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Simplest possible locally definable well-orders
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Abstract. We study the provable consequences of the existence of a well-order of
H(κ+) definable by a Σ1-formula over the structure 〈H(κ+),∈〉 in the case where κ is
an uncountable regular cardinal. This is accomplished by constructing partial orders that
force the existence of such well-orders while preserving many structural features of the
ground model. We will use these constructions to show that the existence of a well-order
of H(ω2) that is definable over 〈H(ω2),∈〉 by a Σ1-formula with parameter ω1 is consistent
with a failure of the GCH at ω1. Moreover, we will show that one can achieve this situation
also in the presence of a measurable cardinal. In contrast, results of Woodin imply that
the existence of such a well-order is incompatible with the existence of infinitely many
Woodin cardinals with a measurable cardinal above them all.

1. Introduction. Given an infinite cardinal κ, if the set of all subsets
of κ is constructible from some subset z of κ, then there is a well-order of the
set H(κ+) of all sets of hereditary cardinality at most κ that is locally defin-
able by a Σ1-formula with parameter z, i.e. there is such a well-order that
is definable over the structure 〈H(κ+),∈〉 by a Σ1-formula (1) with parame-
ter z. In particular, if the power set of κ is contained in Gödel’s constructible
universe L, then there is a well-order of H(κ+) that is locally definable by a
Σ1-formula without parameters. One may view such well-orders as the sim-
plest possible locally definable well-orders of H(κ+), because their definition
uses no parameters and a short argument shows that no formula that lies
lower in the Levy hierarchy defines a well-order over a structure of the form
H(κ+) for any infinite cardinal κ. For the sake of completeness, we present
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(1) Note that if C is a well-order, then x C y ⇔ [x 6= y ∧ ¬(y C x)]. Thus any
Σ1-definable well-order of H(κ+) is in fact ∆1-definable. Proposition 1.1 shows that a
Σ1-formula defining a well-order is not provably equivalent to the Π1-formula obtained
from the above equivalence.
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this argument. Remember that a Σ1-formula ϕ(v0, . . . , vn−1) is ∆ZFC−
1 if

there is a Π1-formula ψ(v0, . . . , vn−1) with

ZFC− ` ∀x0, . . . , xn−1 [ϕ(x0, . . . , xn−1)↔ ψ(x0, . . . , xn−1)],

where ZFC− denotes the axioms of ZFC without the Power Set Axiom. Note
that every Σ0-formula is a ∆ZFC−

1 -formula.

Proposition 1.1. Let κ be an infinite cardinal. Then no well-order of
H(κ+) is definable over 〈H(κ+),∈〉 by a ∆ZFC−

1 -formula with parameters.

Proof. Let ϕ(v0, v1, v2) be a ∆ZFC−
1 -formula and let ψ(v0, v1, v2) be the

corresponding Π1-formula. Using ψ, we can construct a Σ1-formula Φ0(v)
such that the axioms of ZFC− prove that for every set z, the statement
Φ0(z) is equivalent to the statement that the relation {〈x, y〉 | ϕ(x, y, z)} is
not linear. Moreover, we can use ϕ to construct a Σ1-formula Φ1(v) such
that the axioms of ZFC− prove that for every set z, the statement Φ1(z)
is equivalent to the relation {〈x, y〉 | ϕ(x, y, z)} not being well-founded. Set
Φ(v) ≡ Φ0(v) ∨ Φ1(v). By the Σ1-Reflection Principle, the axioms of ZFC
prove that whenever θ is an infinite cardinal and z ∈ H(θ+), then Φ(z) holds
in 〈H(θ+),∈〉 if and only if the set

{〈x, y〉 ∈ H(θ+)×H(θ+) | 〈H(θ+),∈〉 |= ϕ(x, y, z)}
is not a well-order of H(θ+).

Assume, towards a contradiction, that there is an infinite cardinal κ
such that the formula ϕ and some parameter z ∈ H(κ+) define a well-
order of H(κ+) over the structure 〈H(κ+),∈〉. By the above remarks, this
implies that ¬Φ(z) holds in 〈H(κ+),∈〉. Pick a regular cardinal ν > 2κ

and let G be Add(ν, (ν<ν)+)-generic over V. Then ν = ν<ν in V[G] and a
folklore result (see, for example, [15, Corollary 9.2]) says that no well-order
of H(ν+)V[G] is definable over 〈H(ν+)V[G],∈〉. In particular, Φ(z) holds in
〈H(ν+)V[G],∈〉, and Σ1-reflection implies that it also holds in 〈H(κ+)V[G],∈〉.
But H(κ+)V[G] = H(κ+)V, a contradiction.

A classical theorem of Mansfield shows that the converse of the implica-
tion mentioned at the beginning of this section also holds for κ = ω, in the
sense that the existence of a locally Σ1-definable well-order of H(ω1) implies
that all subsets of ω are constructible from the parameters of this definition.
In particular, the existence of such a well-order implies that CH holds and
that there are no measurable cardinals.

Theorem 1.2 ([17]). The following statements are equivalent for any
z ⊆ ω:

(i) Every subset of ω is an element of L[z].
(ii) There is a well-order of the set H(ω1) that is definable over the

structure 〈H(ω1),∈〉 by a Σ1-formula with parameter z.
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(iii) There is a well-order of the set ωω of all functions from ω to ω that
is definable over 〈H(ω1),∈〉 by a Σ1-formula with parameter z.

In this paper, we are interested in the provable consequences of the ex-
istence of locally definable well-orders of H(κ+) of low complexity in the
case where κ is an uncountable regular cardinal. In particular, we want to
determine the simplest definition such that the existence of a well-order de-
finable in this way is consistent together with certain natural set-theoretical
assumptions whose negation holds in L. Examples of such assumptions are
failures of the GCH at κ or the existence of larger large cardinals above κ.
For that purpose, we construct partial orders that force the existence of lo-
cally Σ1-definable well-orders while preserving many structural features of
the ground model.

The starting point of this work is the following result proven in [11]. It
can be used to show that many statements are compatible with the existence
of locally Σ1-definable well-orders if we allow arbitrary parameters in their
definitions.

Theorem 1.3 ([11, Theorem 1.1]). Let κ be an uncountable cardinal
such that κ = κ<κ holds (2) and 2κ is regular. Then there is a partial order
P with the following properties:

(i) P is <κ-closed, and forcing with P preserves cofinalities less than or
equal to 2κ and the value of 2κ.

(ii) If G is P-generic over the ground model V, then there is a well-order
of H(κ+)V[G] that is definable over the structure 〈H(κ+)V[G],∈〉 by
a Σ1-formula with parameters.

The parameter used in the definition of this well-order is added by the
forcing, and therefore is, in a certain sense, a very complicated object. In
this paper, we want to improve the above result by constructing models of
set theory possessing locally Σ1-definable well-orders that only use simple
parameters. The first (and in fact main) step towards this goal will be the
construction of a locally Σ1-definable well-order in a generic extension whose
definition only uses parameters that already exist in the ground model.
This is achieved (for a somewhat smaller class of cardinals κ) in the next
theorem. (3) Remember that, given an uncountable cardinal κ, a subset S
of κ is fat stationary if for every club C ⊆ κ, the intersection C ∩S contains
closed subsets of ordinals of arbitrarily large order-types below κ. Given

(2) Note that the assumption κ = κ<κ implies that κ is regular.

(3) While the forcing construction in our paper is based on the construction in [11],
one could instead base it on the construction that was later provided in [10]. This would
eliminate the assumption that 2κ be regular, and would yield a forcing that preserves all
cofinalities (rather than just those less than or equal to 2κ) in our results below.
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regular cardinals η < κ, we let Sκη denote the set of all limit ordinals less
than κ of cofinality η. The set Sκ<η is defined analogously.

Theorem 1.4. Let κ be an uncountable cardinal such that κ = κ<κ and
η<η < κ for every η < κ and 2κ is regular. (4) Assume that one of the
following statements holds:

(a) κ is the successor of a regular cardinal η, and 〈Sα | α ≤ κ〉 is a
sequence of pairwise disjoint stationary subsets of Sκη .

(b) κ is an inaccessible cardinal, and 〈Sα | α ≤ κ〉 is a sequence of pair-
wise disjoint fat stationary subsets of κ.

Then there is a partial order P with the following properties:

(i) P is <κ-distributive, and forcing with P preserves cofinalities less
than or equal to 2κ and the value of 2κ.

(ii) If G is P-generic over the ground model V, then there is a well-order
of H(κ+)V[G] that is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula
with parameter 〈Sα | α < κ〉.

In the second part of this paper, we use Theorem 1.4 to construct models
of set theory containing locally Σ1-definable well-orders of some H(κ+) that
only use the ordinal κ as a parameter by forcing over certain canonical inner
models of set theory. This will allow us to show that the existence of such
a well-order is compatible with a failure of the GCH at κ. The following
theorem is an example of such a construction.

Theorem 1.5. Assume that V = L holds and κ is either the successor
of a regular cardinal or an inaccessible cardinal. Let P be a partial order with
the following properties:

(a) Forcing with P preserves cofinalities less than or equal to κ+ and fat
stationary subsets of κ.

(b) If G is P-generic over V, then in V[G], 2κ is regular, κ = κ<κ and
η<η < κ for all η < κ.

Then there is a P-name Q̇ for a partial order such that the following state-
ments hold whenever G ∗H is (P ∗ Q̇)-generic over V:

(i) The partial order Q̇G is <κ-distributive in V[G].
(ii) Forcing with Q̇G over V[G] preserves all cofinalities less than or

equal to (2κ)V[G] and the value of 2κ.
(iii) There is a well-ordering of H(κ+)V[G,H] that is definable over the

structure 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with parameter κ.

(4) Note that the second assumption implies that κ is either an inaccessible cardinal
or the successor of a regular cardinal.
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For P = Add(κ, κ++), Theorem 1.5 shows that a failure of the GCH at an
uncountable regular cardinal κ is consistent with the existence of a well-order
of H(κ+) that is locally definable by a Σ1-formula with parameter κ.

