is_〈β〉
0,∞ (x)) = (j∗λ∗,α ◦ j

∗
0,λ∗)(x∗)

and
j∗λ∗,α � (j∗0,λ∗(κ∗)) = idj∗0,λ∗ (κ∗),

our computations yield the statement of the claim. �

The above claim now shows that (xi) also holds in this case. This completes the
proof of the lemma. �

We now extend the above construction to obtain linear iterations indexed by
sequences of length equal to the cofinality of the given limit of measurable cardinals.
In addition, we also allow these sequences to exist in small forcing extensions of the
ground model.

Lemma 2.2. In the situation of Lemma 2.1, let λ ≤ µ be a limit ordinal, let P
be a partial order3 and let G be P-generic over V. Given a function c ∈ (λκ)V[G]

with the property that all of its proper initial segments are contained in V, we let
Ic denote the unique linear iteration of 〈V, {Uc�ξ | ξ < λ}〉 of length supξ<λ lh(Ic�ξ)

in V[G] with U Icα = U
Ic�ξ
α for all ξ < λ and α < lh(Ic�ξ).

If either P is an element of H(κ∅) or forcing with P does not add bounded subsets
of κ, then the following statements hold in V[G] for all functions c, d ∈ λκ with the
property that all of their proper initial segments are contained in V:

(i) M Ic
∞ is well-founded.

3Note that P is allowed be the trivial partial order.
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(ii) iIc0,∞(µ) = µ, iIc0,∞(κ) = κ and iIc0,∞(z) = z.

(iii) If ξ < λ with c � ξ = d � ξ and c(ξ) 6= d(ξ), then

iIc0,∞(x) ∩ κc�ξ = iId0,∞(x) ∩ κc�ξ
and there is ρ < min(κc�(ξ+1), κd�(ξ+1)) with

iIc0,∞(x) ∩ ρ 6= iId0,∞(x) ∩ ρ. (4)

Proof. Work in V[G], pick a function c ∈ λκ with the desired properties and define
Ic as above. If P is contained in H(κ∅), then we can use the Lévy–Solovay Theorem
to show that for all ξ < λ, the set {B ∈ P(κξ) | ∃A ∈ Uc�ξ A ⊆ B} is a normal
ultrafilter on κξ and therefore we know that Uc�ξ itself is a σ-complete V-ultrafilter.
Since the same conclusion obviously holds true if forcing with P does not add
bounded subsets of κ, we can apply [43, Theorem 3.3] to conclude that the pair
〈V, {Uc�ξ | ξ < λ}〉 is linearly iterable and therefore we know that M Ic

∞ is well-
founded.

Next, since (x) of Lemma 2.1 ensures that

H(κc�ξ)
MIc

lh(Ic�ξ) = H(κc�ξ)
M
Ic�ξ
∞ = H(κc�ξ)

M
Ic�ζ
∞ = H(κc�ξ)

MIc
lh(Ic�ζ)

and

iIclh(Ic�ξ),lh(Ic�ζ) � H(κc�ξ)
M
Ic�ξ
∞ = i

Ic�ζ
lh(Ic�ξ),∞ � H(κc�ξ)

M
Ic�ξ
∞ = id

H(κc�ξ)M
Ic�ξ
∞

hold for all ξ < ζ < λ with lh(Ic�ξ) < lh(Ic�ζ) < lh(Ic), we know that

H(κc�ξ)
M
Ic�ξ
∞ = H(κc�ξ)

MIc
∞

and

iIclh(Ic�ξ),∞ � H(κc�ξ)
M
Ic�ξ
∞ = id

H(κc�ξ)M
Ic�ξ
∞

(5)

hold for all ξ < λ with lh(Ic�ξ) < lh(Ic). In particular, it follows that iIc0,∞(z) = z

and, if µ < κ, then iIc0,∞(µ) = µ. In addition, for all ξ < λ with the property that

lh(Ic�ξ) < lh(Ic), we have iIc0,lh(Ic�ξ)
= i

Ic�ξ
0,∞ and therefore

iIc0,lh(Ic�ξ)
(α) < iIc0,lh(Ic�ξ)

(κc�ξ) = i
Ic�ξ
0,∞(κc�ξ) = κc�ξ. (6)

for all α < κc�ξ. In particular, a combination of (5) and (6) allows us to conclude

that iIc0,∞[κc�ξ] ⊆ κc�ξ holds for all ξ < λ. If the sequence 〈κc�ξ | ξ < λ〉 is cofinal in

κ, then this observation directly implies that iIc0,∞(κ) = κ. In the other case, if the
above sequence is bounded by ρ < κ, then Ic is an iteration of length less than κ
that only uses ultrafilters on measurable cardinals in the interval [κ∅, ρ] and, since κ
is a limit of inaccessible cardinals whose cofinality is not contained in this interval,
we also know that iIc0,∞(κ) = κ holds in this case.

Finally, pick functions c, d ∈ λκ whose proper initial segments are all contained
in V and ξ < λ with c � ξ = d � ξ and c(ξ) 6= d(ξ). Then (5) implies that

iIc0,∞(x) ∩ κc�ξ = i
Ic�ξ
0,∞(x) ∩ κc�ξ = iId0,∞(x) ∩ κc�ξ.

If we now define

ρ = min(νc�(ξ+1), νd�(ξ+1)) < min(κc�(ξ+1), κd�(ξ+1)),

then statement (xi) of Lemma 2.1 directly implies that (4) holds. �
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We now use the above constructions to derive the desired perfect subset result
for Σ1-definable subsets of power sets of limits of measurable cardinals.

Proof of Theorem 1.1. Let µ be an infinite regular cardinal, let κ be a limit of
measurable cardinals with cof(κ) = µ, let z be an element of H(κ) and let D be a
subset of P(κ) of cardinality greater than κ that is definable by a Σ1-formula with
parameters κ and z. An application of Lemma 2.2 with the trivial partial order
now yields x ∈ D and systems 〈κs | s ∈ <µκ〉, 〈Us | s ∈ <µκ〉 and 〈Ic | c ∈ µκ〉 such
that the following statements hold for all s, t ∈ <µκ and all c, d ∈ µκ:

• κs is a measurable cardinal smaller than κ.
• Us is a normal ultrafilter on κs.
• Ic is a linear iteration of 〈V, {Uc�ξ | ξ < µ}〉 with M Ic

∞ well-founded.
• The sequence 〈κc�ξ | ξ < µ〉 is cofinal in κ.

• iIc0,∞(µ) = µ, iIc0,∞(κ) = κ and iIc0,∞(z) = z.

• If ξ < µ with c � ξ = d � ξ and c(ξ) 6= d(ξ), then

iIc0,∞(x) ∩ κc�ξ = iId0,∞(x) ∩ κc�ξ

and

iIc0,∞(x) ∩ ρ 6= iId0,∞(x) ∩ ρ,

where ρ = min(κc�(ξ+1), κd�(ξ+1)).

We now define

ι : µκ −→ P(κ); c 7−→ iIc0,∞(x).

Then ι is an injection. Fix c ∈ µκ. Given α < κ, there is ξ < µ with κc�ξ ≥ α and,
if d ∈ µκ with c � ξ = d � ξ, then ι(c)∩κc�ξ = ι(d)∩κc�ξ. In the other direction, fix
ξ < ν and d ∈ µκ with ι(c) ∩ κc�ξ = ι(d) ∩ κc�ξ. Assume, towards a contradiction,
that c � ξ 6= d � ξ. Then there is η < ξ with c � η = d � η and c(η) 6= d(η).
Our construction then ensures that ι(c) ∩ κc�(η+1) 6= ι(d) ∩ κc�(η+1) and therefore
ι(c)∩ κc�ξ 6= ι(c)∩ κc�ξ, a contradiction. This shows that ι is a perfect embedding.

Claim. ran(ι) ⊆ D.

Proof of the Claim. Fix c ∈ µκ. Pick a Σ1-formula ϕ(v0, v1, v2) such that

D = {y ⊆ κ | ϕ(κ, y, z)}.

As x ∈ D, ϕ(κ, x, z) holds in V and hence the properties listed above ensure
that ϕ(κ, ι(c), z) holds in M Ic

∞ . Since the upwards absoluteness of Σ1-statements
directly implies that ϕ(κ, ι(c), z) holds in V, we can conclude that ι(c) is an element
of D. �

This completes the proof of the theorem. �

Note that, in general, the conclusion of Theorem 1.1 cannot be extended to Σ1-
formulas using arbitrary subsets of the cardinal κ as parameters. For example, if
κ is a regular limit of measurable cardinals, then, in a generic extension by some
<κ-closed forcing, there exists a subset of P(κ) that does not contain the range of
a perfect embedding and is definable by a Σ1-formula with parameters in P(κ) (see
[28, Corollary 7.9]).
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3. Local complexity of canonical inner models

As a first application of the results of Section 2, we prove that canonical inner
models with infinitely many measurable cardinals are not locally Σ1-definable. Note
that Gödel’s constructible universe L, the Dodd–Jensen core model and Kunen’s
model L[U ] all possess the property that for every uncountable cardinal κ, the
H(κ+)M of the corresponding inner model M is definable by a Σ1-formula with
parameters in κ+1 (see, for example, the proof of [29, Lemma 4.13]). In particular,
these models satisfy the assumptions of the next theorem.

Theorem 3.1. Assume that M is a class term with the property that ZFC proves
the following statements:

(i) The class M is a transitive model of ZFC + V = M that contains all ordi-
nals.

(ii) M is forcing invariant.
(iii) If κ is a singular limit of measurable cardinals with cof(κ) = ω, then

H(κ+)M is definable by a Σ1-formula with parameters in H(κ)M ∪ {κ}.
Then ZFC proves that M contains only finitely many measurable cardinals.

Proof. Assume, towards a contradiction, that the above conclusion fails. Then we
may work in a model V of ZFC + V = M that contains infinitely many measurable
cardinals. Let κ be the least limit of measurable cardinals and let G be Add(ω, 1)-
generic over V. An application of (iii) in V[G] then yields z ∈ H(κ)V and a Σ1-
formula ϕ(v0, v1, v2) with the property that

H(κ+)V = {y ∈ V[G] | V[G] |= ϕ(κ, y, z)}.
In this situation, the homogeneity of Add(ω, 1) in V ensures that

1Add(ω,1) 
 “H(κ̌+)M = {y | ϕ(κ̌, y, ž)}” (7)

holds in V.
Now, fix G0×G1 (Add(ω, 1)×Add(ω, 1))-generic over V. Then (7) ensures that,

in V[G0], the set M ∩ P(κ) is a subset of P(κ) of cardinality greater than κ that
is definable by a Σ1-formula with parameters κ and z. Apply Lemma 2.1 in V[G0]
to obtain x ∈M ∩P(κ) and systems 〈νs | s ∈ <ωκ〉, 〈κs | s ∈ <ωκ〉, 〈Us | s ∈ <ωκ〉
and 〈Is | s ∈ <ωκ〉 satisfying the statements listed in the lemma with respect to z
and some subset of M ∩ P(κ) of cardinality κ+. Define

c =
⋃
G1 ∈ (ω2)V [G0,G1] \V[G0]

and let I denote the unique linear iteration of 〈V[G0], {Uc�n | n < ω}〉 of length

supn<ω lh(Ic�n) in V[G0, G1] with U Iα = U
Ic�n
α for all n < ω and α < lh(Ic�n).

Then Lemma 2.2 shows that M I
∞ is well-founded. Set x∗ = iI0,∞(x). Since

Lemma 2.2 ensures that iI0,∞(κ) = κ and iI0,∞(z) = z, we can use the elemen-

tarity of iI0,∞ and Σ1-upwards absoluteness to conclude that ϕ(κ, x∗, z) holds in
V[G0, G1]. Since V[G0, G1] is an Add(ω, 1)-generic extension of V, we can now
use (7) to conclude that x∗ is an element of V. If we now pick n < ω and set
ρ = min(κ(c�n)_〈0〉, κ(c�n)_〈1〉), then Clause (iii) of Lemma 2.2 shows that c(n) is
the unique i < 2 with

x∗ ∩ ρ = i
I(c�n)_〈i〉
0,∞ (x) ∩ ρ.

But this shows that c is an element of V[G0], a contradiction. �
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The above result can easily be shown to be optimal, in the sense that there exists
a class term M satisfying the above three properties that can consistently contain
any finite number of measurable cardinals. Ideas from the proof of Theorem 1.2 for
singular cardinals of countable cofinality will allow us to prove the following result
in Section 4.