By Mansfield’s Theorem 1.2 and the Σ1-Reflection Principle, the exis-
tence of a well-order of H(κ+) that is definable over 〈H(κ+),∈〉 by a Σ1-
formula with parameter z ∈ H(ω1) implies that P(ω) ⊆ L[z]. In particular,
the assumption

(?) ∀z ⊆ ω ∃x ⊆ ω x /∈ L[z]

implies that there is no such well-order. Note that (?) holds in all Add(ω, ω1)-
generic extensions and that the partial order P = Add(ω, ω1) satisfies re-
quirements (a) and (b) of Theorem 1.5 in L. Since the partial order Q̇G

from Theorem 1.5 adds no new reals whenever G is P-generic over L, it
preserves (?). Thus Theorem 1.5 shows that in this setting, the above forc-
ing construction for κ = ω1 adds a locally definable well-order of H(ω2)
of the optimal complexity compatible with (?), in the sense of providing a
Σ1-definition with smallest possible parameter.

It is natural to ask whether it is possible to strengthen the above re-
sult and force the existence of well-orders of H(ω2) that are definable using
smaller parameters. By the above remarks, the existence of such a well-order
would imply the negation of (?). It is not known whether such a well-order
can exist outside of models of the form L[z] with z ⊆ ω.

Question 1.6. Does the existence of a well-order of H(ω2) that is de-
finable over 〈H(ω2),∈〉 by a Σ1-formula with parameters in H(ω1) imply that
P(ω1) is constructible from some subset z of ω?

In another direction, one can ask whether assumptions like the ones listed
in Theorem 1.5 are actually necessary for such constructions. In particular, it
is interesting to ask whether the existence of such well-orders is compatible
with the existence of larger large cardinals. A modification of the above
construction yields the following result that shows that the existence of a
well-order of H(κ+) that is definable over 〈H(κ+),∈〉 by a Σ1-formula with
parameter κ is consistent with the existence of a measurable cardinal above κ
and a failure of the GCH at κ.

Theorem 1.7. Assume that U is a normal measure on a cardinal δ,
V = L[U ] holds and κ < δ is either the successor of a regular cardinal or
an inaccessible cardinal. Let P ∈ Vδ be a partial order with properties (a)
and (b) listed in Theorem 1.5. Then there is a P-name Q̇ ∈ Vδ for a partial
order such that statements (i)–(iii) in Theorem 1.5 hold whenever G ∗H is
(P ∗ Q̇)-generic over V.

Note that, if κ = ω1 and U witnesses that δ is a measurable cardinal in V,
then (?) holds and the above remarks imply that the well-ordering of H(ω2)
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produced by the above forcing has the optimal complexity that is compatible
with the existence of a measurable cardinal. Since the above construction
still relies on the assumption that V lies close to some well-behaved inner
model, we may ask if it is possible to have such well-orders in the presence of
larger large cardinals. It was pointed out to the authors by Daisuke Ikegami
that the results of Woodin on the Π2-maximality of the Pmax-extension of
L(R) (see [14] and [20]) directly imply that the existence of certain large
cardinals implies that no well-order of H(ω2) is definable over 〈H(ω2),∈〉 by
a Σ1-formula with parameter ω1.

Proposition 1.8. Assume that there are infinitely many Woodin cardi-
nals with a measurable cardinal above them. If there is a well-order of H(ω2)
that is definable over 〈H(ω2),∈〉 by a Σ1-formula with parameter z ⊆ ω1,
then z /∈ L(R).

Proof. Given α < ω1, let WOα denote the set of all x ∈ R that code
(in some fixed canonical way) a well-ordering of ω of order-type α. Note
that the set {〈x, α〉 ∈ R× ω1 | x ∈WOα} is definable over 〈H(ω2),∈〉 by a
Σ1-formula without parameters. Let LȦ denote the language of set theory

extended by a unary predicate symbol Ȧ. Then there is a Σ1-formula ϕ0(v)
in LȦ such that the axioms of ZFC prove that

〈H(ω2),∈, A〉 |= ϕ0(z) ⇔ z ⊆ {α < ω1 | ∃x ∈ A x ∈WOα}
for all A ⊆ R and z ∈ H(ω2). Moreover, there is a Π1-formula ϕ1(v) in LȦ
such that the axioms of ZFC prove that

〈H(ω2),∈, A〉 |= ϕ1(z) ⇔ {α < ω1 | ∃x ∈ A x ∈WOα} ⊆ z
for all A ⊆ R and z ∈ H(ω2).

Fix a Σ1-formula ψ(v0, v1, v2) in the language of set theory. Using the
formulas constructed above and the arguments used in the proof of Propo-
sition 1.1, we find a Π2-sentence Ψ in LȦ such that the axioms of ZFC prove
that whenever A ⊆ R and zA = {α < ω1 | ∃x ∈ A x ∈WOα}, then the set

{〈x, y〉 ∈ R× R | 〈H(ω2),∈〉 |= ψ(x, y, zA)}
is a well-ordering of R if and only if 〈H(ω2),∈, A〉 |= Ψ .

Assume, towards a contradiction, that there are infinitely many Woodin
cardinals with a measurable cardinal above them and there is z ∈ P(ω1)L(R)

such that

{〈x, y〉 ∈ H(ω2)×H(ω2) | 〈H(ω2),∈〉 |= ψ(x, y, z)}
is a well-ordering of H(ω2). Set Az =

⋃
α∈z WOα ∈ L(R). Then z = zAz and

〈H(ω2),∈, Az〉 |= Ψ . Let G be Pmax-generic over L(R). By [14, Theorem 7.3],
we have 〈H(ω2)L(R)[G],∈, Az〉 |= Ψ , and hence there is a well-order of R
that is definable over 〈H(ω2)L(R)[G],∈〉 by the formula ψ and the parameter
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z ∈ L(R). By our assumptions and [14, Lemma 2.10], the partial order Pmax

is homogeneous (5) in L(R). This shows that the set

{〈x, y〉 ∈ R× R | 1 L(R)
Pmax

ψ(x̌, y̌, ž)} ∈ L(R)

is a well-order of R in L(R). By results of Woodin (see [18, Theorem 8.24]),
our assumptions imply that AD holds in L(R) and hence L(R) contains no
well-orders of R, a contradiction.

Since the existence of a well-order of H(ω2) definable over 〈H(ω2),∈〉
by a Σ1-formula with parameter ω1 is consistent with the existence of a
measurable cardinal and inconsistent with the existence of infinitely many
Woodin cardinals with a measurable cardinal above them, it is natural to
ask the following question.

Question 1.9. What is the weakest large cardinal whose existence im-
plies that no well-order of H(ω2) is locally definable by a Σ1-formula with
parameter ω1?

This question will be answered in the forthcoming [16], by showing that
the existence of a well-ordering of H(ω2) that is definable over 〈H(ω2),∈〉
by a Σ1-formula with parameter ω1 is consistent with the existence of a
Woodin cardinal and inconsistent with the existence of a Woodin cardinal
with a measurable cardinal above it. Moreover, we will use the techniques
developed in Section 7 of this paper to show that the existence of such
a well-order is compatible with the existence of a Woodin cardinal and a
failure of the GCH at ω1.

In another direction, the above arguments do not answer the above ques-
tion for κ > ω1.

Question 1.10. Given a formula ϕ(v0, v1, v2), do the axioms of ZFC
prove that for every supercompact cardinal δ and every regular cardinal
ω1 < κ < δ, the set

{〈x, y〉 ∈ H(κ+)×H(κ+) | 〈H(κ+),∈〉 |= ϕ(x, y, κ)}

is not a well-ordering of H(κ+)?

Next, we consider locally definable well-orders of κκ. Note that the Σ1-
Reflection Principle implies that κκ is not definable over 〈H(κ+),∈〉 by a
Σ1-formula with parameters in H(κ), and hence no well-order of this set
is definable in this way. In the case of successor cardinals, the following
proposition shows that the forcing construction provided by Theorem 1.5

(5) In the sense that for all conditions p0, p1 ∈ Pmax, there are conditions q0, q1 ∈ Pmax

such that qi ≤Pmax pi and the restriction of Pmax to all conditions below q0 is isomorphic
to the restriction of Pmax to all conditions below q1.
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adds a locally Π1-definable well-order of κκ whose definition uses parameters
of small cardinality.

Proposition 1.11. Assume that η is an infinite cardinal, κ = η+ and
there is a well-order of H(κ+) that is definable over 〈H(κ+),∈〉 by a Σ1-
formula with parameter κ. Then there is a well-order of κκ that is definable
over 〈H(κ+),∈〉 by a Π1-formula with parameter η.

Proof. Fix a Σ1-formula Φ(v0, v1, v2) such that the formula Φ and the
parameter κ define a well-order C of H(κ+) over 〈H(κ+),∈〉. Let A be the
set of all x ∈ H(κ+) with |x| = κ. Then A consists of all x ∈ H(κ+) such
that there is no surjection from η onto x in H(κ+). Therefore A is definable
over 〈H(κ+),∈〉 by a Π1-formula ψ(v0, v1) with parameter η. If x ∈ A, then
κ is the unique ordinal α < κ+ such that there is a bijection b : α → x in
H(κ+) and for every ᾱ < α there is a surjection s : η → ᾱ in H(κ+). This
shows that there is a Σ1-formula ϕ(v0, v1, v2) such that

y = κ ⇔ 〈H(κ+),∈〉 |= ϕ(x, y, η)

for all x, y ∈ H(κ+) with x ∈ A. Finally, pick a Σ0-formula φ(v0, v1) such
that φ(x, y) holds if and only if x : y → y is a function.

Define J = C ∩ (κκ × κκ). Then J is equal to the set of all pairs 〈x, y〉
in H(κ+)×H(κ+) with

〈H(κ+),∈〉 |= x 6= y ∧ ψ(x, η) ∧ ψ(y, η)

∧ ∀α [ϕ(x, α, η)→ ¬Φ(y, x, α) ∧ φ(x, α) ∧ φ(y, α)].

This shows that the well-ordering J of κκ is definable over the structure
〈H(κ+),∈〉 by a Π1-formula with parameter η.

Since the set {ω} is definable over 〈H(ω2),∈〉 by a Σ0-formula without pa-
rameters, the above proposition shows that the forcing given by Theorem 1.5
produces a locally definable well-ordering of ω1ω1 of optimal complexity.

Corollary 1.12. Assume that there is a well-order of H(ω2) that is
definable over 〈H(ω2),∈〉 by a Σ1-formula with parameter ω1. Then there
is a well-order of ω1ω1 that is definable over 〈H(ω2),∈〉 by a Π1-formula
without parameters.

Finally, motivated by [11, Corollary 1.5], we also consider Bernstein sub-
sets of κκ. Given an uncountable regular cardinal κ, we equip κκ with the
topology whose basic open subsets are of the form Ns = {x ∈ κκ | s ⊆ x}
for some function s : α → κ with α < κ, and we say that a closed subset
of this space is perfect if it is homeomorphic to the set κ2 equipped with
the subspace topology induced by that of κκ. A Bernstein subset of κκ is
a subset X of κκ with the property that X and its complement intersect
every perfect subset of κκ.
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By [11, Corollary 1.5], the partial order P that witnesses Theorem 1.3
introduces a Bernstein subset of κκ that is ∆1-definable over 〈H(κ+),∈〉
with parameters. It is easy to see that the proof of this result, presented in
[11, Section 4], also shows that in the forcing extensions produced by the
above theorems there are Bernstein subsets of κκ with simple definitions.

Corollary 1.13.

(i) In the situation of Theorem 1.4, forcing with the partial order P
introduces a Bernstein subset of κκ that is ∆1-definable over
〈H(κ+),∈〉 using the parameter 〈Sα | α < κ〉 .

(ii) In the situation of Theorem 1.5 or Theorem 1.7, forcing with the
partial order P ∗ Q̇ introduces a Bernstein subset of κκ that is ∆1-
definable over 〈H(κ+),∈〉 using the parameter κ.

We now outline the structure of this paper. In Section 2, we start by
discussing forcing techniques that allow us to make an arbitrary subset of
H(κ+) definable in a generic extension of the ground model. Section 3 con-
tains the definition of strongly S-complete forcings and several observations
that will later allow us to show that the forcing constructed in the proof
of Theorem 1.4 is <κ-distributive and preserves the stationarity of certain
subsets of κ. Next, we prove that the generic coding introduced in Sec-
tion 2 is absolute with respect to strongly S-complete forcings. We continue
by constructing the partial order witnessing Theorem 1.4 in Section 5 and
proving theorem itself in Section 6. Finally, we prove Theorems 1.5 and 1.7
in Section 7 by constructing forcing extensions of canonical inner models
that contain simply definable sequences of disjoint fat stationary sets.

2. Almost disjoint coding at uncountable cardinals. In this sec-
tion, we discuss almost disjoint coding forcing (see [3] and [12]) for uncount-
able cardinals κ that satisfy κ = κ<κ. Given such a κ, this forcing technique
will allow us to make an arbitrary subset of κκ definable by a formula of
low complexity in an upwards-absolute way. In order to make this precise,
we generalize basic notions of complexity to our uncountable setting.

We equip the set κκ with the topology whose basic open sets are of the
form Ns = {x ∈ κκ | s ⊆ x} for some function s : α → κ with α < κ.
A subset of κκ is a Σ0

2-subset of κκ if it is equal to the union of κ-many
closed subsets of κκ. Note that a subset of κκ is closed if and only if it is
equal to the set

[T ] = {x ∈ κκ | ∀α < κ x�α ∈ T}
of κ-branches through some subtree (6) T of <κκ. In particular, A ⊆ κκ is
a Σ0

2-subset of κκ if and only if there is a sequence 〈Tα | α < κ〉 of subtrees

(6) A nonempty subset T ⊆ <κκ is a subtree of <κκ if it is closed under initial segments.
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of <κκ with A =
⋃
α<κ[Tα]. We say that such a sequence of trees witnesses

that A is a Σ0
2-subset of κκ.

We will now discuss how almost disjoint coding forcing at uncountable
cardinals κ with κ = κ<κ allows us to make an arbitrary subset of κκ
Σ0

2-definable by a cofinality-preserving forcing.

Definition 2.1. Assume that κ is an uncountable cardinal with κ =
κ<κ, A ⊆ κκ and ~s = 〈sα | α < κ〉 is an enumeration of <κκ with the
property that every element of <κκ is enumerated κ-many times. We define
a partial order C~s(A) by the following clauses:

(i) A condition in C~s(A) is a pair p = 〈tp, ap〉 with tp : αp → 2 for some
αp < κ and ap ∈ [A]<κ.

(ii) We have q ≤C~s(A) p if and only if tp ⊆ tq, ap ⊆ aq and

sβ ⊆ x → tq(β) = 1

for all x ∈ ap and αp ≤ β < αq.

The following proposition lists the basic properties of this partial order.

Proposition 2.2.

(i) If η < κ and 〈pξ | ξ < η〉 is a descending sequence of conditions in
C~s(A), then the pair p = 〈

⋃
ξ<η tpξ ,

⋃
ξ<η apξ〉 is a condition in C~s(A)

with p ≤C~s(A) pξ for all ξ < η. In particular, C~s(A) is <κ-closed with
infima.

(ii) If p and q are conditions in C~s(A) with tp = tq, then p and q are
compatible in C~s(A). In particular, C~s(A) satisfies the κ+-chain con-
dition.

The coding provided by the above forcing turns out to be much stronger
than in the countable setting, because we no longer need to bother about
the definability of κκ in the ground model (see [9, Section 1]).

There is a sequence 〈Ṫα | α < κ〉 of canonical C~s(A)-names with the
property that whenever G is C~s(A)-generic over V and tG =

⋃
{tp | p ∈ G} :

κ→ 2, then for every α < κ,

ṪGα = {t ∈ <κκ | ∀α < β < κ [tG(β) = 0→ sβ * t]}.

Theorem 2.3. If κ is an uncountable cardinal with κ = κ<κ, A is a
subset of κκ and G is C~s(A)-generic over V, then the sequence 〈ṪGα | α < κ〉
witnesses that A is a Σ0

2-subset of κκ in V[G].

Rather than presenting the short proof of this theorem, we will prove an
absoluteness version of it in Section 4 (see Corollary 4.3) that will imply the
above statement. This result will show that the above coding holds true not
only in V[G], but is in fact persistent under certain further forcing.
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We close this section with a minor observation showing that in a certain
sense, the generic coding provided by Theorem 2.3 is optimal.

Proposition 2.4. Let κ be an uncountable regular cardinal with
κ = κ<κ. Then there is a subset C of κκ with the property that in every
generic extension of the ground model by a <κ-distributive forcing, the com-
plement of C is not a Σ0

2-subset of κκ.

Proof. Define C to be the club filter on κ, i.e. C is the set of all x ∈ κκ
such that {α < κ | x(α) = 0} contains a closed unbounded subset of κ.
Assume, towards a contradiction, that there is a generic extension V[G] of
the ground model V by a <κ-distributive forcing P such the complement
of C is a Σ0

2-subset of κκ in V[G]. Work in V[G]. By our assumption, there
is a sequence 〈Uα | α < κ〉 of open subsets of κκ with C =

⋂
α<κ Uα. By the

<κ-distributivity of P, the set C is dense in κκ, and this implies that Uα is
open dense for every α < κ.

Let h : κκ → κκ be the unique function such that x(α) ≥ 2 implies
h(x)(α) = x(α) and x(α) < 2 implies h(x)(α) = 1 − x(α) for all x ∈ κκ
and α < κ. Then h is a homeomorphism of κκ and h[C] is also equal to the
intersection of κ-many dense open subsets of κκ. In this situation, a standard
argument shows that there are x ∈ C ∩ h[C] and closed unbounded subsets
C0 and C1 of κ in V such that Ci ⊆ {α < κ | x(α) = i} for all i < 2. But
then C0 ∩ C1 = ∅, a contradiction.

Note that it is also possible to use [8, Theorem 4.2] to derive a contra-
diction in the proof of the above proposition.

3. Strongly S-complete forcings. In this section, we define a strength-
ening of the notion of an S-complete forcing introduced in [19, Chapter V,
Definition 1.1]. We will use this property to show that the forcing constructed
in the proof of Theorem 1.4 is <κ-distributive and preserves the stationarity
of certain subsets of κ. This will allow us to generically code information
with the help of the sequence 〈Sα | α ≤ κ〉 of disjoint stationary sets.

Definition 3.1. Assume κ is an uncountable regular cardinal, S ⊆ κ
and P is a partial order. We say that P is strongly S-complete if there is a

sequence ~D = 〈Dα | α < κ〉 of open dense subsets of P with the property
that whenever

(a) θ > κ is a regular cardinal with P(P) ∈ H(θ),
(b) M is an elementary submodel of H(θ) of cardinality less than κ such

that ~D,P ∈M and α = κ ∩M ∈ S, and
(c) ~p = 〈pξ | ξ < η〉 is a descending sequence of conditions in P such that

pξ∈M for every ξ<η and {ᾱ<α | ∃ξ<η pξ∈Dᾱ} is unbounded in α,

then there is a condition p in P with p ≤P pξ for every ξ < η.
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Lemma 3.2. Let κ be an uncountable regular cardinal with η<η < κ for
every cardinal η < κ, let S be a fat stationary subset of κ and let P be a
strongly S-complete partial order. Then P is <κ-distributive.

Proof. We show that P is <η-distributive for every infinite cardinal η ≤ κ
by induction on η. Note that limit steps are trivial, for if η is a limit cardinal,
then P is <η-distributive iff it is <µ-distributive for every infinite cardinal
µ < η. Moreover, any forcing is trivially <ω-distributive. Similarly, if η < κ
is a singular cardinal such that P is <η-distributive, then P is in fact <η+-
distributive. All of the above hold true for any notion of forcing P . The only
nontrivial case in the induction is the following.

Assume η < κ is a regular cardinal such that P is <η-distributive, let ḟ
be a P-name for a function from η to On and let p0 be a condition in P. Pick
a sequence ~D = 〈Dα | α < κ〉 of open dense subsets of P witnessing that P
is strongly S-complete, and pick a sufficiently large regular cardinal θ.

We inductively construct a continuous ⊆-increasing chain 〈Mβ | β < κ〉
of elementary submodels of H(θ) of cardinality less than κ and a strictly
increasing continuous sequence 〈αβ | β < κ〉 of limit ordinals less than κ
such that for every β < κ:

(i) η, ḟ , p0, ~D,P ∈M0.
(ii) αβ = κ ∩Mβ ∈ κ.

(iii) If cof(αβ) < η, then cof(αβ)Mβ ⊆Mβ+1.

Then C = {αβ | β < κ} is a closed unbounded subset of κ, and by the
assumption that S is fat stationary, there is a strictly increasing continuous
map b : η + 1→ κ such that {αb(ξ) | ξ ≤ η} is a closed subset of S of order-
type η+1. Now we inductively construct a sequence 〈pξ | ξ < η〉 of conditions

in P and a sequence 〈tξ | ξ < η〉 such that pξ ∈ Mb(ξ+1), pξ+1  “ ḟ�ξ̌ = ťξ ”
and pξ+1 ∈ Dαb(ξ) for every ξ < η.