Proposition 3.2. There exists a class term M with the following properties:

(i) There is a Σ1-formula ϕ(v0, v1, v2) with the property that ZFC proves the
following statements:
(a) The class M is a transitive model of ZFC + V = M that contains all

ordinals.
(b) M is forcing invariant.
(c) If κ is an uncountable cardinal, then there exists z ∈ H(κ)M with

H(κ+)M = {y | ϕ(κ, y, z)}.
(ii) Given a natural number n, if the theory

ZFC + “ There exist n measurable cardinals ”

is consistent, then so is the theory

ZFC + V = M + “ There exist n measurable cardinals.”

4. The lower bound for singular cardinals of countable cofinality

In this section, we will prove the following result that covers the case of singular
strong limit cardinals of countable cofinality in the statement of Theorem 1.2:

Theorem 4.1. Assume that there is no inner model with infinitely many measur-
able cardinals and let κ be a singular strong limit cardinal of countable cofinality.
Then there is a subset D of P(κ) of cardinality greater than κ that is definable by a
Σ1-formula with parameters in H(κ)∪{κ} such that there is no continuous injection
ι : ωκ −→ P(κ) with ran(ι) ⊆ D.

The proof of the above theorem relies on the theory of short core models de-
veloped by Koepke in [26] and generalizations of basic concepts from classical de-
scriptive set theory to simply definable collections of subsets of singular cardinals
of countable cofinality. In the following, we will briefly introduce these generalized
notions.

Definition 4.2. Let κ be a limit cardinal of countable cofinality and let 0 < n < ω
be a natural number.

(i) A subset T of (<ωκ)n is a subtree of (<ωκ)n if the following statements
hold for all 〈t0, . . . , tn−1〉 ∈ T :
(a) lh(t0) = . . . = lh(tn−1).
(b) If m < lh(t0), then 〈t0 � m, . . . , tn−1 � m〉 ∈ T .

(ii) If T is a subtree of (<ωκ)n, then we define [T ] to be the set of all elements
〈x0, . . . , xn−1〉 of (ωκ)n with the property that 〈x0 � m, . . . , xn−1 � m〉 ∈ T
holds for all m < ω.

(iii) A subset X of (ωκ)n is a Σ1
1-subset if there exists a subtree T of (<ωκ)n+1

with

X = p[T ] = {〈x0, . . . , xn−1〉 ∈ (ωκ)n | ∃y 〈x0, . . . , xn−1, y〉 ∈ [T ]}.
(iv) A subset of (ωκ)n is a Π1

1-subset if its complement in (ωκ)n is a Σ1
1-subset.
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As in the classical case, we can use universal sets to show that the classes of Σ1
1-

and Π1
1-subsets do not coincide at singular strong limits of countable cofinality.

Proposition 4.3. If κ is a singular strong limit cardinal of countable cofinality,
then there exists a Σ1

1-subset of ωκ that is not a Π1
1-subset.

Proof. Pick a strictly increasing sequence 〈κm | m < ω〉 of infinite cardinals that
is cofinal in κ. In addition, fix an enumeration 〈aα | α < κ〉 of H(κ). Define U to
be the set of all pairs 〈s, t〉 in <ωκ× <ωκ with the property that lh(s) = lh(t) and
〈s � l, t � l〉 ∈ as(m) for all l ≤ m < lh(s) with s[l] ∪ t[l] ⊆ κm. Then it is easy to
see that U is a subtree of <ωκ× <ωκ. Assume, towards a contradiction, that there
exists a subtree T of <ωκ×<ωκ with p[T ] = ωκ \p[U ]. Pick a function x ∈ ωκ with
the property that ax(m) = H(κm) ∩ T holds for all m < ω.

Now, assume that there is y ∈ ωκ with 〈x, y〉 ∈ [T ]. Then 〈x, y〉 /∈ [U ] and
there exists l < ω with 〈x � l, y � l〉 /∈ U . Then there exists l ≤ m < ω with
x[l] ∪ y[l] ⊆ κm and 〈x � l, y � l〉 /∈ ax(m) = H(κm) ∩ T . But, this yields a
contradiction, because 〈x � l, y � l〉 is an element of T . This shows that there is
y ∈ ωκ with 〈x, y〉 ∈ [U ]. Then 〈x, y〉 /∈ [T ] and there is l < ω with 〈x � l, y � l〉 /∈ T .
Pick l ≤ m < ω with x[l] ∪ y[l] ⊆ κm. Then the fact that 〈x, y〉 ∈ [U ] implies that
〈x � l, y � l〉 ∈ ax(m) ⊆ T , a contradiction. �

The proof of Theorem 4.1 relies on a generalization of the Boundedness Lemma
to singular cardinals of countable cofinality. Below, we introduce the definitions
needed in the formulation of this result.

Definition 4.4. Let κ be an infinite cardinal, let ~κ = 〈κξ | ξ < cof(κ)〉 be a strictly
increasing sequence of ordinals that is cofinal in κ and let ~a = 〈aα | α < κ〉 be a
sequence of elements of H(κ).

(i) Given z ⊆ κ, we define Cz to be the unique binary relation on κ with the
property that

αCz β ⇐⇒ ≺α, β� ∈ z
holds for all α, β < κ.4

(ii) We define WOκ to be the set of all z ∈ P(κ) with the property that Cz is
a well-ordering of κ.

(iii) We let WO(~κ,~a) denote the set of all x ∈ cof(κ)κ with the property that
there exists y ∈ WOκ such that y ∩ κξ = ax(ξ) holds for all ξ < cof(κ).

(iv) Given an element x of WO(~κ,~a), we let ‖x‖~a denote the order-type of the
resulting well-order 〈κ,C⋃

{ax(ξ) | ξ<cof(κ)}〉.

Lemma 4.5. Let κ be a singular strong limit cardinal of countable cofinality, let
~κ = 〈κm | m < ω〉 be a strictly increasing sequence of cardinals that is cofinal in κ
and let ~a = 〈aα | α < κ〉 be an enumeration of H(κ). If B is a Σ1

1-subset of ωκ with
B ⊆WO(~κ,~a), then there exists an ordinal γ < κ+ with ‖y‖~a < γ for all y ∈ B.

Proof. Assume, towards a contradiction, that the set {‖y‖~a | y ∈ B} is unbounded
in κ+. By Proposition 4.3, there exists a subtree T of <ωκ×<ωκ with the property
that the set A = ωκ \ p[T ] is not a Σ1

1-subset of ωκ. Given x ∈ ωκ, set

Tx = {t ∈ <ωκ | 〈x � lh(t), t〉 ∈ T}.

4Here, we let ≺·, ·� : On×On −→ On denote the Gödel pairing function.
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Then Tx is a subtree of <ωκ for all x ∈ ωκ and A = {x ∈ ωκ | [Tx] = ∅}. By
standard arguments (see [25, Section 2.E]), we now know that a function x ∈ ωκ
is contained in A if and only if there exists an ordinal γ < κ+ and a function
r : Tx −→ γ with r(s) > r(t) for all s, t ∈ Tx with s ( t. Our assumptions now
imply that A consists of all x ∈ ωκ with the property that there exists y ∈ B and
a function r : Tx −→ κ such that for all s, t ∈ Tx with s ( t and all m < ω with
r(s), r(t) < κm, we have ≺r(t), r(s)� ∈ ay(m).

Pick a subtree S of <ωκ× <ωκ with p[S] = B. For every s ∈ <ωκ, we define

Ts = {t ∈ <ωκ | lh(t) ≤ lh(s), 〈s � lh(t), t〉 ∈ T}.
Now, define U to be the subset of <ωκ× <ωκ consisting of pairs 〈s, t〉 with lh(s) =
lh(t) and the property that for all m < lh(s), there exist cm, rm, um, vm ∈ H(κ)
such that at(m) = 〈cm, rm, um, vm〉 and the following statements hold for all l ≤ m:

• 〈ul, vl〉, 〈um, vm〉 ∈ S, lh(um) = m + 1, ul = um � (l + 1) and vl = vm �
(l + 1).

• cm : H(κm) ∩ Ts�m −→ ω with cm � dom(cl) = cl.
• rm : {w ∈ H(κm) ∩ Ts�m | cm(w) ≤ m} −→ κm with rm � dom(rl) = rl

and ≺rm(q), rm(p)� ∈ aum(m) for all p, q ∈ dom(rm) with p ( q.

Then U is a subtree of <ωκ× <ωκ. We now show that p[U ] = A.
Now, fix 〈x, y〉 ∈ [U ]. Then there are c : Tx −→ ω, r : Tx −→ κ and 〈u, v〉 ∈ [S]

with the property that for all m < ω, the set ay(m) is equal to the quadruple

〈c � (H(κm) ∩ Tx�m), r � {w ∈ H(κm) ∩ Tx�m | c(w) ≤ m}, u � (m+ 1), v � (m+ 1)〉.
Then u ∈ B and ≺r(q), r(p)� ∈ au(m) holds for all p, q ∈ Tx with p ( q and all
m < ω with r(p), r(q) < κm. By earlier observations, this shows that x ∈ A.

In the other direction, fix x ∈ A. Then we can find 〈u, v〉 ∈ S and a function r :
Tx −→ κ such that for all p, q ∈ Tx with p ( q and all m < ω with r(p), r(q) < κm,
we have ≺r(q), r(p)� ∈ au(m). Let c : Tx −→ ω denote the unique function with
c(p) = min{m < ω | r(p) < κm}. If we then pick y ∈ ωκ such that the set ay(m) is
equal to the quadruple

〈c � (H(κm) ∩ Tx�m), r � {w ∈ H(κm) ∩ Tx�m | c(w) ≤ m}, u � (m+ 1), v � (m+ 1)〉
for all m < ω, then we can conclude that 〈x, y〉 ∈ [U ].

The above computations allow us to conclude that A = p[U ], contradicting the
fact that A is not a Σ1

1-subset of ωκ. �

We are now ready to prove the main result of this section.

Proof of Theorem 4.1. Assume that there is no inner model with infinitely many
measurable cardinals. Then [26, Theorem 2.14] implies that 0long (as defined in [26,
Definition 2.13]) does not exist. Let Ucan denote the canonical sequence of measures
and let K[Ucan] denote the canonical core model (as defined in [26, Definition 3.15]).
Then our assumption implies that dom(Ucan) is finite and [26, Theorem 3.23] shows
that there is a generic extension K[Ucan, G] of K[Ucan] by finitely many Prikry
forcings with the property that for every ordinal τ ≥ ω2 and every X ⊆ τ such
that |X| is a regular cardinal smaller than |τ |, there exists Z ∈ P(τ)K[Ucan,G] with
X ⊆ Z and |Z|K[Ucan,G] < τ .

Now, let κ be a singular strong limit cardinal of countable cofinality. Then κ
is singular in K[Ucan, G] and κ+ = (κ+)K[Ucan,G]. Moreover, since forcing with a
finite iteration of Prikry forcings preserves all cardinals, we also know that κ+ =
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(κ+)K[Ucan]. Set U = Ucan � κ and K = K[U ] (see [26, Definition 3.1]). Then [26,
Theorem 3.2] shows that K is an inner model of ZFC. Moreover, we can use [26,
Theorem 3.9.(iii)] to conclude that P(κ)K[Ucan] ⊆ K and therefore we know that
κ+ = (κ+)K.

Next, let <K denote the canonical well-ordering of K given by [26, Theorem
3.4]). For every κ ≤ γ < κ+, let bγ : κ −→ γ denote the <K-least bijection between
κ and γ, and set yγ = {≺α, β� | α, β < κ, bγ(α) < bγ(β)}. Finally, we define
D = {yγ | κ ≤ γ < κ+}. Then D is a subset of WOκ of cardinality κ+.

Claim. The set D is definable by a Σ1-formula with parameters in H(κ) ∪ {κ}.

Proof of the Claim. First, note that our assumption implies that U is an element of
H(κ)K. By arguing as in the proof of [33, Lemma 2.3], we can combine [26, Theorem
2.7] with [26, Theorem 2.10] to conclude that the collection of all initial segments
of the restriction of <K to H(κ+)K is definable by a Σ1-formula with parameters κ
and U . This conclusion directly implies the statement of the claim. �

In the following, assume, towards a contradiction, that there is a continuous
injection ι : ωκ −→ P(κ) with ran(ι) ⊆ D. Fix a strictly increasing sequence ~κ =
〈κm | m < ω〉 of cardinals that is cofinal in κ and an enumeration ~a = 〈aα | α < κ〉
of H(κ). Define T to be the set of all pairs 〈s, t〉 in <ωκ×<ωκ such that lh(s) = lh(t)
and the following statements hold for all l ≤ m < lh(s):

• as(m) ⊆ κm and as(l) = as(m) ∩ κl.
• at(l), at(m) ∈ <ωκ with l ≤ lh(at(l)) ≤ lh(at(m)), at(l) = at(m) � lh(at(l))

and ι(u) ∩ κm = as(m) for all u ∈ ωκ with at(m) ⊆ u.