Assume 〈pξ̄ | ξ̄ ≤ ξ〉 is already constructed. Then pξ and Dαb(ξ) are both
elements of Mb(ξ+1), because αb(ξ) < αb(ξ+1) ⊆ Mb(ξ+1). Since P is <η-
distributive by induction hypothesis, there are pξ+1 ∈ Dαb(ξ) ∩Mb(ξ+1)+1 ⊆
Mb(ξ+2) and tξ with pξ+1 ≤P pξ and pξ+1  “ ḟ�ξ̌ = ťξ ”.

Now, assume ξ ∈ η ∩ Lim and 〈pξ̄ | ξ̄ < ξ〉 is already constructed. Then

{ᾱ < αb(ξ) | ∃ξ̄ < ξ pξ̄ ∈ Dᾱ} is unbounded in αb(ξ). Hence there is a con-

dition q in P with q ≤P pξ̄ for every ξ̄ < ξ. Let 〈ξµ | µ < cof(ξ)〉 be a
strictly increasing continuous sequence of ordinals that is cofinal in ξ. Since
cof(αb(ξ)) = cof(ξ) < η, we can conclude cof(ξ)Mb(ξ) ⊆ Mb(ξ)+1 ⊆ Mb(ξ+1).
This shows that the sequence 〈pξµ | µ < cof(ξ)〉 is an element of Mb(ξ+1),
and by elementarity, there is a condition pξ ∈ Mb(ξ+1) such that pξ ≤P pξ̄
for every ξ̄ < ξ.
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Since {ᾱ < αb(η) | ∃ξ < η pξ ∈ Dᾱ} is unbounded in αb(η), there is a con-
dition p ∈ P with p ≤P pξ for every ξ < η. If we define f =

⋃
ξ<η tξ, then

p  “ ḟ = f̌ ”. This shows that P is η-distributive.

We continue with a technical definition that summarizes the important
properties that we will deduce from strong S-completeness.

Definition 3.3. Let P be a partial order, let θ be a regular uncountable
cardinal with P(P) ∈ H(θ) and let M be an elementary submodel of H(θ)
with P ∈M . A condition p in P is strongly (M,P)-generic if whenever D is
an open dense subset of P that is an element of M , then there is a condition
q ∈ D with q ∈M and p ≤P q.

The following basic observation will be needed in the proof of the next
lemma.

Proposition 3.4. Let κ be an uncountable regular cardinal and let S be
a fat stationary subset of κ. If P is a <κ-closed partial order, then S is a
fat stationary subset of κ in every P-generic extension of V.

Proof. Let Ċ be a name for a club subset of κ, γ < κ and p0 be a
condition in P. Then we can inductively construct a descending sequence
〈pα | α < κ〉 of conditions in P and a sequence 〈cα | α < κ〉 of bounded
subsets of κ such that pα+1  “ Ċ ∩ α̌ = čα ” for every α < κ. Then C =⋃
α<κ cα is a closed unbounded subset of κ and there is an α∗ < κ such that

C ∩ S ∩ α∗ contains a closed subset of order-type γ. Hence pα∗ ≤P p0 forces
that the intersection of Ċ and S contains a closed subset of order-type γ.

We are now ready to show that strongly S-complete forcings contain
dense subsets of strongly generic conditions for a great variety of elementary
submodels.

Lemma 3.5. Assume that

(a) κ is an uncountable regular cardinal with η<η < κ for every η < κ,
(b) S is a fat stationary subset of κ,
(c) P is a partial order that is <κ-closed with infima,
(d) Q̇ is a P-name for a strongly S-complete partial order,

(e) ~D = 〈Ḋα | α < κ〉 is a sequence of P-names for open dense subsets
of Q̇ such that whenever G is P-generic over V, then the sequence
〈ḊG

α | α < κ〉 witnesses that Q̇G is strongly S-complete in V[G], and

(f) θ > κ is regular with ~D,P(P ∗ Q̇) ∈ H(θ).

Then for every element x of H(θ) and every regular cardinal η < κ, there
is a dense set of conditions 〈p, q̇〉 in P ∗ Q̇ such that for some elementary
submodel M of H(θ):

(i) M has cardinality less than κ, and x,P, Q̇ ∈M .
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(ii) α = κ ∩ M ∈ S and there is a closed unbounded subset of α of
order-type η consisting of elements of S.

(iii) 〈p, q̇〉 is strongly (M,P ∗ Q̇)-generic.
(iv) The condition p is the infimum of a descending sequence of condi-

tions in P ∩M .

Proof. We start by proving some general facts about the behaviour of
elementary submodels of H(θ) in P-generic extensions. Let M be an elemen-

tary submodel of H(θ) of size less than κ, with ~D,P, Q̇ ∈M and κ∩M ∈ S,
let 〈〈pξ̄, q̇ξ̄〉 | ξ̄ < ξ〉 be a descending sequence of conditions in (P∗ Q̇)∩M of

length less than κ, such that every dense subset of P ∗ Q̇ that is an element
of M has some pξ̄ as element, and let pξ be the infimum of the sequence

〈pξ̄ | ξ̄ < ξ〉 in P. If G is P-generic over V, then H(θ)V[G] is a P-generic

extension of H(θ)V, and we define

M [G] = {ẋG | ẋ ∈M is a P-name}.

The following claims are standard, but we provide their short proofs for the
sake of completeness.

Claim 1. If G is P-generic over V with pξ ∈ G, then M [G] is an ele-

mentary submodel of H(θ)V[G] with M ∩ κ = M [G] ∩ κ.

Proof. Let ẋ ∈M be a P-name with ẋG ∈ κ. Then

D = {〈p, q̇〉 ∈ P ∗ Q̇ | ∃α < κ p  “ ẋ = α̌”}

is an open dense subset of P ∗ Q̇ and an element M . Hence 〈pξ̄, q̇ξ̄〉 ∈ D∩M
for some ξ̄ < ξ, and there is an ᾱ ∈ κ ∩M with ẋG = ᾱ.

Assume there are P-names ẋ0, . . . , ẋn−1∈M such that ϕ(x, ẋG0 , . . . , ẋ
G
n−1)

holds in H(θ)V[G] for some formula ϕ(v0, . . . , vn) and some x ∈ H(θ)V[G].
Since H(θ)V[G] is a P-generic extension of the model H(θ)V, the set of all
conditions 〈p, q̇〉 in P ∗ Q̇ such that either p  “∀x ¬ϕ(x, ẋ0, . . . , ẋn−1)”
holds in H(θ)V or p  ϕ(ẋ, ẋ0, . . . , ẋn−1) holds in H(θ)V for some P-name
ẋ ∈ H(θ)V is an open dense subset of P ∗ Q̇, and is an element of M . By our
assumptions, this implies that there is a P-name ẋ∗ ∈ M and a ξ̄ < ξ such
that pξ̄  ϕ(ẋ∗, ẋ0, . . . , ẋn−1) holds in H(θ)V, and this shows that there is

an x ∈M [G] such that ϕ(x, ẋG0 , . . . , ẋ
G
n−1) holds in H(θ)V[G].

Claim 2. There is a P-name q̇ξ for a condition in Q̇ such that 〈pξ, q̇ξ〉 is

a strongly (M,P ∗ Q̇)-generic condition and 〈pξ, q̇ξ〉 ≤P∗Q̇ 〈pξ̄, q̇ξ̄〉 for every

ξ̄ < ξ.

Proof. Let G be P-generic over V with pξ ∈ G and let D be an open

dense subset of Q̇G that is an element of M [G]. Then there is a P-name
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Ḋ ∈M for a dense subset of Q̇ with D = ḊG, and

D∗ = {〈p, q̇〉 ∈ P ∗ Q̇ | p  “ q̇ ∈ Ḋ ”}

is an open dense subset of P ∗ Q̇ and an element of M . Hence there is a
ξ̄ < ξ such that 〈pξ̄, q̇ξ̄〉 is an element of D∗ ∩M , and this yields q̇G

ξ̄
∈ D.

We can conclude that for every α ∈ κ ∩ M [G] there is ξ̄ < ξ with q̇G
ξ̄

in ḊG
α . By our assumptions and the above claim, this shows that there is

a condition qξ in Q̇G such that qξ ≤Q̇G q̇G
ξ̄

holds in V[G] for every ξ̄ < ξ.

These computations yield a P-name q̇ξ with the desired properties.

Continuing the proof of Lemma 3.5, pick an element x of H(θ), a condi-
tion 〈p0, q̇0〉 in P∗Q̇ and a regular cardinal η < κ. We inductively construct a
continuous ⊆-increasing chain Mβ of elementary submodels of H(θ) of cardi-
nality less than κ and a strictly increasing continuous sequence 〈αβ | β < κ〉
of limit ordinals less than κ such that, for every β < κ:

(I) η, p0, q̇0, ~D,P, Q̇ ∈M0.
(II) αβ = κ ∩Mβ ∈ κ.

(III) Mβ ∈Mβ+1.

(IV) If cof(αβ) < η, then cof(αβ)Mβ ⊆Mβ+1.

If we define C = {αβ | β < κ}, then there is a continuous strictly in-
creasing function b : η + 1 → κ such that {αb(ξ) | ξ ≤ η} is a closed subset
of S of order-type η + 1. We define a decreasing sequence 〈〈pξ, q̇ξ〉 | ξ < η〉
of conditions in P ∗ Q̇ such that 〈pξ, q̇ξ〉 ∈ Mb(ξ+1) and 〈pξ+1, q̇ξ+1〉 is an

element of every open dense subset of P ∗ Q̇ that is an element of Mb(ξ).

Assume that the sequence 〈〈pξ̄, q̇ξ̄〉 | ξ̄ ≤ ξ〉 is already constructed. Then

Lemma 3.2 and Proposition 3.4 show that the partial order P ∗ Q̇ is <κ-
distributive, and this implies that the intersection of all open dense subsets
of P∗Q̇ that are elements of Mb(ξ) is open dense. Since pξ, q̇ξ,Mb(ξ) ∈Mb(ξ+1)

and Mb(ξ) has cardinality less than κ in Mb(ξ+1), elementarity implies that

there is a condition 〈pξ+1, q̇ξ+1〉 in (P ∗ Q̇) ∩Mb(ξ+1) below 〈pξ, q̇ξ〉 that is

an element of every open dense subset of P ∗ Q̇ that is an element of Mb(ξ).

Now assume that ξ ∈ η∩Lim and the sequence 〈〈pξ̄, q̇ξ̄〉 | ξ̄ < ξ〉 is already

constructed. By Claim 2, there is a strongly (Mb(ξ),P ∗ Q̇)-generic condition

r with r ≤P∗Q̇ 〈pξ̄, q̇ξ̄〉 for every ξ̄ < ξ. Pick a sequence 〈ξµ | µ < cof(ξ)〉
that is cofinal in ξ. Since cof(αb(ξ)) = cof(ξ) < η, our assumptions imply
that the sequence 〈〈pξµ , q̇ξµ〉 | µ < cof(ξ)〉 is an element of Mb(ξ+1), and
since Mb(ξ) is an element of Mb(ξ+1), elementarity implies that there is a

strongly (Mb(ξ),P ∗ Q̇)-generic condition 〈pξ, q̇ξ〉 ∈ (P ∗ Q̇) ∩Mb(ξ+1) such

that 〈pξ, q̇ξ〉 ≤P∗Q̇ 〈pξ̄, q̇ξ̄〉 for every ξ̄ < ξ.
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This completes the construction of 〈〈pξ, q̇ξ〉 | ξ < η〉. Another application

of Claim 2 shows that there is a strongly (Mb(η),P ∗ Q̇)-generic condition
〈pη, q̇η〉 such that 〈pη, q̇η〉 ≤P∗Q̇ 〈pξ, q̇ξ〉 for every ξ < η and pη is the infimum

of the sequence 〈pξ | ξ < η〉 in P. Moreover, {αb(ξ) | ξ < η} is a club subset
of αb(η) ∈ S consisting of elements of S.

Corollary 3.6. Assume that κ, S, P, Q̇, ~D and θ satisfy the properties
listed in Lemma 3.5. Then S is a fat stationary subset of κ in every (P∗ Q̇)-
generic extension of the ground model.

Proof. Let Ċ be a (P ∗ Q̇)-name for a closed unbounded subset of κ and
let G ∗H be (P ∗ Q̇)-generic over V. Fix an infinite regular cardinal η < κ
such that either η is uncountable or κ = ω1. By Lemma 3.5, there is an
elementary submodel M of H(θ) containing Ċ with α = κ∩M ∈ S, a closed
unbounded subset c of α of order-type η contained in S and a strongly
(M,P ∗ Q̇)-generic condition r ∈ G. Then α ∈ Lim(ĊG∗H) ∩ S, and if η is
uncountable, then c ∩ ĊG∗H contains a closed subset of order-type η.

If κ > ω1, then this argument shows that ĊG∗H ∩ S contains a closed
subset of order-type η+1 for every regular cardinal η < κ, and by [1, Lemma
1.2], this implies that S is fat stationary in V[G,H]. In the other case, the
argument shows that S is a stationary subset of ω1 in V[G,H] and every
such subset is fat by [5].

4. Almost disjoint coding and strongly S-complete forcings.
This section contains the proofs of the absoluteness versions of Theorem 2.3
mentioned in Section 2. Throughout §4, let κ be an uncountable cardinal
satisfying κ<κ = κ, let A ⊆ κκ and let 〈Ṫα | α < κ〉 be defined as before the
statement of Theorem 2.3.

Lemma 4.1. Let Q̇ be a C~s(A)-name for a partial order. Assume that
for sufficiently large regular cardinals θ and every x ∈ H(θ) there is a
dense set of conditions 〈p, q̇〉 in C~s(A) ∗ Q̇ that are strongly (M,C~s(A) ∗ Q̇)-
generic for some elementary submodel M of H(θ) of cardinality less than
κ with x,C~s(A), Q̇ ∈ M , κ ∩ M ∈ κ and ap ⊆ M . Then the sequence

〈ṪGα | α < κ〉 witnesses that A is a Σ0
2-subset of κκ in V[G,H] whenever

G ∗H is (C~s(A) ∗ Q̇)-generic over V, i.e. A =
⋃
α<κ[ṪGα ] in V[G,H].

Proof. Fix x ∈ A. Then the set D = {p ∈ C~s(A) | x ∈ ap} is dense, and
there is a condition p ∈ G with x ∈ ap. Assume, towards a contradiction,

that x /∈ [ṪGαp ]
V[G]. Then there is a αp < β < κ with tG(β) = 0 and sβ ⊆ x.

In this situation, we can find a q ∈ G with q ≤C~s(A) p and β < αq. Then
sβ ⊆ x implies tG(β) = tq(β) = 1, a contradiction. This argument shows

that x ∈ [ṪGαp ]
V[G] ⊆ [ṪGαp ]

V[G,H].
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Now, assume that there is an x ∈ [ṪGα ]V[G,H] \ A for some α < κ. Pick
a (C~s(A) ∗ Q̇)-name ẋ for an element of κκ with x = ẋG∗H and a suffi-
ciently large regular cardinal θ. By our assumption, we can find a condition
〈p∗, q̇∗〉 in G ∗H such that 〈p∗, q̇∗〉  “ ẋ ∈ [Ṫα] \ Ǎ” and 〈p∗, q̇∗〉 is strongly
(M,C~s(A) ∗ Q̇)-generic for some elementary submodel M of H(θ) of cardi-
nality less than κ with α, ẋ,C~s(A), Q̇ ∈M , κ ∩M ∈ κ and ap∗ ⊆M .

Given ᾱ ∈ κ ∩M , the set

Dᾱ = {r ∈ C~s(A) ∗ Q̇ | r  “ ẋ /∈ [Ṫα] ”∨
∃u [lh(u) = ᾱ ∧ r  “ ǔ ⊆ ẋ ∧ ǔ ∈ Ṫα ”]}

is an open dense subset of C~s(A) ∗ Q̇ and an element of M . Hence we can
find rᾱ ∈ Dᾱ ∩ M with 〈p∗, q̇∗〉 ≤C~s(A) rᾱ and uᾱ with lh(uᾱ) = ᾱ and

rᾱ  “ ǔᾱ ⊆ ẋ ∧ ǔα ∈ Ṫα ”. Define u =
⋃
{uᾱ | ᾱ < αpη}. Then 〈p∗, q̇∗〉 

“ ǔ ⊆ ẋ” and hence u ∈ Tα.

Next, if y ∈ A ∩M , then the set

Ey = {〈p, q̇〉 ∈ C~s(A) ∗ Q̇ | y ∈ ap∧
(r  “ ẋ = y̌ ” ∨ ∃δ < κ r  “ ẋ�δ̌ 6= y̌�δ̌ ”)}

is an element of M and an open dense subset of C~s(A) ∗ Q̇. This shows that
for every y ∈ A∩M there is a condition ry ∈ Ey∩M with 〈p∗, q̇∗〉 ≤C~s(A)∗Q̇ ry.

Having established that ap∗ ⊆ M , we can conclude that ap∗ = A ∩M and
u * y for every y ∈ A ∩M .

By our assumptions on ~s, there is an αp∗ ≤ α∗ < κ with u = sα∗ , and
we can find a condition p̄ in C~s(A) with p̄ ≤C~s(A) p∗, α∗ < αp̄, ap̄ = ap∗ and

tp̄(α∗) = 0. Let Ḡ ∗ H̄ be (C~s(A) ∗ Q̇)-generic over V with 〈p̄, q̇∗〉 ∈ Ḡ ∗ H̄.

Then ẋḠ ∈ [Ṫ Ḡα ]V[Ḡ,H̄] and hence u = ẋḠ� lh(u) ∈ Ṫ Ḡα . But also α∗ ≥
αp∗ > α, sα∗ = u and tḠ(α∗) = tp̄(α∗) = 0, which contradicts the definition

of Ṫα.

Corollary 4.2. Assume that η<η < κ for every η < κ. If S is a fat sta-
tionary subset of κ, Q̇ is a C~s(A)-name for a strongly S-complete partial or-
der and G∗H is (C~s(A)∗Q̇)-generic over V, then the sequence 〈ṪGα | α < κ〉
witnesses that A is a Σ0

2-subset of κκ in V[G,H].

Proof. Pick θ satisfying Lemma 3.5(f) and some x ∈ H(θ). By Lem-
ma 3.5, there is a dense set of conditions 〈p, q̇〉 in C~s(A) ∗ Q̇ such that
statements (i)–(iv) of the lemma hold for some elementary submodel M of
H(θ) of cardinality less than κ with x ∈ M . Since every such condition p
is the infimum of a sequence of conditions in C~s(A) ∩M , Proposition 2.2
shows that ap ⊆M for these conditions. We conclude that the assumptions
of Lemma 4.1 are satisfied in this case.
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We close this section with another corollary of Lemma 4.1 that directly
implies the statement of Theorem 2.3. Note that, in contrast to the last
corollary, the following argument only uses the assumption that κ is an
uncountable cardinal with κ = κ<κ.

Corollary 4.3. Let Q̇ be a C~s(A)-name for a σ-closed, <κ-distributive
partial order. If G ∗ H is (C~s(A) ∗ Q̇)-generic over V, then the sequence
〈ṪGα | α < κ〉 witnesses that A is a Σ0

2-subset of κκ in V[G,H].

Proof. We show that the assumptions of Lemma 4.1 are satisfied. Let
θ be a sufficiently large regular cardinal, x ∈ H(θ) and r be a condition in
C~s(A) ∗ Q̇. Since our assumptions imply that the partial order C~s(A) ∗ Q̇
is <κ-distributive and therefore the intersection of less than κ-many open
dense subsets of this partial order is nonempty, we can simultaneously con-
struct a ⊆-increasing sequence 〈Mn | n < ω〉 of elementary submodels of
H(θ) of cardinality less than κ and a descending sequence 〈〈pn, q̇n〉 | n < ω〉
of conditions in C~s(A) ∗ Q̇ below r such that, for every n < ω:

(i) r, x,C~s(A) ∗ Q̇ ∈M0, 〈pn, q̇n〉,Mn ∈Mn+1 and κ ∩Mn ∈ κ.
(ii) 〈pn, q̇n〉 is an element of every open dense subset of C~s(A) ∗ Q̇ that

is an element of Mn.

Set M =
⋃
n<ωMn and let p be the infimum of the sequence 〈pn | n < ω〉 in

C~s(A). By our assumption, there is a C~s(A)-name q̇ for a condition in Q̇ with
〈p, q̇〉 ≤C~s(A)∗Q̇ 〈pn, q̇n〉 for all n < ω. Then 〈p, q̇〉 is strongly (M,C~s(A) ∗ Q̇)-

generic with the desired properties.

5. The main forcing construction. In this section and the next, we
work under the following assumptions:

(1) κ is an uncountable cardinal with κ = κ<κ, and η<η < κ for every
η < κ.