This definition directly ensures that T is a subtree of <ωκ×<ωκ. Pick 〈x, y〉 ∈ [T ].
Set u =

⋃
{ay(m) | m < ω} ∈ ωκ and v =

⋃
{ax(m) | m < ω} ⊆ κ. By the definition

of T , we then have ι(u) = v ∈ D ⊆ WOκ and this shows that x is an element of
WO(~κ,~a). This shows that p[T ] ⊆ WO(~κ,~a) and therefore Lemma 4.5 yields an
ordinal γ < κ+ with ‖x‖~a < γ for all x ∈ p[T ].

Since for every ordinal κ ≤ δ < κ+, there is a unique element y of D with
otp (κ,Cy) = δ, we know that the map

i : ωκ −→ κ+; u 7−→ otp
(
κ,Cι(u)

)
is an injection and we can find u ∈ ωκ with otp

(
κ,Cι(u)

)
> γ. Pick x ∈ ωκ with

ax(m) = ι(u)∩κm for all m < ω. In addition, pick y ∈ ωκ with the property that for
all l ≤ m < ω, we have ay(l), ay(m) ∈ <ωκ, l ≤ lh(ay(l)) ≤ lh(ay(m)), ay(l) ⊆ ay(m) =
u � lh(ay(m)) and ι(w) ∩ κm = ι(u) ∩ κm for all w ∈ ωκ with u � lh(ay(m)) ⊆ w.
Note that this is possible as ι is a continuous injection. Then 〈x, y〉 ∈ [T ] and
x ∈ p[T ] ⊆WO(~κ,~a) with ‖x‖~a = otp

(
κ,Cι(u)

)
> γ, a contradiction. �

We close this section by using ideas from the above proof to show that the
assumptions of Theorem 3.1 are optimal. These arguments make use of the following
observation:

Lemma 4.6. Assume that 0long does not exist. If V[G] is a generic extension of
the ground model V, then K[Ucan]V = K[Ucan]V[G].

Proof. The statement of the lemma will be a direct consequence of the following
two claims:
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Claim. If V[G] is a generic extension of the ground model V, then K[Ucan]V =
K[UV

can]V[G].

Proof of the Claim. Since the property of being a U -mouse is upwards absolute be-
tween transitive models of ZFC with the same ordinals, we know that K[Ucan]V ⊆
K[UV

can]V[G]. Next, observe that the fact that V[G] is a set forcing extension of
V implies that all sufficiently large singular cardinals in V[G] are singular in V.
Moreover, an application of [26, Theorem 3.23] shows that all sufficiently large
singular cardinals in V are singular in K[Ucan]V. In combination, this shows that
for all sufficiently large singular cardinals λ of uncountable cofinality in V[G], ev-
ery closed unbounded subset of λ in V[G] contains an element that is singular in
K[Ucan]V. This observation allows us to use [26, Theorem 3.24(ii)] to conclude that
K[UV

can]V[G] ⊆ K[Ucan]V. �

Claim. Let P be a weakly homogeneous partial order. If G is P-generic over V,
then K[Ucan]V = K[Ucan]V[G].

Proof of the Claim. First, the weak homogeneity of P in V ensures that

UV[G]
can ⊆ K[Ucan]V[G] ⊆ HODV[G] ⊆ V.

In particular, we know that the set U
V[G]
can (κ) ∩ P(κ)V is an element of V for every

κ ∈ dom(U
V[G]
can ). In this situation, we can now use the first claim to inductively

show that the definition of the canonical measure sequence ensures that UV
can � ξ =

U
V[G]
can � ξ holds for all ξ ∈ On. �

Now, let P be a partial order and let G be P-generic over V. Pick a sufficiently
large cardinal δ such that P × Col(ω, δ) densely embeds into Col(ω, δ) and let H
be Col(ω, δ)-generic over V[G]. Since Col(ω, δ) is weakly homogeneous in both V
and V[G], we can now use the above claim twice to conclude that K[Ucan]V =
K[Ucan]V[G,H] = K[Ucan]V[G]. �

Proof of Proposition 3.2. Let M denote the canonical class term with the property
that ZFC proves the following statements:

• If either 0long exists, or 0long does not exist and the model K[Ucan] contains
infinitely many measurable cardinals, then M is equal to the constructible
universe L.

• Otherwise, M is equal to K[Ucan].

Then the results of [26] show that ZFC proves that M is a transitive model of
ZFC + V = M that contains all ordinals. Moreover, Lemma 4.6 together with the
fact that 0long cannot be added by forcing show that M is forcing invariant.

Claim. Assume that 0long does not exist and K[Ucan] contains only finitely many
measurable cardinals. If κ is an uncountable cardinal, then H(κ+)K[Ucan] is definable
by a Σ1-formula with parameters in H(κ) ∪ {κ}.

Proof of the Claim. Set U = Ucan � κ and K = K[U ]. Then [26, Theorem 3.9] shows
that H(κ+)K[Ucan] = H(κ+)K. Moreover, if κ is not the successor of an element of
dom(U) in K, then U is an element of H(κ) and we can repeat arguments from the
proof of Theorem 4.1 to show that the class of all U -mice M (see [26, Definition 2.9])
that contain κ in their lower part lp(M) (see [26, Definition 2.1]) is definable by a
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Σ1-formula with parameters κ and U . Since every element of H(κ+)K is contained
in such a lower part, the statement of the claim follows in this case.

In the following, assume that there is δ ∈ dom(U) with κ = (δ+)K. Let F be
a simple predicate with dom(F ) = dom(U) and let M be an F -mouse such that
κ, F ∈ lp(M), κ = (δ+)M and F (µ) is an ultrafilter in M for every µ ∈ dom(F ).
Since every subset of δ in K[F ] is contained in an F -mouse of cardinality less than
κ, we can now apply [26, Theorem 2.10] to conclude that F (µ) is an ultrafilter in
K[F ] for every µ ∈ dom(F ). This shows that K[F ] is a core model (in the sense of
[26, Definition 3.6]) and therefore [26, Theorem 3.14] shows that K = K[F ] holds.
Since every element of H(κ+)K is contained in the lower part of an U -mouse M with
κ, U ∈ lp(M) and κ = (δ+)M , we can conclude that the set H(κ+)K is definable by
a Σ1-formula with parameters κ and dom(U) in this case. �

The above claim now allows us to find a Σ1-formula ϕ(v0, v1, v2) with the prop-
erty that for every uncountable cardinal κ, we have Lκ+ = {x | ϕ(κ, κ, x)} and, if
0long does not exist and K[Ucan] contains only finitely many measurable cardinals,
then there exists z ∈ H(κ) with H(κ+)K[Ucan] = {x | ϕ(κ, x, z)}. Finally, if the
existence of n measurable cardinals is consistent with the axioms of ZFC for some
natural number n, then the existence of exactly n measurable cardinals in K[Ucan]
is consistent with ZFC. �

5. The lower bound for singular cardinals of uncountable
cofinality

We now use ideas from [18] to complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let κ be a singular strong limit cardinal with the property
that for every subset D of P(κ) of cardinality greater than κ that is definable
by a Σ1-formula with parameters in H(κ) ∪ {κ}, there exists a perfect embedding
ι : cof(κ)κ −→ P(κ) with ran(ι) ⊆ D. Assume, towards a contradiction, that there
is no inner model with a sequence of measurable cardinals of length cof(κ). Then
Theorem 4.1 implies that the cofinality of κ is uncountable. Moreover, we know
that there is no inner model with a measurable cardinal of Mitchell order 1 and
therefore we can construct the canonical core model K as in [47] (which is Steel’s
core model [41] in this easier setting). Note that our hypothesis implies that, in K,
the sequence of measurable cardinals below κ is bounded below κ. In addition, as
κ is singular in V, weak covering (see [47, Theorem 7.5.1]) holds for K at κ, i.e.,
we have (κ+)K = κ+. Finally, our assumption allows us to apply the second part
of [9, Theorem 1] to show that κ is singular in K.

We will now construct a tree of height cof(κ)
K

that is an element of K and then
argue that this tree does not have a perfect subtree in V. These arguments use
ideas from [18] that ultimately go back to Solovay’s argument for the consistency
strength of the Kurepa Hypothesis (see [20, Section 4]). Our tree consists of hulls
of initial segments of K of size κ and we will argue that we can obtain such initial
segments in a Σ1-definable way with parameters in H(κ) ∪ {κ}.

In the following, we say a premouse N (in the sense of [47, Section 4.1]) is good
if the following statements hold:

• N is iterable (in the sense of [47, Section 4.2]).
• κ+ 1 ⊆ N and |N | = κ.

• cof(κ)
N

= cof(κ)
K

.
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• κ is the largest cardinal in N .
• If γ < κ is the supremum of the measurable cardinals below κ in K, then

N |γ++ = K|γ++.

In particular, K and N have the same measurable cardinals and the same
total measures below κ.

Claim. Let N be a good premouse. Then N CK.

Proof of the Claim. Compare N and K and suppose, towards a contradiction, that
the comparison is not trivial. Consider the first measure that is used. As N |γ++ =
K|γ++, where γ < κ is the supremum of the measurable cardinals below κ in N
and K, the first measure that is used in the comparison has to be a partial measure
above γ. Say this is a partial measure µ with critical point ν on the K-side of
the comparison. Then, in order to use this partial measure, we need to truncate
K as µ does not measure all subsets of ν in K. By the Comparison Lemma (see,
for example, [47, Lemma 4.4.2] or [42, Theorem 3.11]), we obtain iterates N∗ of
N and K∗ of K (or, in fact, of a truncation K|ξ of K) such that N∗ E K∗. Note
that truncations can only appear on one side of the comparison and this side has
to come out longer in the end. In particular, the iteration from N to N∗ can only
use total measures with critical point above ν > γ and is therefore trivial, i.e. we
have N = N∗.

Suppose that ν > κ. Note that ν is a cardinal in K∗. As ν < N∩On and NEK∗,
this implies that there are cardinals above κ in N , contradicting the assumption
that κ is the largest cardinal in N .

Now suppose that ν < κ. The iteration from K|ξ to K∗ cannot leave any total
measures below κ behind as N E K∗ does not have any total measures between γ
and κ. As we suppose that there is no inner model with a sequence of measurable
cardinals of length cof(κ), this implies that the iteration from K|ξ to K∗ is a linear
iteration of µ and its images. Again, as N EK∗ does not have any total measures
between γ and κ and N ∩ On ≥ κ, this iteration needs to last at least κ-many
steps by [23, Corollary 19.7.(b)] since κ is a cardinal in V. Moreover, [23, Corollary
19.7.(b)] shows that κ is inaccessible in K∗. As N E K∗, this contradicts the fact
that κ is singular in N . Therefore, µ is not used on the K-side of the comparison.

Similarly, we can argue that no partial measure on N gets used in the comparison
and hence we can conclude that N CK. �

Claim. For every x ∈
(

cof(κ)κ
)K

, there is a good premouse N with x ∈ N .

Proof of the Claim. As K satisfies the GCH, there is some ξ < (κ+)K = κ+ such
that x ∈ K|ξ and K|ξ is a good premouse. �

Following [18], we say a pair 〈M, x̄〉 is an active node at ρ for some ρ < cof(κ)
K

if there is a good premouse N and some x ∈
(

cof(κ)κ
)N

with ran(x) ⊆ RegN , the
regular cardinals in N , such that the following statements hold:

• x is strictly increasing and cofinal in κ.
• M is equal to the transitive collapse of HullN (x(ρ) ∪ {x}) and x̄ ∈ M is

the image of x under the transitive collapse.
• If π : M −→ N is the corresponding uncollapsing map, then crit (π) =
x̄(ρ).
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In addition, we say a pair 〈M, x̄〉 is an active node if there is some ordinal ρ <

cof(κ)
K

such that 〈M, x̄〉 is an active node at ρ.
We now let T denote the unique partial order defined by the following clauses:

(i) The elements of T are triples of the form 〈M, x̄, s〉 satisfying the following
properties:
(a) The pair 〈M, x̄〉 is either an active node or equal to the pair 〈∅, ∅〉.
(b) s is an element of (<cof(κ)κ)K with the property that the set⋃

0<α<κ

s−1({α})

is finite.
(c) If 〈M, x̄〉 is an active node at ρ, then dom(s) ≥ ρ.