(2) λ = 2κ is a regular cardinal.
(3) 〈Sα | α ≤ κ〉 is a sequence of disjoint stationary subsets of Sκη if κ is

the successor of a regular cardinal η, and a sequence of disjoint fat
stationary subsets of κ if κ is inaccessible.

We define S = Sκ, ~S = 〈Sα | α < κ〉 and S̃α = κ \ Sα for every α < κ.

Note that assumption (1) implies that κ is either an inaccessible cardinal
or the successor of a regular cardinal. In the following, we will work with
stationary subsets R of κ such that either κ = η+ and R ⊆ Sκη , or κ is
inaccessible and R is fat stationary. We write R∗ = R∪Sκ<η in the first case
and R∗ = R in the second. By using [1, Lemma 1.2], it is easy to see that
R∗ is a fat stationary subset of κ in both cases.
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Towards the proof of Theorem 1.4, we recursively define a forcing that
simultaneously performs the following three tasks (7):

• Generically add a sequence ~A = 〈Aδ | δ < 2κ〉 of subsets of κ in the
generic extension V[G] such that every element of H(κ+)V[G] is coded
(in a sense made precise later on) by exactly one Aδ.

• Generically code ~A to ensure that this sequence is definable over
H(κ+)V[G] by a Σ1-formula using a parameter y ⊆ κ that is added
by our forcing.

• Ensure that the parameter y is definable in H(κ+)V[G] by a Σ1-formula
that uses the sequence 〈Sα | α < κ〉 as a parameter.

In this situation, we can well-order H(κ+)V[G] in the desired way by
identifying each element of H(κ+)V[G] with the unique Aδ coding it. The
generic coding used in this construction will be a variation of the almost
disjoint coding forcing from Section 2 that was introduced in [2, Section 2],
and combines the original forcing with iterated club shooting. The additional
coding to make the parameter y definable from 〈Sα | α < κ〉 will be achieved
by further iterated club shooting.

Before we begin the construction of our forcing, we specify a number of
notions used in this construction and fix some more assumptions. We start
with several notions of coding sets into other sets:

• We let ≺·, ·� : On×On→ On denote the Gödel pairing function.
• We say that A ⊆ κ codes an element z of H(κ+) if there is a bijection
b : κ→ tc({z}) such that

A = {≺0,≺α, β�� | α, β < κ, b(α) ∈ b(β)}
∪ {≺1, α� | α < κ, b(α) ∈ z}.

Note that z and b are uniquely determined by A.
• Given x, y ∈ κκ, we define x⊕ y ∈ κκ by setting, for all α < κ,

(x⊕ y)(α) :=


x(β) if α = ≺0, β�,

y(β) if α = ≺1, β�,

0 otherwise

• Given α, β < κ, we define c(α, β) ∈ κ2 by setting, for all γ < κ,

c(α, β)(γ) :=

{
1 if γ ∈ {≺0, α�,≺1, β�},
0 otherwise.

(7) This extends the construction of the forcing to witness Theorem 1.3, as provided
in [11, Section 2], by the additional third task below. Note that this task introduces the
additional technical difficulty that the witnessing forcing for Theorem 1.4 cannot be (unlike
the witnessing forcing for Theorem 1.3) <κ-closed. The final forcing to witness Theorem
1.4 will be a two-step iteration of the forcing described in this section preceded by a
preliminary forcing to achieve assumption (5) below. This two-step iteration is described
in detail at the end of Section 6.
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In addition to our previous assumptions, we also assume that the follow-
ing objects exist. (Note that we can (and will) achieve (5) by a preparatory
almost disjoint coding forcing, using Corollary 4.2.)

(4) ~w = 〈wγ | γ < λ〉 is a sequence of pairwise distinct elements of κ2.

(5) ~T = 〈Tα | α < κ〉 is a sequence of subtrees of <κκ with the property
that

(†) {wγ̄ ⊕ wγ | γ̄ < γ < λ} =
⋃
α<κ

[Tα]V[G]

whenever V[G] is a generic extension of the ground model V by a
strongly S∗-complete forcing.

Thus, ~T witnesses that {wγ̄ ⊕ wγ | γ̄ < γ < λ} is a Σ0
2-subset of κκ in every

generic extension by a strongly S∗-complete forcing.
In the following, we inductively construct a sequence ~P~w = 〈Pγ | γ ≤ λ〉

of partial orders such that Pδ is a complete subforcing of Pγ whenever δ <
γ ≤ λ. Fix γ ≤ λ and assume that we have constructed Pδ with that property
for every δ < γ.

Definition 5.1. We call a tuple

p = 〈sp, tp, ~dp,~cp, ~Ap〉
a Pγ-candidate if, for some ordinals βp < κ and γp < min{γ + 1, λ}:

(i) sp : βp + 1→ <κ2.
(ii) tp : βp + 1→ 2.

(iii) ~dp = 〈dp,α | α ≤ βp〉 is such that dp,α is a closed subset of S̃α ∩
(βp + 1) for every α ≤ βp. We require that dp,α is the empty set
if α = β · 7 + i with i < 7, β = ≺γ, δ�, and one of the following
statements holds (8):

(a) i < 2 and sp(γ)(δ) = i.
(b) i = 2 and lh(sp(γ)) ≤ δ.
(c) 2 < i < 5 and tp(β) = i− 3.
(d) i = 5 and sp(γ) 6∈ Tδ.
(e) i = 6 and sp(γ) ∈ Tδ.

(iv) ~cp = 〈cp,x | x ∈ ap〉 is a sequence such that:

(a) ap is a subset of {wδ ⊕ c(α, i) | δ < γp, α < κ, i < 2} of cardi-
nality less than κ.

(8) We will shoot clubs through the S̃α, but only for specific α, in order to ensure that
in the end, certain sets are definable using ~S as a parameter by checking which of the Sα
remained stationary. Coding each piece of information both positively and negatively will
make sure that the complexity of those definitions is in fact ∆1-definable. Note that each
S̃α is a fat stationary subset of κ.
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(b) If x ∈ ap, then cp,x is a closed subset of βp + 1 and the impli-
cation

sp(α) ⊆ x→ tp(α) = 1

holds for every α ∈ cp,x.

(v) ~Ap = 〈Ȧp,δ | δ < γp〉 is a sequence such that:

(a) If δ < γp, then Ȧp,δ is a Pδ-nice name for a subset of κ (and
thus by our assumptions a Pδ̃-nice name for a subset of κ for

every δ ≤ δ̃ < γ).
(b) If γ̄ < γp and G is Pγ̄-generic over the ground model V, then

either |λ|V[G] = |γ̄|V[G] holds (9), or in V[G], there is a sequence
〈yδ | δ ≤ γ̄〉 of pairwise distinct elements of H(κ+) such that

ȦGp,δ codes yδ for every δ ≤ γ̄.

Given a Pγ-candidate p and δ ≤ γ, we define p�δ to be the tuple〈
sp, tp, ~dp, 〈cp,x | x ∈ ap�δ〉, ~Ap�min{γp, δ}

〉
,

where ap�δ = ap ∩ {wδ̄ ⊕ c(α, i) | δ̄ < δ, α < κ, i < 2}. It is straightforward
to check that whenever p is a Pγ-candidate and δ ≤ γ, then p�δ is a Pδ-
candidate.

Definition 5.2. A Pγ-candidate p is a condition in Pγ if the following
statement holds for all δ < γp, α < κ and i < 2 with wδ ⊕ c(α, i) ∈ ap:

(vi) If p�δ is a condition in Pδ, then

p�δ Pδ “ i = 1↔ α̌ ∈ Ȧp,δ ” (10).

Given conditions p and q in Pγ , we define q ≤Pγ p to hold if sp =
sq�(βp + 1), tp = tq�(βp + 1), dp,α = dq,α�(βp + 1) for every α ≤ βp, ap ⊆ aq,
~Ap = ~Aq�γp and cp,x = cq,x�(βq + 1) for every x ∈ ap.

Proposition 5.3. If p is a condition in Pγ and δ < γ, then p�δ is a
condition in Pδ. In particular, every condition p in Pγ is also a condition
in Pγp.

Proof. Let δ < γ and assume that p�δ̄ is a condition in Pδ̄ for every δ̄ < δ.
Fix δ̄ < δ, α < κ and i < 2 with wδ̄ ⊕ c(α, i) ∈ ap�δ. Then (p�δ)�δ̄ = p�δ̄ is
a condition in Pδ̄ and ap�δ = ap�δ ⊆ ap. Since p is a condition in Pγ , this

(9) We will show later that this case never occurs (see Corollary 5.12).

(10) The idea behind this construction is that the set ap collects information about the
interpretations of names in ~Ap that is already decided by the condition p. This will allow
us to use the almost disjoint coding part of the forcing (see clause (iv)(b)) to add a subset
of κ that in the end codes

⋃
p∈G ap and thus also

⋃
p∈G

~Ap whenever G is Pλ-generic. In
clause (iii), we simultaneously work on making this subset of κ lightface definable.
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implies δ̄ < γp and

(p�δ)�δ̄ Pδ “ i = 1↔ α̌ ∈ Ȧp,δ̄ ”.

We can conclude that p�δ is a condition in Pδ.

The following statement is a direct consequence of the above definitions.

Proposition 5.4. If p is a condition in Pγ and ~A is a sequence of

length smaller than min{γ + 1, λ} such that ~Ap ⊆ ~A and ~A satisfies the

statements in Definition 5.1(v), then 〈sp, tp, ~dp,~cp, ~A〉 is a condition in Pγ
that is stronger than p.

Proposition 5.5. If γ̄ < min{γ + 1, λ}, then the set of all conditions p
in Pγ with γp ≥ γ̄ is dense in Pγ.

Proof. Fix a condition p in Pγ with γp < γ̄. Since γ̄ < λ = 2κ, we can

recursively construct a sequence ~A of length γ̄ that satisfies the statements
in Definition 5.1(v). By Proposition 5.4, the resulting tuple 〈sp, tp, ~dp,~cp, ~A〉
is a condition in Pγ that is stronger than p.

Lemma 5.6. If δ < γ, then Pδ is a complete subforcing of Pγ.

Proof. Every condition in Pδ is a condition in Pγ , ≤Pδ = ≤Pγ �(Pδ × Pδ),
and if q is a condition in Pδ and p is a condition in Pγ with p ≤Pγ q, then
Proposition 5.3 shows that p�δ is a condition in Pδ and it is easy to check
that p�δ ≤Pδ q. Hence it suffices to show that every maximal antichain in
Pδ is maximal in Pγ .