(ii) The order of T is defined by

〈M0, x0, s0〉 ≤T 〈M1, x1, s1〉
if and only if the following statements hold:
(a) M0 is the transitive collapse of HullM1(x1(ρ)∪{x1}) for some ordinal

ρ and x0 is the image of x1 under the transitive collapse, or M0 =
x0 = ∅. In the following, write ρ for the minimal such ordinal and
ρ = −1 if M0 = x0 = ∅.

(b) s0 is an initial segment of s1.
(c) There is no ordinal ρ′ between ρ and dom(s0) with the property that

〈HullM1(x1(ρ′) ∪ {x1}), x1〉 transitively collapses to an active node
which, in case ρ 6= −1, is not 〈M0, x0〉.

It is now easy to see that T is a tree of height cof(κ)
K

that is contained in K
and has the property that each node is splitting into κ-many successors. Moreover,

each x ∈
(

cof(κ)κ
)K

that is strictly increasing and cofinal in κ with range contained

in RegN naturally gives rise to a cofinal branch bx through T and two different such

elements x, y ∈
(

cof(κ)κ
)K

give rise to different branches bx and by. Hence, the fact
that the GCH holds in K implies that the set of cofinal branches through T has
cardinality at least (

κcof(κ)
)K

= (κ+)K = κ+.

Claim. Let b be a cofinal branch through T and let 〈Rb, xb〉 denote the direct limit
of models along b. Then Rb is well-founded and we can identify it with its transitive
collapse. Moreover, Rb CK.

Proof of the Claim. As the proof of the well-foundedness of Rb is easier, we focus
on the argument that Rb C K. By our first claim, it suffices to show that Rb is
a good premouse. We obtain iterability for Rb by reflecting countable elementary
substructures of Rb into models in the tree T , as in [18], using the fact that

cof(cof(κ)
K

) = cof(κ) > ω

(see [21, Lemma 3.7(ii)]). In the following, write 〈Mρ | ρ < cof(κ)
K〉 for the sequence

of models appearing in active nodes at ρ along the branch b. Then the definition

of T ensures that for every ξ < κ, there is some ρ < cof(κ)
K

such that if Mρ is the

transitive collapse of HullNρ(xρ(ρ) ∪ {xρ}) for some good premouse Nρ and some

xρ ∈
(

cof(κ)κ
)Nρ

, then xρ(ρ) > ξ. Therefore, we know that κ ⊆ Rb and elementarity



20 PHILIPP LÜCKE AND SANDRA MÜLLER

implies that κ+ 1 ⊆ Rb. Our setup also directly ensures that |Rb| = κ. As NρCK
and the critical point of the inverse of the collapse embedding πρ : Mρ → Nρ is at
least xρ(ρ), this also shows that N |γ++ = K|γ++, where γ < κ is the supremum
of the measurable cardinals below κ in K and N . Moreover, we know that κ has

cofinality cof(κ)
K

in Rb, as witnessed by xb. Finally, κ is the largest cardinal
in Rb by elementarity as κ = sup(ran(xρ)) is the largest cardinal in Nρ for all
ρ < cof(κ). �

Claim. The set T is Σ1-definable with parameters in H(κ) ∪ {κ}.

Proof of the Claim. It clearly suffices to show that the set of all good mice N is
definable in the above way. As there is no inner model with cof(κ)-many measurable
cardinals, the mice we consider are simple and therefore iterability for N is Σ1-
definable from the parameter ω1, using [47, Theorem 4.5.5]. All other conditions can
obviously be stated by Σ1-formulas using the parameters κ and K|γ++ ∈ H(κ). �

Claim. There is an injection i : T −→ H(κ) ∩ P(κ) that is definable by a Σ1-
formula with parameters in H(κ) ∪ {κ}.

Proof of the Claim. It clearly suffices to construct an injection from the set of all

active nodes to H(κ) ∩ P(κ). Let 〈M, x̄〉 be an active node at some ρ < cof(κ)
K

.
Since M is the transitive collapse of an elementary submodel of some good premouse

N = 〈J~Eα , ~E〉, we know that M is of the form 〈JAε , A〉 and there is a well-ordering
C of M that is definable in M . Let τ : 〈M,C〉 −→ 〈λ,<〉 denote the corresponding
transitive collapse and associate 〈M, x̄〉 with the element

{≺0,≺α, β�� | α, β < λ, τ−1(α) ∈ τ−1(β)}
∪ {≺1, α� | α < λ, τ−1(α) ∈ A}
∪ {≺2, α� | α < λ, τ−1(α) ∈ x̄}

of H(κ)∩P(κ). It is now easy to see that the resulting injection is definable in the
desired way. �

Claim. No countably closed forcing adds a cofinal branch through T .

Proof of the Claim. Let P be a countably closed forcing notion and let G be P-
generic over V. Suppose, towards a contradiction, that there is a cofinal branch b
through T in V[G] that is not contained in V. By considering the direct limit of the

active nodes along b and using the fact that cof(κ)
V

has uncountable cofinality in
V[G], we obtain a pair 〈Rb, xb〉 such that b (modulo some choice of an almost zero
sequence s) can be recovered from Rb and xb via the transitive collapses of models
of the form

HullRb(xb(ρ) ∪ {xb}),
for ρ < cof(κ)

K
. One of our previous claims then shows that Rb C K holds in

V [G]. By [47, Theorem 7.4.11], the core model K is forcing absolute, i.e. we have
KV = KV[G]. Therefore, we know that Rb and hence b is already an element of V,
a contradiction. �

Fix a strictly increasing, cofinal function c : cof(κ) −→ cof(κ)
K

and let T∗ denote
the unique partial order defined by the following clauses:

(i) The elements of T∗ are functions t such that dom(t) ∈ cof(κ) and the
following statements hold:
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(a) If α ∈ dom(t), then t(α) is a branch through T of order-type c(α).
(b) If α < β ∈ dom(t), then t(α) is an initial segment of t(β).

(ii) The ordering of T∗ is given by inclusion.

It then follows that T∗ is a tree of height cof(κ) with the property that every node
has κ-many successors. Since the tree T has at least κ+-many branches, it follows
that T∗ also has at least κ+-many branches. Moreover, by using the injection i,
it is possible to construct an injection i∗ : T∗ −→ H(κ) ∩ P(κ) with ∅ /∈ ran(i∗)
that is definable by a Σ1-formula with parameters in H(κ)∪{κ}. Finally, the above
computations also imply that forcing with a countably closed partial order does not
add a new cofinal branch to T∗.

Define D to be the set of all subsets of κ of the form

yb = {≺α,≺β, sup(i∗(α))�� | α < cof(κ), β ∈ i∗(b � α)}
for some function b with domain cof(κ) and the property that b � α ∈ T∗ for all
α < cof(κ). Since the fact that the tree T∗ has at least κ+-many cofinal branches
implies that D has cardinality greater than κ and the above computations show
that D is definable by a Σ1-formula with parameters in H(κ)∪{κ}, our assumption
yields a perfect embedding ι : cof(κ)κ −→ P(κ) with ran(ι) ⊆ D. Using the fact
that cof(κ) is uncountable, a routine construction now allows us to find

• a system 〈us | s ∈ <cof(κ)2〉 of elements of <cof(κ)2,
• a strictly increasing sequence 〈κα | α < cof(κ)〉 that is cofinal in κ, and
• a system 〈as | s ∈ <cof(κ)2〉 of bounded subsets of κ

such that the following statements hold for all s, t ∈ <cof(κ)2:

(i) If lh(s) = lh(t), then lh(us) = lh(ut).
(ii) as is a subset of κlh(s).
(iii) If s ⊆ t, then as = at ∩ κlh(s) and us ⊆ ut.
(iv) as_〈0〉 6= as_〈1〉 and us_〈0〉 6= us_〈1〉.

(v) ι[{x ∈ cof(κ)2 | x � lh(s) = s}] = {y ∈ ran(ι) | y ∩ κlh(s) = as}.
(vi) If α < lh(s), then there are γ ≤ δ < κlh(s) with ≺α,≺γ, δ�� ∈ as.

Now, let G be Add(cof(κ), 1)-generic over V. Set xG =
⋃
G ∈ (cof(κ)2)V[G] and

yG =
⋃
{axG�α | α < cof(κ)} ∈ P(κ)V[G].

In this situation, our construction ensures that there is a function bG in V[G] such
that dom(bG) = cof(κ), bG � α ∈ T∗ for all α < cof(κ) and yG = ybG . By our
earlier observations, the cofinal branch through T∗ induced by bG is contained in
V and hence bG is an element of V. But this implies that yG is also contained in
the ground model V. Since xG is the unique element x of (cof(κ)2)V[G] with the
property that yG ∩ κα = ax�α holds for all α < cof(κ), we can now conclude that
xG is contained in V, a contradiction. �

6. Almost disjoint families at limits of measurable cardinals

We now proceed by using the techniques developed in Section 2 to show that
large almost disjoint families at cardinals with sufficiently strong large cardinal
properties are not simply definable.

Proof of Theorem 1.3. Let κ be an iterable cardinal that is a limit of measurable
cardinals, let z be an element of H(κ) and let A be a subset of P(κ) of cardinality
greater than κ with the property that there exists a Σ1-formula ϕ(v0, v1, v2) with
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A = {y ⊆ κ | ϕ(κ, y, z)}. Assume, towards a contradiction, that A is an almost
disjoint family in P(κ). Since κ is an inaccessible cardinal and the collection of
all bounded subsets of κ is definable by a Σ0-formula with parameter κ, we may
then also assume that A consists of unbounded subsets of κ. Fix an inaccessible
cardinal λ < κ with z ∈ H(λ) and use Lemma 2.1 to obtain x ∈ A and systems
〈νs | s ∈ <κκ〉, 〈κs | s ∈ <κκ〉, 〈Us | s ∈ <κκ〉 and 〈Is | s ∈ <κκ〉 with λ < κ∅ and
the properties listed in the lemma. Then there exists an Add(λ, 1)-nice name ẋ for

an unbounded subset of κ with the property that ẋG = i
IcG
0,∞(x) holds whenever G is

Add(λ, 1)-generic over V, cG =
⋃
G ∈ (λ2)V[G] and IcG is the unique linear iteration

of 〈V, {UcG�ξ | ξ < λ}〉 of length supξ<λ lh(IcG�ξ) in V[G] with U IGα = U
IcG�ξ
α for all

ξ < λ and α < lh(IcG�ξ). Note that, by Lemma 2.2, the elementarity of i
IcG
0,∞ and

the upwards absoluteness of Σ1-statements between M
IcG∞ and V[G] ensures that

1Add(λ,1) 
 ϕ(κ̌, ẋ, ž) (8)

holds in V.

Claim. If G0 ×G1 is (Add(λ, 1)×Add(λ, 1))-generic over V, then ẋG0 6= ẋG1 .

Proof of the Claim. Given i < 2, the absoluteness of the iterated ultrapower con-
struction ensures that (IcGi )

V[Gi] = (IcGi )
V[G0,G1] holds and this implies that

ẋGi = (i
IcGi
0,∞ (x))V[G0,G1].

Since mutual genericity implies that cG0 6= cG1 , the desired inequality now directly
follows from an application of statement (iii) of Lemma 2.2 in V[G0, G1]. �

Pick an elementary submodel M0 of H(κ+) of cardinality κ with <κM0 ⊆ M0

that contains H(κ) and all objects listed above. Since iterable cardinals are weakly
compact, we can find a transitive set M1 of cardinality κ and an elementary em-
bedding j : M0 −→ M1 with crit (j) = κ (see [17, Theorem 1.3]). Then j(ẋ)
is an Add(λ, 1)-name for an unbounded subset of j(κ) and there is a canonical
Add(λ, 1)-name γ̇ for an ordinal in the interval [κ, j(κ)) with the property that

γ̇G = min(j(ẋ)G \ κ)

holds whenever G is Add(λ, 1)-generic over V.

Claim. If G0 ×G1 is (Add(λ, 1)×Add(λ, 1))-generic over V, then γ̇G0 6= γ̇G1 .

Proof of the Claim. Given an Add(λ, 1)-name ȧ, let ȧl and ȧr denote the canonical

(Add(λ, 1) × Add(λ, 1))-names such that ȧG0×G1

l = ȧG0 and ȧG0×G1
r = ȧG1 holds

whenever G0 ×G1 is (Add(λ, 1)× Add(λ, 1))-generic over V. Given an Add(λ, 1)-
name ȧ in M0, we then have j(ȧl) = j(ȧ)l and j(ȧr) = j(ȧ)r.

Assume, towards a contradiction, that

〈p, q〉 
Add(λ,1)×Add(λ,1) “ γ̇l = γ̇r ”

holds for some condition 〈p, q〉 in (Add(λ, 1)×Add(λ, 1)).

Subclaim. 〈p, q〉 
Add(λ,1)×Add(λ,1) “ ẋl ∩ ẋr is unbounded in κ̌”.

Proof of the Subclaim. Let G0×G1 be (Add(λ, 1)×Add(λ, 1))-generic over V with
〈p, q〉 ∈ G0 ×G1. By standard arguments, there exists an elementary embedding

j∗ : M0[G0, G1] −→M1[G0, G1]
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with j∗(ḃ
G0×G1) = j(ḃ)G0×G1 for every (Add(λ, 1)×Add(λ, 1))-name ḃ in M0. Then

our assumptions ensure that

γ̇G0 = γ̇G1 ∈ j(ẋ)G0 ∩ j(ẋ)G1 ∩ [κ, j(κ))

= j∗(ẋ
G0×G1

l ) ∩ j∗(ẋ
G0×G1
r ) ∩ [κ, j∗(κ)) 6= ∅.

In particular, if α < κ, then the elementarity of j∗ and the fact that j∗(α) = α
directly imply that

ẋG0×G1

l ∩ ẋG0×G1
r ∩ (α, κ) 6= ∅.

This proves the statement of the subclaim. �

We now use the fact that κ is an iterable cardinal to find a transitive model M
of ZFC− of cardinality κ with M0 ∈M and a weakly amenable M -ultrafilter F on
κ such that 〈M,F 〉 is iterable. Pick an elementary submodel 〈X,∈, F̄ 〉 of 〈M,∈, F 〉
of cardinality λ with <λX ⊆ X that contains H(λ), M0 and all other relevant
objects. Let π : X −→ N0 denote the corresponding transitive collapse and set
F0 = π[F̄ ]. By [23, Theorem 19.15], we know that 〈N0, F0〉 is iterable. Let 〈N1, F1〉
denote the κ-th iterate of 〈N0, F0〉 and let i : N0 −→ N1 denote the corresponding
elementary embedding. Then (i◦π)(κ) = κ, (i◦π)(z) = z, (i◦π)(〈p, q〉) = 〈p, q〉 and
H(π(κ))N0 = H(π(κ))N1 . Since the partial order Add(λ, 1)×Add(λ, 1) is <λ-closed
and a subset of N0, the fact that |N0| = λ allows us to find a filter H0 × H1 on
Add(λ, 1) × Add(λ, 1) that contains 〈p, q〉 and is generic over N0. Moreover, since
H(λ+)N1 ⊆ N0, we know that the filter H0 ×H1 is also generic over N1.

Given i < 2, we now define xi = (i ◦ π)(ẋ)Hi . Set N = (i ◦ π)(M0). Then
Add(λ, 1) ⊆ N , (i ◦ π)(ẋ) ∈ N and H0×H1 is (Add(λ, 1)×Add(λ, 1))-generic over
N . Since our first claim and the above subclaim show that

〈p, q〉 
Add(λ,1)×Add(λ,1) “ ẋl 6= ẋr and ẋl ∩ ẋr is unbounded in κ̌”

holds in M0, elementarity implies that x0 and x1 are distinct subsets of κ and
x0 ∩ x1 is unbounded in κ. Moreover, using (8), Σ1-upwards absoluteness and the
fact that Σ1-statements in the forcing language can be expressed by Σ1-formulas,
we know that

〈p, q〉 
Add(λ,1)×Add(λ,1) “ϕ(κ̌, ẋl, ž) ∧ ϕ(κ̌, ẋr, ž)”

holds in M0 and therefore elementarity allows us to conclude that ϕ(κ, xi, z) holds
in N [H0, H1] for all i < 2. By Σ1-upwards absoluteness, this implies that x0 and
x1 are distinct elements of A, contradicting the fact that A is an almost disjoint
family. �

Now, let G be Add(λ, κ+)-generic over V. Since λ is inaccessible, the model V[G]
has the same cardinals as V. Let 〈Gδ | δ < κ+〉 denote the induced sequence of
filters on Add(λ, 1). Given δ < ε < κ+, the filter Gδ ×Gε on Add(λ, 1)×Add(λ, 1)
is generic over V and therefore the previous claim implies that γ̇Gδ 6= γ̇Gε . In
particular, the map

ι : κ+ −→ j(κ); δ 7−→ γ̇Gδ

is an injection. Since j(κ) < κ+, this yields a contradiction. �

The conclusion of Theorem 1.3 provably does not generalize to Σ1-definitions
using arbitrary subsets of κ as parameters. If κ is an infinite cardinal and z ⊆ κ
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codes an injective sequence 〈sβ | β < κ〉 of elements of <κ2 with the property that
the set

I = {x ∈ κ2 | ∀α < κ ∃β < κ x � α = sβ}
has cardinality greater than κ, then the collection {{β < κ | sβ ⊆ x} | x ∈ I} is an
almost disjoint family of cardinality greater than κ that is definable by a Σ1-formula
with parameter z. Note that such sequences exist for every strong limit cardinal κ,
or, more generally, for every cardinal κ that is a strong limit cardinal in an inner
model M satisfying (2κ)M ≥ κ+.

7. Long well-orders at limits of measurable cardinals

In order to motivate the statement of Theorem 1.4, we first show how classical
results of Dehornoy can easily be used to show that, if κ is a limit of measurable
cardinals, then no well-ordering of P(κ) is definable by a Σ1-formula with param-
eters in H(κ) ∪ {κ}. Moreover, if κ has uncountable cofinality, then we can also
easily show that no injection from κ+ into P(κ) is definable in this way. This
non-definability result will be a direct consequence of the following theorem.

Theorem 7.1. If δ is a measurable cardinal, z ∈ H(δ) and ν is a cardinal with
cof(ν) 6= δ and µδ < ν for all µ < ν, then the following statements hold for
κ ∈ {ν, ν+}:

(i) No well-ordering of P(κ) is definable by a Σ1-formula with parameters ν,
ν+ and z.

(ii) If cof(κ) > ω, then no injection from κ+ into P(κ) is definable by a Σ1-
formula with parameters κ and z.

The proof of the above theorem is based on two standard results about measur-
able cardinals. A proof of the first of these lemmas is contained in the proof of [33,
Lemma 1.3]:

Lemma 7.2. Let U be a normal ultrafilter on a measurable cardinal δ and let ν > δ
be a cardinal with cof(ν) 6= δ and µδ < ν for all µ < ν. If j : V −→ Ult(V, U) is
the induced ultrapower embedding, than j(ν) = ν and j(ν+) = ν+. �

Lemma 7.3. Let U be a normal ultrafilter on a measurable cardinal δ and let

〈〈Nα | α ∈ On〉, 〈jα,β : Nα −→ Nβ | α ≤ β ∈ On〉〉

denote the system of iterated ultrapowers of 〈V,∈, U〉. If ν is a cardinal with
cof(ν) 6= δ and µδ < ν for all µ < ν, then j0,α(κ) = κ holds for κ ∈ {ν, ν+}
and all α < κ.

Proof. We start by using induction to show that j0,α(ν) = ν holds for all α < ν.
In the successor case, the desired conclusion follows directly from the induction
hypothesis and an application of Lemma 7.2 in Nα. Hence, we may assume that
α is a limit ordinal. Pick ᾱ < α and ξ < ν. Then elementarity allows us to apply
[23, Corollary 19.7.(a)] in Nᾱ to conclude that jᾱ,α(ξ) < ν. Since every element
of j0,α(ν) ≥ ν is of the form jᾱ,α(ξ) for some ᾱ < α and ξ < j0,ᾱ(ν) = ν, these
computations show that j0,α(ν) = ν holds.

Next, we inductively show that j0,α(ν) < ν+ holds for all α < ν+, where the
successor step is again a direct consequence of the induction hypothesis and Lemma
7.2. In the other case, if α ∈ ν+ ∩ Lim and j0,ᾱ(ν) < ν+ holds for all ᾱ < α, then
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every element of j0,α(ν) is of the form jᾱ,α(ξ) with ᾱ < α and ξ < j0,ᾱ(ν) and this
shows that |j0,α(ν)| ≤ ν · |α| < ν+.

Finally, we have ν+ ≤ j0,α(ν+) ≤ |j0,α(ν)|+ for all α < ν+. Since the above
computations show that |j0,α(ν)| = ν holds for all α < ν+, this shows that
j0,α(ν+) = ν+ holds for all α < ν+. �

Proof of Theorem 7.1. Let U be a normal ultrafilter on a measurable cardinal δ
and let

〈〈Nα | α ∈ On〉, 〈jα,β : Nα −→ Nβ | α ≤ β ∈ On〉〉
denote the system of iterated ultrapowers of 〈V,∈, U〉. Moreover, for every α ∈ Lim,
we define Mα =

⋂
{Nξ | ξ < α}. Then [10, Proposition 1.6.1] shows that each Mα

is an inner model of ZF.
(i) Assume, towards a contradiction, that there is a Σ1-formula ϕ(v0, . . . , v4)

with the property that

C = {〈x, y〉 | ϕ(x, y, z, ν, ν+)}
is a well-ordering of P(κ). For all α ∈ On, we define Cα = j0,α(C). Given α < ω2,
Lemma 7.3 implies that j0,α(ν) = ν and j0,α(ν+) = ν+. In particular, elementarity
implies that Cα is a well-ordering of P(κ)Nα and the sequence 〈Cα+β | β < ω2〉 is
an element of Nα. By our assumptions, elementarity and Σ1-upwards absoluteness
imply that Cβ ⊆ Cα ⊆ C for all α ≤ β < ω2. Define J =

⋂
{Cα | α < ω2}. If

α < ω2, then J =
⋂
{Cα+β | β < ω2} and therefore J ∈ Nα. This shows that

J is an element of Mω2 and it follows that J is a well-ordering of P(κ)Mω2 . But
this yields a contradiction, because [10, Theorem 5.3.4] shows that Mω2 contains
a subset Gω2 of P(j0,ω2(δ)) with the property that Mω2 does not contain a well-
ordering of the set Gω2 .

(ii) Assume, towards a contradiction, that cof(κ) > ω and there is an injection
ι : κ+ −→ P(κ) that is definable by a Σ1-formula ϕ(v0, . . . , v3) and the parameters
κ and z.

Claim. If α < κ, then j0,α(ι) = ι.

Proof of the Claim. Since Lemma 7.3 shows that j0,α(κ) = κ, we also know that
j0,α(κ+) = κ+ and therefore elementarity implies that j0,α(ι) is an injection from
κ+ into P(κ) that is definable in Nα by the formula ϕ and the parameters κ and
z. But then Σ1-upwards absoluteness implies that j0,α(ι) ⊆ ι and this allows us to
conclude that j0,α(ι) = ι. �

The above claim directly implies that the injection ι is an element of Mκ. By
[10, Theorem B.(i)], the fact that cof(κ) > ω implies that Nκ = Mκ =

⋂
α<κNα

and hence |P(κ)Nκ | ≥ κ+. Since Nκ is a direct limit and j0,κ(δ) = κ, we also know
that

P(κ)Nκ = {jα,κ(x) | α < κ, x ∈ P(j0,α(δ))Nα}.
But our assumptions imply that 2δ < κ and therefore

|P(j0,α(δ))Nα | ≤ j0,α(2δ) < j0,α(κ) = κ

holds for all α < κ. We can now conclude that |P(κ)Nκ | = κ, a contradiction. �

Corollary 7.4. Let κ be a limit of measurable cardinals.

(i) No well-ordering of P(κ) is definable by a Σ1-formula with parameters in
H(κ) ∪ {κ, κ+}.
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(ii) If cof(κ) > ω, then no injection from κ+ into P(κ) is definable by a Σ1-
formula with parameters in H(κ) ∪ {κ}. �

We now proceed by proving our result on the non-existence of long Σ1-well-
orders.