Fix a maximal antichain A of Pδ and a condition p0 in Pγ . By Proposition
5.5, there is a condition p with p ≤Pγ p0 and γp ≥ δ. Proposition 5.3 implies
that p�δ is a condition in Pδ. Hence we find a condition q in Pδ and r ∈ A
with q ≤Pδ p�δ, r. Then γq = δ. Define p∗ to be the tuple

〈sq, tq, ~dq, 〈cp,x | x ∈ ap \ aq〉 ∪ 〈cq,x | x ∈ aq〉, ~Ap〉.

Then p∗ is a Pγ-candidate with γp∗ = γp. Fix δ̄ < γ, α < κ and i < 2 such
that p∗�δ̄ is a condition in Pδ̄ and x = wδ̄ ⊕ c(α, i) ∈ ap ∪ aq. If x ∈ aq, then

δ̄ < δ ≤ γp∗ and ~Aq = ~Ap�δ implies that p∗�δ̄ ≤Pδ̄ q�δ̄. Hence

p∗�δ̄ Pδ̄ “ i = 1↔ α̌ ∈ Ȧp,δ̄ ”

in this case. Now assume that x ∈ ap \aq. Since q ≤Pδ p�δ, we have p∗�δ̄ ≤Pδ̄
p�δ̄ and this implies that the above forcing statement also holds in this
case. Therefore p∗ is a condition in Pγ and our construction ensures that
p∗ ≤Pγ p, q. Hence A is a maximal antichain in Pγ .

This completes the construction of the sequence ~P~w of partial orders.
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Proposition 5.7. Let γ ≤ λ, λ̄ < λ and 〈pα | α < λ̄〉 be a sequence of

conditions in Pγ such that ~Apα ⊆ ~Apβ for all α < β < λ̄. Then ~A =
⋃
{ ~Apα |

α < λ̄} satisfies the statements in Definition 5.1(v).

Proposition 5.8. If β̄ < κ and γ ≤ λ, then the set of all conditions q
in Pγ with βq ≥ β̄ is dense in Pγ. In particular, if γ ≤ λ and G is Pγ-generic
over V, then κ = sup{βp | p ∈ G}.

Proof. Fix a condition p in Pγ with βp < β̄ and define q to be the tuple〈
sp ∪ 〈(α, ∅) | βp ≤ α ≤ β̄〉, tp ∪ 〈(α, 1) | βp ≤ α ≤ β̄〉, 〈dq,α | α ≤ β̄〉,~cp, ~Ap

〉
with dq,α = dp,α for α ≤ βp and dq,α = ∅ for all βp < α ≤ β̄. Then it is easy
to see that q is a condition in Pγ with q ≤Pγ p and βq = β̄.

Lemma 5.9. If γ ≤ λ, then Pγ is strongly S∗-complete. Moreover, if p
is a condition in Pγ and ζ ≤ βp is such that dp,ζ is required to be the empty
set by one of the statements in Definition 5.1(iii), then the partial order of
conditions in Pγ below p is strongly S∗ζ -complete.

Proof. Define ~D = 〈Dα | α < κ〉 by setting Dα = {q ∈ Pγ | βq ≥ α} for
every α < κ. Each Dα is open dense in Pγ by Proposition 5.8. We show that
~D witnesses that Pγ is strongly S∗-complete.

Assume θ > κ is a regular cardinal with P(Pγ) ∈ H(θ), M is an elemen-
tary substructure of H(θ) of cardinality less than κ with β = sup(M∩κ) ∈ S∗
and ~D,Pγ ∈M , and ~p = 〈pξ | ξ < η〉 ⊆M is a descending sequence of con-
ditions in Pγ such that {α < β | ∃ξ < η pξ ∈ Dα} is unbounded in β. This
implies that β = supξ<η βpξ ∈ S∗. We define a tuple

p∗ =
〈
s, t, 〈dα | α ≤ β〉, 〈cx | x ∈ a〉, ~A

〉
by setting

s = {〈β, ∅〉} ∪
⋃
{spξ | ξ < η},

t = {〈β, 1〉} ∪
⋃
{tpξ | ξ < η},

d̄α =
⋃
{dpξ,α | ξ < η, α ≤ βpξ} for every α < β,

dα =

{
d̄α ∪ {β} if α < β and d̄α 6= ∅,
∅ if either α = β, or α < β and d̄α = ∅,

a =
⋃
{apξ | ξ < η},

cx = {β} ∪
⋃
{cpξ,x | ξ < η, x ∈ apξ} for each x ∈ a,

~A =
⋃
{ ~Apξ | ξ < η}.

By Proposition 5.7, ~A satisfies the statements in Definition 5.1(v). Since
β ∈ S∗ ⊆ S̃α for every α < β, we conclude that p∗ is a Pγ-candidate. Fix
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δ < γ, ν < κ and i < 2 with x = wδ ⊕ c(ν, i) ∈ a. Then there is ξ < η
with x ∈ apξ and hence δ < γpξ ≤ γp∗ . If p∗�δ is a condition in Pδ, then

p∗�δ ≤Pδ pξ�δ and hence this forces that α is an element of Ȧp∗,δ if and only
if i = 1. Therefore p∗ is a condition in Pγ and our construction ensures that
p∗ ≤Pγ pξ for every ξ < η.

The proof of the second statement is similar, noting that if p and ζ are
as in its hypothesis, then S∗ζ ⊆ S̃α for all ζ 6= α < κ and dq,ζ = ∅ for
every condition q in Pγ below p. Thus, if θ, M , β and ~p satisfy the above
statements with S∗ replaced by S∗ζ , then we can use the same construction
to obtain a condition p∗ witnessing strong S∗ζ -completeness.

If κ = η+ is a successor cardinal, then the assumption Sα ⊆ Sκη can be
used to show that Pγ is in fact <η-closed.

Lemma 5.10. If γ < λ and p ∈ Pγ is a condition with γp = γ, then the
forcing Pγ satisfies the κ+-cc below p.

Proof. This is a standard ∆-system argument, using the assumption that
κ = κ<κ and that whenever q ≤ p in Pγ , we have ~Aq = ~Ap.

Lemma 5.11. If q is a condition in Pλ and D is a collection of less than
λ-many open dense subsets of Pλ, then there is a condition p in Pλ such
that p ≤Pλ q and D ∩ Pγp is dense below p in Pγp for every D ∈ D.

Proof. We start by proving the following claim. Iterated application of
it will yield the statement of the lemma.

Claim. Let q0 be a condition in Pλ and D be an open dense subset of Pλ.
Then there is a condition q∗0 in Pλ such that q∗0 = 〈sq0 , tq0 , ~dq0 ,~cq0 , ~Aq∗0 〉 ≤Pλ
q0 and D ∩ Pγq∗0 is dense below q∗0 in Pγq∗0 .

Proof. We inductively construct a sequence 〈qα | 0 < α < θ〉 of incom-

patible conditions below q0 in Pλ with 0 < θ ≤ κ+ and ~Aqᾱ ⊆ ~Aqα for all
ᾱ < α < θ: Assume that 〈qᾱ | 0 < ᾱ < α〉 is already constructed. If there

is pα ∈ D such that pα ≤Pλ 〈sq0 , tq0 , ~dq0 ,~cq0 ,
⋃
ᾱ<α

~Apᾱ〉 and pα and qᾱ are
incompatible in Pλ for all 0 < ᾱ < α, then we set qα = pα and we continue
our construction. Otherwise, we stop and set θ = α.

Define ~A =
⋃
α<θ

~Aqα and q∗α = 〈sqα , tqα , ~dqα ,~cqα , ~A〉 for all α < θ. Given
α < θ, Proposition 5.7 shows that q∗α is a condition in Pγq∗0 below q∗0 and qα.

In particular, A = {q∗α | 0 < α < θ} is an antichain in Pγq∗0 below q∗0. By

Lemma 5.10, this means that the above construction has stopped at stage
θ < κ+, because no suitable condition pθ could be found. This implies that
A is a maximal antichain in Pγq∗0 below q∗0.
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Pick a condition p in Pγq∗0 below q∗0. Then there is 0 < α < θ and a

condition r in Pγq∗0 with r ≤Pγq∗0
p, q∗α. Since q∗α is an element of D, we get

r ∈ D. This shows that the condition q∗0 has the desired properties.

Let 〈Dα | α < λ̄〉 be an enumeration of D such that λ̄ < λ is a limit
ordinal. By the above claim and Proposition 5.7, we can construct a de-
creasing sequence 〈qα | α ≤ λ̄〉 of conditions in Pλ such that q = q0, qα =

〈sq, tq, ~dq,~cq, ~Aqα〉 for all α ≤ λ̄, and Dα ∩ Pγqα+1
is dense below qα+1 in

Pγqα+1
for all α < λ̄.

Pick a condition r in Pγqλ̄ below qλ̄ and α < λ̄. Then our construction en-

sures ~Ar = ~Aqλ̄ and r�γqα+1 ≤Pγqα+1
qλ̄�γqα+1 = qα+1. This allows us to find a

condition r̄α ∈ Dα with r̄α ≤Pγqα+1
r�γqα+1 . We define ~c = 〈cx | x ∈ ar ∪ ar̄α〉

by letting cx = cr̄α,x if x ∈ ar̄α , and letting cx = cr,x otherwise. Then

rα = 〈sr̄α , tr̄α , ~dr̄α ,~c, ~Ar〉 is a Pγqλ̄ -candidate with r̄α = rα�γqα+1 . Moreover,

if δ < γqλ̄ and rα�δ is a condition in Pδ, then this condition is stronger
than r�δ. We can conclude that rα is actually a condition in Pγqλ̄ that is

a common extension of r and r̄α, and an element of Dα. This shows that
p = qλ̄ has the desired properties.

Corollary 5.12. Forcing with Pλ preserves all cofinalities less than or
equal to λ.

Proof. By Lemmas 3.2 and 5.9, forcing with Pλ preserves cofinalities less
than or equal to κ. Let γ ≤ λ be a limit ordinal with cof(γ) > κ and let ν be
a regular cardinal with κ ≤ ν < cof(γ). Assume, towards a contradiction,
that there is q ∈ Pλ and a Pλ-name ċ with q Pλ “ ċ : ν̌ → γ̌ is cofinal”.
Given α < ν, define

Dα = {p ∈ Pλ | ∃β < γ p Pλ “ ċ(α̌) = β̌ ”}.