Proof of Theorem 1.4. Let κ be a limit of measurable cardinals with cof(κ) = ω, let
D be a subset of P(κ) of cardinality greater than κ and let C be a well-ordering of D
that is definable by a Σ1-formula with parameter κ. Then D is definable in the same
way and we can pick Σ1-formulas ϕ(v0, v1) and ψ(v0, v1, v2) with D = {x | ϕ(x, κ)}
and C = {〈x, y〉 | ψ(x, y, κ)}. Now, use Lemma 2.1 to find x ∈ D and systems
〈νs | s ∈ <ωκ〉, 〈κs | s ∈ <ωκ〉, 〈Us | s ∈ <ωκ〉 and 〈Is | s ∈ <ωκ〉 with the listed

properties. Pick an Add(ω, 1)-nice name ẋ for a subset of κ such that ẋG = i
IcG
0,∞(x)

holds whenever G is Add(ω, 1)-generic over V, cG =
⋃
G ∈ (ω2)V[G] and IcG is the

unique linear iteration of 〈V, {UcG�n | n < ω}〉 of length supn<ω lh(IcG�n) in V[G]

with U IGα = U
IcG�n
α for all n < ω and α < lh(IcG�n). The elementarity of i

IcG
0,∞ and

Σ1-upwards absoluteness between M
IcG∞ and V[G] then imply that

1Add(ω,1) 
 ϕ(ẋ, κ̌) (9)

holds in V. Finally, let z : ω −→ 2 denote the constant function with value 0 and
for each n < ω, set κn = κz�n and Un = Uz�n. Then the sequence 〈κn | n < ω〉 is
strictly increasing and cofinal in κ.

Pick a sufficiently large regular cardinal θ and a countable elementary submodel
X of H(θ) containing κ, ẋ, 〈κs | s ∈ <ωκ〉, 〈Us | s ∈ <ωκ〉 and 〈Is | s ∈ <ωκ〉. Let
π : X −→ M denote the corresponding transitive collapse. Define κ̄ = π(κ) and,
given n < ω, set κ̄n = π(κn) and Ūn = π(Un). Then [43, Lemma 3.5] shows that the
pair 〈M, {Ūn | n < ω}〉 is linearly iterable. Let Ī denote the unique linear iteration
of 〈M, {Ūn | n < ω}〉 of length κ with the property that

U Īα = iĪ0,α(Ūmin{n<ω|α<κn})

holds for all α < κ. Set N = M Ī
0,∞ and j = iĪ0,∞ : M −→ N . Then it is easy to see

that j(κ̄n) = κn for all n < ω and this implies that j(κ̄) = κ.
Now, pick c ∈ ω2 with the property that Gc = {c � n | n < ω} is Add(ω, 1)-

generic over M . Then Gc is also Add(ω, 1)-generic over N and we define

xc = j(π(ẋ))Gc ∈ P(κ)N [Gc].

Claim. If c ∈ ω2 has the property that Gc is Add(ω, 1)-generic over M , then
xc ∈ D.

Proof of the Claim. By Σ1-absoluteness, we know that (9) implies that the given
forcing statement also holds in H(θ). This shows that

1Add(ω,1) 
 ϕ(j(π(ẋ)), κ̌)

holds in N . But this allows us to conclude that ϕ(xc, κ) holds in N [Gc] and Σ1-
upwards absoluteness implies that this statement also holds in V. �

Let E denote the set of all pairs 〈c, d〉 in ω2×ω2 with the property that Gc×Gd is
(Add(ω, 1)×Add(ω, 1))-generic over M . Then E is a comeager subset of ω2×ω2 and
a classical result of Mycielski (see [25, Theorem 19.1]) yields a continuous injection
p : ω2 −→ ω2 with 〈p(a), p(b)〉 ∈ E for all distinct a, b ∈ ω2.
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Claim. The map
ι : ω2 −→ D; a 7−→ xp(a)

is an injection.

Proof of the Claim. Given an Add(ω, 1)-name ẏ, let ẏl and ẏr denote the canon-

ical (Add(ω, 1) × Add(ω, 1))-names such that ẏG0×G1

l = ẏG0 and ẏG0×G1
r = ẏG1

holds whenever G0 × G1 is (Add(ω, 1) × Add(ω, 1))-generic over V. If G0 × G1 is
(Add(ω, 1)×Add(ω, 1))-generic over V and i < 2, then (IcGi )

V[Gi] = (IcGi )
V[G0,G1]

and this shows that

ẋGi = (i
IcGi
0,∞ (x))V[G0,G1]

holds for the Add(ω, 1)-name ẋ fixed at the beginning of the proof of Theorem 1.3.
Therefore, we can apply Lemma 2.2 to see that

1Add(ω,1)×Add(ω,1) 
 “ ẋl 6= ẋr ”

holds in V and, by Σ1-absoluteness, this statement also holds in H(θ).
Now, given a, b ∈ ω2 with a 6= b, we have

ι(a) = xp(a) = j(π(ẋ))Gp(a) = j(π(ẋl))
Gp(a)×Gp(b)

6= j(π(ẋr))
Gp(a)×Gp(b) = j(π(ẋ))Gp(b) = xp(b) = ι(b). �

In the following, let J denote the unique binary relation on ω2 with

a J b ⇐⇒ xp(a) C xp(b)

for all a, b ∈ ω2. Then the above claim implies that J is a well-ordering of ω2.

Claim. The following statements are equivalent for all a, b ∈ ω2:

(i) a J b.
(ii) There exists a countable transitive model W of ZFC− and elements δ, ~δ,

~F and I of W such that the following statements hold:
• W contains M , p(a), p(b) and a surjection from ω onto M .

• ~δ = 〈δn | n < ω〉 is a strictly increasing sequence of cardinals in W
with δ = supn<ω δn.

• ~F = 〈Fn | n < ω〉 is a sequence with the property that Fn is a normal
ultrafilter on δn in W for all n < ω.

• If k : W̄ −→ W is an elementary embedding of a transitive model
W̄ into W and E ∈ W̄ satisfies k(E) = {Fn | n < ω}, then the pair
〈W̄ , E〉 is α-iterable (see [43, p. 131]) for all α < ω1.

• I is the unique linear iteration of 〈M, {Ūn | n < ω}〉 of length δ with
the property that

U Iα = iI0,α(Ūmin{n<ω|α<δn})

holds for all α < δ.
• The statement

ψ(iI0,∞(π(ẋ))Gp(a) , iI0,∞(π(ẋ))Gp(b) , δ)

holds in W .

Proof of the Claim. First, assume that (i) holds. Pick a sufficiently large regular
cardinal ϑ > θ and a countable elementary submodel Y of H(ϑ) containing θ, p(a),
p(b), 〈Un | n < ω〉, X and Ī. Let τ : Y −→ W denote the the corresponding
transitive collapse. Given n < ω, set δn = τ(κn) and Fn = τ(Un). Moreover,
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define δ = τ(κ) and I = τ(Ī). In this situation, [43, Lemma 3.5] shows that the
pair 〈W, {Fn | n < ω}〉 is linearly iterable. Another application of [43, Lemma 3.5]
allows us to also conclude that 〈W̄ , E〉 is α-iterable, whenever α is a countable
ordinal, W̄ is a transitive set, k : W̄ −→ W is an elementary embedding and
E ∈ W̄ with k(E) = {Fn | n < ω}. Next, since we have δ = supn<ω δn and
τ � (M ∪{M}) = idM∪{M}, elementarity directly implies that I is the unique linear

iteration of 〈M, {Ūn | n < ω}〉 of length δ with the property that

U Iα = iI0,α(Ūmin{n<ω|α<δn})

holds for all α < δ. Finally, since (i) implies that

ψ(iĪ0,∞(π(ẋ))Gp(a) , iĪ0,∞(π(ẋ))Gp(b) , κ)

holds in H(ϑ), elementarity directly implies that

ψ(iI0,∞(π(ẋ))Gp(a) , iI0,∞(π(ẋ))Gp(b) , δ)

holds in W . In combination, these observations show that W , δ, 〈δn | n < ω〉,
〈Fn | n < ω〉 and I witness that (ii) holds.

Now, assume that W , δ, 〈δn | n < ω〉, 〈Fn | n < ω〉 and I witness that (ii) holds.
By [43, Lemma 3.6], our assumptions ensure that the pair 〈W, {Fn | n < ω}〉 is
linearly iterable. Let I∗ denote the unique linear iteration of 〈W, {Fn | n < ω}〉 of
length κ with the property that

U I∗α = iI∗0,α(Fmin{n<ω|α<κn})

holds for all α < κ. Then we have iI∗0,∞(δn) = κn for all n < ω and iI∗0,∞(δ) = κ.
Moreover, we know that

iI∗0,∞ � (M [Gp(a), Gp(b)] ∪ {M}) = idM [Gp(a),Gp(b)]∪{M}.

This shows that iI∗0,∞(I) is a linear iteration of 〈M, {Ūn | n < ω}〉 of length κ with
the property that

U
iI∗0,∞(I)
α = i

iI∗0,∞(I)

0,α (Ūmin{n<ω|α<κn})

holds for all α < κ, and this implies that iI∗0,∞(I) = Ī holds. In particular, it follows
that

iI∗0,∞(iI0,∞(y)) = iĪ0,∞(y)

holds for all y ∈ M . By our assumptions and the above observations, this shows
that

ψ(iĪ0,∞(π(ẋ))Gp(a) , iĪ0,∞(π(ẋ))Gp(b) , κ)

holds in M I∗
0,∞. Using Σ1-upwards absoluteness, we know that ψ(xp(a), xp(b), κ)

holds in V and this shows that (i) holds in this case. �

Since the above claim shows that the relation J is definable over H(ℵ1) by a
Σ2-formula with parameters, we can conclude that J is a Σ1

3-subset of ω2×ω2 (see
[21, Lemma 25.25]). This completes the proof of the theorem. �

We end this section by proving the equiconsistency stated in Theorem 1.5. One
direction is given by the following lemma that follows from arguments presented in
the proof of Theorem 4.1.5

5The construction of simply definable long well-orderings in the power sets of uncountable
cardinals was the original motivation for the work presented in [31]. In combination with ideas
contained in the proof of Lemma 7.5, the results of [31] can be used to show that, if 0† does not
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Lemma 7.5. Assume that there is no inner model with infinitely many measurable
cardinals. If κ is a singular cardinal, then there exists an injection from κ+ into
P(κ) that is definable by a Σ1-formula with parameters in H(κ) ∪ {κ}.

Proof. As in the proof of Theorem 4.1 in Section 4, we know that 0long does not exist
and we let Ucan denote the canonical sequence of measures as in [26]. We again set
U = Ucan � κ and K = K[U ]. Then our assumptions imply that U ∈ H(κ)K and the
results of [26] show that K is an inner model of ZFC with a canonical well-ordering
<K. Since the domain of Ucan is finite, we can again combine [26, Theorem 3.9],
[26, Theorem 3.19] and [26, Theorem 3.23] to show that κ+ = (κ+)K.

Given κ ≤ γ < κ+, we let yγ denote the subset of κ that canonically codes the
<K-least bijection between κ and γ. As in the proof of Theorem 4.1, we can now
conclude that the unique injection ι : κ+ −→ P(κ) with ι � κ = idκ and ι(γ) = yγ
for all κ ≤ γ < κ+ can be defined by a Σ1-formula and the parameters κ and U . �

The next lemma is needed in the converse direction of our equiconsistency proof:

Lemma 7.6. Let U be a normal ultrafilter on a measurable cardinal, let α < δ,
let E be a set of normal ultrafilters on cardinals smaller than α and let I be an
iteration of 〈V, E〉 of length less than α. If B ∈ iI0,∞(U), then there is A ∈ U with

iI0,∞(A) ⊆ B.

Proof. Using [23, Exercise 12], we find a function f : [α]<ω −→ U with the property
that B ∈ ran(iI0,∞(f)). If we now define

A =
⋂
{f(a) | a ∈ [α]<ω},

then A is an element of U with the desired properties. �

In order to complete the proof of Theorem 1.5, we will now use diagonal Prikry
forcing and a characterisation of generic sequences for this forcing due to Fuchs
[12] to construct a model without Σ1-definable long well-orderings from an infinite
sequence of measurable cardinals.

Proof of Theorem 1.5. Assume that ~κ = 〈κ(n) | n < ω〉 is a strictly increasing

sequence of measurable cardinals with limit κ. Pick a sequence ~U = 〈U(n) | n < ω〉
with the property that U(n) is a normal ultrafilter on κ(n) for each n < ω. Let P~U
denote the diagonal Prikry forcing associated to the sequence ~U (see [13, Section
1.3]), i.e. P~U is the partial order defined by the following clauses:

• Conditions in P~U are sequences p = 〈pn | n < ω〉 with the property that
there exists a natural number lp such that pn ∈ κ(n) for all n < lp and
pn ∈ U(n) for all lp ≤ n < ω.

• Given conditions p and q in P~U , we have p ≤P~U q if and only if lq ≤ lp,
pn = qn for all n < lq, qn ∈ pn for all lq ≤ n < lp and pn ⊆ qn for all
lp ≤ n < ω.

By [13, Lemma 1.35], forcing with P~U does not add bounded subsets of κ.
Given a filter G on P~U , we let cG denote the unique function with domain

supp∈G lp ≤ ω and cG(n) = pn for all p ∈ G and n < lp. In the other direction,
given a sequence c contained in the set

∏
~κ of all functions d ∈ ωκ with d(n) < κ(n)

exist and the cardinal κ is either singular or weakly compact, then there exists a well-ordering of
a subset of P(κ) of order-type κ+ · κ that is definable by a Σ1-formula with parameter κ.
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for all n < ω, we let Gc denote the set of all conditions p in P~U with pn = c(n)
for all n < lp and c(n) ∈ pn for all lp ≤ n < ω. It is easy to see that Gc is a filter

on P~U with cGc = c in this situation. Given an inner model M that contains ~U

and c ∈
∏
~κ, we say that c is ~U -generic over M if Gc is P~U -generic over M . The

results of [12] then show that a sequence c ∈
∏
~κ is ~U -generic over an inner model

M if and only if {n < ω | c(n) ∈ An} is a cofinite subset of ω for every sequence
〈An ∈ U(n) | n < ω〉 in M . Using [16, Theorem 3.5.1], this characterization can
be used to show that the Boolean completion of P~U is weakly homogeneous and
therefore every statement in the forcing language of P~U that uses only ground model
elements as parameters is decided by 1P~U .

Now, let G be P~U -generic over V and assume that, in V[G], there exists a well-
ordering C of a subset D of P(κ) of cardinality greater than κ that can be defined
by a Σ1-formula ϕ(v0, . . . , v3), a parameter z ∈ H(κ) and the parameter κ. Then
we can find a Σ1-formula ψ(v0, v1, v2) with the property that, in V[G], the set D
can be defined by the formula ψ and the parameters κ and z. In this situation, we
know that z ∈ V and the homogeneity properties of P~U imply that D ⊆ V and

D = {y ∈ P(κ)V | 1P~U 
 ψ(y̌, ž, κ̌)}. (10)

Let E denote the set of all normal ultrafilters on cardinals smaller than κ in V.
Apply Lemma 2.1 to κ, z and D in V to obtain an element x∗ of D, a system
〈νs | s ∈ <ωκ〉 of inaccessible cardinals smaller than κ, a system 〈κs | s ∈ <ωκ〉 of
measurable cardinals smaller than κ, a system 〈Us | s ∈ <ωκ〉 of elements of E , and
a system 〈Is | s ∈ <ωκ〉 of linear iterations of 〈V, E〉 possessing the properties listed
in the lemma. Next, for each c ∈ (ωκ)V[G], let Ic denote the unique iteration of
〈V, {Uc�n | n < ω}〉 of length supn<ω lh(Ic�n) in V[G] with U Icα = U c�nα for all n < ω

and α < lh(Ic�n). Then M Ic
lh(Ic�n) = M

Ic�n
∞ and iIc0,lh(Ic�n) = i

Ic�n
0,∞ for all c ∈ (ωκ)V[G]

and n < ω with lh(Ic�n) < lh(Ic). Moreover, we have M Ic
∞ = M

Ic�n
∞ and iIc0,∞ = i

Ic�n
0,∞

for all c ∈ (ωκ)V[G] and n < ω with lh(Ic�n) = lh(Ic). Given c ∈ (ωκ)V[G], we define

Mc = M Ic
∞ , c̄ = iIc0,∞ ◦ cG and xc = iIc0,∞(x∗). In this situation, Lemma 2.2 shows

that Mc is well-founded for all c ∈ (ωκ)V[G].

Claim. If c ∈ (ωκ)V[G], then c̄ is iIc0,∞(~U)-generic over Mc.

Proof of the Claim. Suppose that iIc0,∞(~U) = 〈U ′′(n) | n < ω〉 and fix a sequence
~C = 〈Cn ∈ U ′′(n) | n < ω〉 in Mc. Since Ic is an iteration of length at most κ,

we can find n0 < ω and a sequence ~B = 〈Bn | n < ω〉 in M
Ic�n0∞ such that either

lh(Ic) = lh(Ic�n0
) and ~B = ~C, or lh(Ic) > lh(Ic�n0

) and iIclh(Ic�n0 ),∞( ~B) = ~C.

Now, pick n1 < ω with κ(n) > κc�n0 for all n1 ≤ n < ω. In this situation, the
conclusions of Lemma 2.1 ensure that we can apply Lemma 7.6 to find a sequence
〈An ∈ U(n) | n < ω〉 with iIc0,lh(Ic�n0

)(An) ⊆ Bn for all n1 ≤ n < ω. Since cG is

~U -generic over V, we find n1 ≤ n2 < ω with cG(n) ∈ An for all n2 ≤ n < ω. But
this shows that c̄(n) ∈ Cn holds for all n2 ≤ n < ω. Using the characterization of
generic sequences provided by [12], these computations prove the statement of the
claim. �

Claim. If c ∈ (ωκ)V[G], then xc ∈ D.
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Proof of the Claim. By the previous claim, there exists a filter H on iIc0,∞(P~U )

in V[G] that is generic over Mc. Since Lemma 2.2 shows that iIc0,∞(κ) = κ and

iIc0,∞(z) = z, we can use (10) to show that

1iIc0,∞

 ψ(x̌c, ž, κ̌)

holds in Mc. This shows that ψ(xc, z, κ) holds in Mc[H] and Σ1-upwards absolute-
ness implies that this statement also holds in V[G]. �

By Lemma 2.2, our definitions ensure that the map

ι : (ωκ)V[G] −→ D; c 7−→ xc

is an injection that is definable in V[G] from parameters contained in the ground
model V. Since ι(cG) ∈ D ⊆ V, this shows that, in V[G], the set {cG} is definable
from parameters in V. Using the homogeneity properties of P~U in V, we can now
conclude that cG is an element of V, a contradiction. �

8. Long well-orderings in P(ω1)

We now show that both strong large cardinal assumptions and strong forcing
axioms cause analogues of the above results on the definability of long well-orders to
hold for ω1. In the following, we combine well-known consequences of the Axiom of
Determinacy AD with Woodin’s analysis of Pmax-extensions of determinacy models
(see [27] and [46]).

Lemma 8.1 (ZF). Let κ be an infinite cardinal. If there is an injection from κ+

into P(κ), then there is no normal ultrafilter on κ+.

Proof. Assume, towards a contradiction, that U is a normal ultrafilter on κ+ and
ι : κ+ −→ P(κ) is an injection. Define

c : [κ+]2 −→ κ; {γ, δ} 7−→ min(ι(γ)∆ι(δ)).

Given γ < κ+, the interval (γ, κ+) is equal to the disjoint union of sets of the form
{δ ∈ (γ, κ+) | c({γ, δ}) = α} with α < κ and therefore the normality of U implies
that one of these sets is contained in U . This shows that there is a unique function
d : κ+ −→ κ with

Hγ = {δ ∈ (γ, κ+) | c({γ, δ}) = d(γ)} ∈ U

for all γ < κ+. Pick α < κ with d−1{α} ∈ U . Define Aγ = Hγ ∩ d−1{α} for all
γ ∈ d−1{α} and Aγ = d−1{α} for all γ ∈ κ+ \d−1{α}. Then Aγ ∈ U for all γ < κ+

and hence A = ∆γ<κ+Aγ ∈ U . If γ, δ ∈ A with 0 < γ < δ, then we have γ ∈ A0,
d(γ) = α, δ ∈ Aγ , δ ∈ Hγ , c({γ, δ}) = α, ι(γ) ∩ α = ι(δ) ∩ α and α ∈ ι(γ)∆ι(δ).

But now, if γ, δ, ε ∈ A with 0 < γ < δ < ε, then

α ∈ (ι(γ)∆ι(δ)) ∩ (ι(γ)∆ι(ε)) ∩ (ι(δ)∆ι(ε)) = ∅,

a contradiction. �

Corollary 8.2 (ZF+DC+AD). There is no injection from ω2 into P(ω1).

Proof. By results of Kleinberg and Martin–Paris (see [24, Section 13]), the restric-
tion of the closed unbounded filter on ω2 to the set of all ordinals of countable
cofinality is a normal ultrafilter on ω2. �
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The following lemma will allow us to use the theory developed in [46] to prove
Theorem 1.6.(i).

Lemma 8.3. Assume that AD holds in L(R) and V is a Pmax-generic extension
of L(R). Then no well-ordering of a subset of P(ω1) of cardinality greater than ℵ1

is contained in OD(R).

Proof. Assume, towards a contradiction, that there exists a subset D of P(ω1)
of cardinality greater than ℵ1 and a well-orderding C of D that is contained in
OD(R). Then the homogeneity of Pmax in L(R) (see [46, Lemma 4.38] and [46,
Lemma 4.43]) directly implies that D and C are both contained in L(R). But this
shows that L(R) is a model of ZF + DC + AD that contains an injection from ω2

into P(ω1), contradicting Corollary 8.2. �

Proof of Theorem 1.6.(i). Let C be a well-ordering of a subset of P(ω1) of cardinal-
ity greater than ℵ1 that is definable by a Σ1-formula ϕ(v0, . . . , v3) and parameters
ω1 and z ∈ H(ℵ1).

First, assume that Woodin’s Axiom (∗) holds. Then AD holds in L(R) and
L(P(ω1)) is a Pmax-generic extension of L(R). We now know that C and its domain
are both elements of OD(R)L(P(ω1)), because Σ1-statements with parameters in
H(ℵ2) are absolute between L(P(ω1)) and V. Since the domain of C has cardinality
greater than ℵ1 in L(P(ω1)), we can now use Lemma 8.3 to derive a contradiction.

Now, assume that there is a measurable cardinal above infinitely many Woodin
cardinals. Then AD holds in L(R). Note that the formula ϕ and the parameters ω1

and z also define C in H(ℵ2), and this statement can be formulated by a Π2-formula
with parameter z in the structure 〈H(ℵ2),∈〉 Let G be Pmax-generic over L(R).
Then the Π2-maximality of L(R)[G] (see [27, Theorem 7.3]) implies that the formula
ϕ and the parameters ω1 and z also define a well-ordering of a subset of P(ω1) of
cardinality greater than ℵ1 in the structure 〈H(ℵ2)L(R)[G],∈〉. In particular, such a
well-ordering is contained in OD(R)L(R)[G], again contradicting Lemma 8.3. �

9. Almost disjoint families in P(ω1)

Following the structure of the arguments in the previous section, we now show
that both large cardinals and forcing axioms imply that large almost disjoint fam-
ilies of subsets of ω1 are not simply definable. The first step in these proofs is the
following unpublished result of William Chan, Stephen Jackson and Nam Trang
whose proof we include with their permission. This result is an application of their
work on the validity of the Kurepa Hypothesis in determinacy models and continues
a line of groundbreaking results on definable combinatorics at ω1 (see, for example,
[6], [7] and [8]).

Theorem 9.1 (Chan–Jackson–Trang, ZF+DCR+AD+). Assume that V = L(P(R))
holds. If A is a set of cofinal subsets of ω1, then one of the following statements
holds:

(i) A can be well-ordered and its cardinality is less than or equal to ℵ1.
(ii) There are distinct x, y ∈ A such that x ∩ y is unbounded in ω1.

The proof of this result makes use of the following topological fact:

Proposition 9.2 (ZF+DC). If X is a Polish space and 〈Aα | α < ω1〉 is a sequence
of pairwise disjoint non-meager subsets of X, then there is an α < ω1 such that the
subset Aα does not have the property of Baire.
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Proof. Assume, towards a contradiction, that Aα has the property of Baire for all
α < ω1. Given α < ω1, our assumption implies that there is a non-empty open set
U with the property that U \Aα is meager. Hence, there is a sequence 〈Nα | α < ω1〉
of non-empty basic open subsets of X such that Nα\Aα is meager. Pick α < β < ω1

with Nα = Nβ . Then Nα \ (Aα ∩Aβ) = (Nα \Aα)∪ (Nα \Aβ) is meager and hence
Aα ∩Aβ 6= ∅, a contradiction �

Proof of Theorem 9.1. Assume, towards a contradiction, that both conclusions fail.

Claim. The set A cannot be well-ordered.

Proof of the Claim. Assume, towards a contradiction, that A can be well-ordered.
Then our assumptions imply that it has cardinality greater than ℵ1 and hence we
obtain an injection of ω2 into P(ω1). But this yields a contradiction, because the
assumption of Corollary 8.2 are satisfied in our setting. �

By combining the above claim with [4, Theorem 1.4], we now obtain an injection
ι : R −→ A. Our assumptions then ensure that the function

c : [R]2 −→ ω1; {x, y} 7−→ min{α < ω1 | ι(x) ∩ ι(y) ⊆ α}
is well-defined. Given α < ω1, set Eα = c−1{α} ⊆ R×R. Then

⋃
{Eα | α < ω1} is

dense open in R× R.

Claim. There is a λ < ω1 such that the set
⋃
{Eα | α < λ} is comeager in R×R.

Proof of the Claim. Assume that there is no λ < ω1 with the property that the set⋃
{Eα | α < λ} is comeager. Since the ideal of meager subsets of R × R is closed

under well-ordered unions in our setting, our assumption yields a strictly increasing
function f : ω1 −→ ω1 with the property that Ef(α) is a non-meager subset of R×R
for all α < ω1. In this situation, the sequence 〈Ef(α) | α < ω1〉 consists of pairwise
disjoint non-meager subsets of R × R and, since we assume that AD holds, all of
these sets possess the property of Baire. This contradicts Proposition 9.2. �

By a classical result of Mycielski (see [25, Theorem 19.1]), we can now find an
injection e : R −→ R such that for all x, y ∈ R with x 6= y, there is an α < λ with
〈e(x), e(y)〉 ∈ Eα. In this situation, we know that

(ι ◦ e)(x) ∩ (ι ◦ e)(y) ⊆ λ

holds for all x, y ∈ R with x 6= y. In particular, since the set A consists of unbounded
subsets of ω1, we know that the map

i : R −→ ω1; x 7−→ min((ι ◦ e)(x) \ λ)

is an injection. But this shows that the reals can be well-ordered, contradicting our
assumptions. �

In order to transfer the above result to models of the form HOD(R) of Pmax-
extensions, we make use of another axiom introduced by Woodin, called

(∗
∗
)

(see
[46, Definition 5.69]).

Lemma 9.3. Assume that AD holds in L(R) and V is a Pmax-generic extension
of L(R). If A ∈ OD(R) is a set of cardinality greater than ℵ1 that consists of
unbounded subsets of ω1, then there are distinct x, y ∈ A with the property that
x ∩ y is unbounded in ω1.

Proof. Assume, towards a contradiction, that the above conclusion fails.



34 PHILIPP LÜCKE AND SANDRA MÜLLER

Claim. A ⊆ L(R).

Proof of the Claim. Assume that A * L(R). Since V = L(P(ω1)) holds and [46,

Corollary 5.83] shows that our assumptions imply that
(∗
∗
)

holds, we can apply [46,
Theorem 5.84] to find an unbounded subset U of ω1 and a function π : <ω12 −→
[ω1]ω such that the following statements hold:

(i) If s, t ∈ <ω12 with s ⊆ t, then π(s) ⊆ π(t) and π(s) ∩ α = π(t) ∩ α for all
α ∈ π(s).

(ii) Given s ∈ <ω12 and α ∈ dom(s) ∩ U , we have α ∈ π(s) if and only if
s(α) = 1.

(iii) If x ∈ ω12, then π̄(x) =
⋃
{π(x � α) | α < ω1} ∈ A.

Pick x, y ∈ ω12 such that x has constant value 1 and y is the characteristic
function of U \{min(U)}. Since π̄(x), π̄(y) ∈ A and U \{min(U)} ⊆ π̄(x)∩ π̄(y), we
know that π̄(x) = π̄(y) as π̄(x)∩π̄(y) is unbounded in ω1. But min(U) ∈ π̄(x)\π̄(y),
a contradiction. �

Claim. A ∈ L(R).

Proof of the Claim. Using the homogeneity of Pmax in L(R), this statement follows
directly from the previous claim and the fact that the set A is contained in the
class OD(R). �

Since [4, Corollary 2.16] shows that L(R) is a model of DC + AD+, we can use
Theorem 9.1 in L(R) to conclude that, in L(R), the set A can be well-ordered and
its cardinality is smaller than or equal to ℵ1. But this shows that the cardinality
of A in V is at most ℵ1, a contradiction. �

Proof of Theorem 1.6.(ii). Let A be a set of cardinality greater than ℵ1 that con-
sists of unbounded subsets of ω1 and is definable by a Σ1-formula ϕ(v0, v1, v2) and
parameters ω1 and z ∈ H(ℵ1).

First, assume that Woodin’s Axiom (∗) holds. Then the Σ1-Reflection Principle
implies that the formula ϕ and the parameters ω1 and z also define the set A in
L(P(ω1)). But this shows that A ∈ OD(R)L(P(ω1)) and, since AD holds in L(R)
and L(P(ω1)) is a Pmax-generic extension of L(R), we can now apply Lemma 9.3
in L(P(ω1)) to find distinct x, y ∈ A with x ∩ y unbounded in ω1.

Next, assume that there is a measurable cardinal above infinitely many Woodin
cardinals. Then AD holds in L(R). Note that the formula ϕ and the parameters ω1

and z also define A in the structure 〈H(ω2),∈〉. Assume, towards a contradiction,
that x ∩ y is bounded in ω1 for all distinct x, y ∈ A. Note that, in 〈H(ω2),∈〉,
the statement that ϕ, ω1 and z define a set of cardinality greater than ℵ1 that
consists of unbounded subsets of ω1 whose pairwise intersections are countable can
be expressed by a Π2-formula with parameter z. Let G be Pmax-generic over L(R).
Then the Π2-maximality of L(R)[G] implies that, in the structure 〈H(ℵ2)L(R)[G],∈〉,
the formula ϕ and the parameters ω1 and z define a set of cardinality greater than ℵ1

that consists of unbounded subsets of ω1 whose pairwise intersections are countable.
In particular, such a subset of P(ω1) exists in OD(R)L(R)[G], contradicting Lemma
9.3. �

10. Concluding remarks and open questions

In the following, we discuss several questions raised by the above results, starting
with questions about the optimality of the assumption of Theorem 1.1. By Theorem
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1.2, the consistency strength of this assumption is optimal in the case of singular
cardinals. In contrast, results of Schlicht in [38] show that, if κ is an uncountable
regular cardinal, θ > κ is inaccessible and G is Col(κ,<θ)-generic over V, then, in
V[G], every subset of κ in OD(κOn) either has cardinality κ or contains a closed
subset homeomorphic to κ2. In particular, if κ is not weakly compact in V, then, in
V[G], the cardinal κ is not weakly compact, the spaces κ2 and κκ are homeomorphic
(see, for example, [30, Corollary 2.3]) and for every subset D of P(κ) of cardinality
greater than κ that is definable by a Σ1-formula with parameters in H(κ) ∪ {κ},
there is a perfect embedding ι : κκ −→ P(κ) with ran(ι) ⊆ D. This shows that our
question is only interesting when we also assume that the given cardinal κ possesses
certain large cardinal properties.6

Question 10.1. Assume that κ is a weakly compact cardinal with the property that
for every subset D of P(κ) of cardinality greater than κ that is definable by a Σ1-
formula with parameters in H(κ)∪{κ}, there is a perfect embedding ι : κκ −→ P(κ)
with ran(ι) ⊆ D. Is there an inner model that contains a weakly compact limit of
measurable cardinals?

In contrast to the singular case, we may also ask whether the conclusion of
Theorem 1.1 can be established from a sequences of measurable cardinals that are
bounded in a regular cardinal, but whose order type is equal their minimum.

Question 10.2. Does the assumption of Question 1.1 imply the existence of a
set-sized transitive model of ZFC containing a weakly compact cardinal δ and a
sequence S of measurable cardinals less than δ of order-type min(S)?

We now consider the possibility to strengthen Theorem 1.4. Since the existence
of infinitely many measurable cardinals is compatible with the existence of a Σ1

3-
well-ordering of the reals (see [36, Theorem 3.6]), it is natural to ask whether the
assumption of this theorem is actually consistent. The model constructed in [36,
Section 1] should be the natural candidate to look for an affirmative answer to the
following question.

Question 10.3. Is it consistent that there exists a limit κ of ω-many measurable
cardinals and a well-ordering of a subset of P(κ) of cardinality greater than κ that
is definable by a Σ1-formula with parameter κ?

In addition, the equiconsistency given by Theorem 1.5 motivates the question
whether such implications can be extended to cardinals of higher cofinalities.

Question 10.4. Is it consistent that there exists a limit of measurable cardinals κ
and a well-ordering of a subset of P(κ) of cardinality greater than κ that is definable
by a Σ1-formula with parameters in H(κ) ∪ {κ}?

Next, we consider simply definable almost disjoint families. The statements of
Theorem 1.3 and Theorem 1.6.(ii) are motivated by a classical result of Mathias
in [34] showing that no maximal almost disjoint family in P(ω) is analytic. In
contrast, Miller [35] showed that that the existence of coanalytic maximal disjoint
families in P(ω) is consistent. This motivates the following questions:

6Note that the assumption that the weak compactness of a cardinal κ is preserved by forcing
with partial orders of the form Col(κ,<θ) has high consistency strength (see, for example, [18]

and [22]).
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Question 10.5. (i) Does the existence of sufficiently strong large cardinals
imply that no almost disjoint family of cardinality greater than ℵ1 in P(ω1)
is definable by a Π1-formula with parameters in H(ℵ1) ∪ {ω1}?

(ii) Do sufficiently strong large cardinal properties of a cardinal κ imply that
no almost disjoint family of cardinality greater than κ in P(κ) is definable
by a Π1-formula with parameters in H(κ) ∪ {κ}?

It should be noted that our proof of Theorem 1.6.(ii) in Section 9 already shows
that Woodin’s Axiom (∗) (and therefore strong forcing axioms, see [2]) implies that
no almost disjoint family of cardinality greater than ℵ1 in P(ω1) is definable in the
structure 〈H(ℵ2),∈〉 by a formula with parameters in H(ℵ1) ∪ ω2, because all such
families are elements of OD(R)L(P(ω1)). In particular, no such family is definable
by a Π1-formula with parameters in H(ℵ1) ∪ {ω1} in this setting.

Finally, we consider the questions whether analogues of the above results hold
for other types of uncountable cardinals. The following observation uses ideas from
[29, Section 6] to show that the results of Section 9 cannot be generalized from ω1

to ω2. Moreover, it shows that forcing axioms outright imply the Σ1-definability of
pathological objects at ω2.

Proposition 10.6. (i) If the Bounded Proper Forcing Axiom BPFA holds,
then there exists an almost disjoint family of cardinality 2ℵ2 in P(ω2) that
is definable by a Σ1-formula with parameters in H(ℵ2) ∪ {ω2}.

(ii) If there is a supercompact cardinal, then, in a generic extension of the
ground model, there exists an almost disjoint family of cardinality 2ℵ2 in
P(ω2) that is definable by a Σ1-formula and the parameter ω2.

Proof. (i) By [5, Theorem 2], our assumption implies the existence of a well-ordering
of H(ℵ2) of order-type ω2 that is definable by a Σ1-formula that only uses a subset
of ω1 as a parameter. In particular, there exists an injection ι : H(ℵ2) −→ ω2 that
is definable in the structure 〈H(ℵ2),∈〉 by a formula with parameters. Since [29,
Lemma 6.4] shows that our assumption implies that the set {H(ℵ2)} is definable
by a Σ1-formula with parameter ω2, we know that ι is definable by a Σ1-formula
with parameters in H(ℵ2) ∪ {ω2}. Given x ∈ ω22, we now define

x̄ = {ι(x � γ) | γ < ω2} ∈ P(ω2).

The above computations now show that the set A = {x̄ | x ∈ ω22} is definable
by a Σ1-formula with parameters in H(ℵ2)∪ {ω2} and it is easy to see that A is an
almost disjoint family of cardinality 2ℵ2 in P(ω2).

(ii) By [1, Theorem 5.2], it is possible to start in a model containing a super-
compact cardinal and force the validity of BPFA together with the existence of a
well-ordering of H(ℵ2) of order-type ω2 that is definable in 〈H(ℵ2),∈〉 by a formula
without parameters. We can now proceed as in (i) to obtain an almost disjoint
family of cardinality 2ℵ2 in P(ω2) that is definable by a Σ1-formula with parameter
ω2 in this generic extension. �
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38 PHILIPP LÜCKE AND SANDRA MÜLLER
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