LetG be Pλ-generic over V. By Lemma 5.11, there is p ∈ G such that p ≤Pλ q
and Dα ∩ Pγp is dense below p in Pγp for every α < ν. By Lemma 5.10, Pγp
satisfies the κ+-cc below p. Therefore we can define c : ν → γ in V by setting

c(α) = sup{β + 1 | ∃r ∈ Pγp [r ≤Pγp p ∧ r Pλ “ ċ(α̌) = β̌ ”]}

for every α < ν. Pick α < ν. By Lemma 5.6, Ḡ = G ∩ Pγp is Pγp-generic
over V. Since p ∈ Ḡ, the above computations show that there is an r ∈
Dα∩Ḡ. If β < γ witnesses that r is an element of Dα, then ċG(α)=β<c(α).
This shows that the range of c is unbounded in γ, a contradiction.

Corollary 5.13. Let G be Pλ-generic over V and A be a subset of κ
in V[G]. Then there is a γ < λ such that A = ȦG∩Pγ for some Pγ-name Ȧ
for a subset of κ.
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Proof. Let Ȧ0 be a Pλ-name for a subset of κ with A = ȦG0 , and given
α < κ, let Dα be the open dense subset of Pλ consisting of all conditions in
Pλ that decide the statement “ α̌ ∈ Ȧ0 ”. By Lemma 5.11, there is a p ∈ G
such that Dα ∩ Pγp is dense below p for every α < κ. Define

Ȧ = {〈α̌, r〉 | α < κ, r ∈ Dα ∩ Pγp , r ≤Pλ p, r Pλ “ α̌ ∈ Ȧ0 ”}.

Then Ȧ is a Pγp-name for a subset of κ, and we can use Lemma 5.6 to

conclude that A = ȦG = ȦG∩Pγp .

6. The proof of Theorem 1.4. We are now ready to show how the
forcing constructed in the last section can be used to produce a locally
Σ1-definable well-order of H(κ+) using only the sequence ~S as a parameter.

Lemma 6.1. If G is Pλ-generic over V and y is an element of H(κ+)V[G],
then there is a unique ordinal δ < λ such that for some p ∈ G with δ < γp
the set ȦGp,δ codes y.

Proof. By Corollary 5.13, there is a γ < λ and a Pγ-name ẏ such that

y = ẏG∩Pγ . Fix a condition p in Pλ with γp ≥ γ. Let Ȧ be a Pγp-name
for a subset of κ such that the following statements hold whenever H is
Pγp-generic over V with p ∈ H and ẏH ∈ H(κ+)V[G]:

• If there is no δ < γp such that ȦHp,δ codes ẏH , then ȦH codes ẏH .

• Otherwise, ȦH codes an element of H(κ+)V that is not coded by some
ȦHp,δ with δ < γp (note that Corollary 5.12 implies that such an element
always exists).

Define ~A = ~Ap ∪ {〈γp, Ȧ〉}. Then ~A satisfies the statements in Defini-

tion 5.1(v) and 〈sp, tp, ~dp,~cp, ~A〉 is a condition in Pλ below p. This density
argument shows that there are q ∈ G and δ < γq such that γq > γ and

Ȧ
G∩Pγq
q,δ = ȦGq,δ codes ẏG∩Pγq = ẏG.

Now assume, towards a contradiction, that there are δ0 < δ1 < λ and
p0, p1 ∈ G such that both ȦGp0,δ0

and ȦGp1,δ1
code y. Pick p ∈ G with p ≤Pλ

p0, p1. Then Ḡ = G ∩ Pδ1 is Pδ1-generic over V, and Corollary 5.12 implies

|δ1|V[Ḡ] < |λ|V[Ḡ]. Thus ȦḠp,δ0 = ȦGp0,δ0
and ȦḠp,δ1 = ȦGp1,δ1

code the same

element of H(κ+)V[Ḡ], contradicting Definition 5.1(v) for the condition p.

Corollary 6.2. Forcing with Pλ preserves the value of 2κ.

If G is Pλ-generic over V, then we define

D(G) = {wδ ⊕ c(α, i) | i < 2, ∃p ∈ G [δ < γp ∧ (i = 1↔ α ∈ ȦGp,δ)]}.
Proposition 6.3. If G is Pλ-generic over V and x = wδ ⊕ c(α, i) ∈

D(G), then there is a condition p ∈ G with x ∈ ap. In particular, D(G) =⋃
p∈G ap.
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Proof. Assume x = wδ⊕c(α, i) ∈ D(G). Then there is a condition q ∈ G
such that δ < γq and q�δ Pδ “ i = 1↔ α̌ ∈ Ȧq,δ ”. We may assume that
x /∈ aq. Fix p0 ∈ Pλ with p0 ≤Pλ q and x /∈ ap0 . If we define

p = 〈sp0 , tp0 ,
~dp0 , {〈x, ∅〉} ∪ 〈cp0,y | y ∈ ap0〉, ~Ap0〉,

then the above assumptions imply that p is a condition in Pλ that is stronger
than p0. Hence the set of all conditions p in Pλ with x ∈ ap is dense below
q ∈ G.

The second statement is immediate from the first and the definition
of Pλ.

Proposition 6.4. If G is Pλ-generic over V and x ∈ D(G), then

κ = sup{sup(cp,x) | p ∈ G, x ∈ ap}

and for every α < κ, either κ = sup{sup(dp,α) | p ∈ G} or dp,α = ∅ for every
p ∈ G with α ≤ βp. Moreover, the latter case occurs if and only if there is
a condition p ∈ G such that α ≤ βp and dp,α is required to be the empty set
by one of the statements in Definition 5.1(iii).

Proof. Fix a condition q in Pλ with x ∈ aq, and β ∈ S with βq < β < κ.
Moreover, if there is an α ≤ βq such that dq,α is not required to be the
empty set by one of the statements in Definition 5.1(iii), then we also fix
such an α. We define p to be the tuple〈

s, t, 〈dζ | ζ ≤ β〉, 〈cx | x ∈ aq〉, ~Aq
〉

with

s = sq ∪ 〈〈ξ, ∅〉 | βq < ξ ≤ β〉,
t = tq ∪ 〈〈ξ, 1〉 | βq < ξ ≤ β〉,
cx = cq,x ∪ (βq, β] for all x ∈ aq,

dζ =


dq,ζ if ζ ≤ βq with α 6= ζ,

dq,α ∪ {β} if α = ζ,

∅ if βq < ζ ≤ β.

Then p is a condition in Pλ with p ≤Pλ q, βp = β, sup(cp,x) = β and
sup(dp,α) = β. Together with Proposition 6.3, this implies all but the back-
wards direction of the last statement of the assertion. To see that this direc-
tion holds as well, note that if p ∈ G and dp,α is required to be the empty
set by one of the statements in Definition 5.1(iii) and q is a condition in Pλ
below p, then dq,α is required to be empty by that same statement, and
hence dq,α = ∅ for every q ∈ G with α ≤ βq.

We fix Pλ-names ṡ and ṫ in V such that ṡH =
⋃
{sp | p ∈ H} : κ → <κ2

and ṫH =
⋃
{tp | p ∈ H} : κ→ 2 hold whenever H is Pλ-generic over V.
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Lemma 6.5. If G is Pλ-generic over V, then D(G) is definable over the
structure 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters ṡG and ṫG.

Proof. Let G be Pλ-generic over V. The statement of the lemma will
be a consequence of the following two claims. The first claim is a direct
consequence of the definition of Pλ and Proposition 6.4.

Claim 1. If x ∈ D(G), then CxG =
⋃
{cp,x | p ∈ G, x ∈ ap} is a club

subset of κ such that the implication

(‡) ṡG(α) ⊆ x→ ṫG(α) = 1

holds for all α ∈ CxG.

Claim 2. Assume that x ∈ (κ2)V[G] is such that (‡) holds for every
element α of some club subset C of κ. Then x is an element of D(G).

Proof. Note that the following proof will be similar to that of Lemma 4.1.
Let ȧ be the canonical Pλ-name such that ȧH =

⋃
{ap | p ∈ H} whenever

H is Pλ-generic over V. Assume, towards a contradiction, that x is not an
element of ȧG = D(G). Then we can find q ∈ G and Pλ-names Ċ and ẋ such
that x = ẋG and

q Pλ “ ẋ ∈ κ̌2 \ ȧ ∧ Ċ ⊆ κ̌ club ∧ ∀α ∈ Ċ [ṡ(α) ⊆ ẋ→ ṫ(α) = 1]”.

Fix a condition p0 in Pλ below q. Let M be a countable elementary
substructure of 〈H(θ),∈〉 for some large, regular θ with the property that
β = sup(M ∩ κ) ∈ S∗ and Pλ, p0, q, ȧ, Ċ, ẋ ∈M . Pick a decreasing sequence
of conditions 〈pn | n < ω〉 ⊆M so that pn ∈ D for some n whenever D ∈M
is a dense subset of Pλ. By the genericity of the pn and the fact that forcing
with Pλ preserves the regularity of κ, we have β = supn<ω βpn and (using
Lemmas 3.2 and 5.9) there is u : β → 2 such that for every n < ω there is
an m ≥ n with pm Pλ “ ẋ�β̌pn = ǔ�β̌pn ” and y�βpn 6= u�βpn for all y ∈ apn .
Define

p =
〈
s, t, 〈dα | α ≤ β〉, 〈cy | y ∈ a〉, ~A

〉
by setting

s = {〈β, u〉} ∪
⋃
n<ω

spn ,

t = {〈β, 0〉} ∪
⋃
n<ω

tpn ,

d̄α =
⋃
{dpn,α | n < ω, α ≤ βpn} for every α < β,

dα =

{
d̄α ∪ {β} if α < β and d̄α 6= ∅,
∅ if either α = β, or α < β and d̄α = ∅,
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a =
⋃
n<ω

apn ,

cy = {β} ∪
⋃
{cpα,y | α < η, y ∈ apα} for every y ∈ a,

~A =
⋃
n<ω

~Apn .

Since β ∈ S∗ and u * y for every y ∈ a, we can deduce that p is a condition
in Pλ that is stronger than p0. This construction ensures

p Pλ “ β̌ ∈ Ċ ∧ ṡ(β̌) = š(β̌) ⊆ ẋ ∧ ṫ(β̌) = 0”,

a contradiction. Hence we conclude that x ∈ ȧG.

By Claims 1–2 we can see that

D(G) = {x ∈ (κ2)V[G] | ∃C ⊆ κ club ∀α ∈ C [ṡG(α) ⊆ x→ ṫG(α) = 1]}.
This yields a Σ1-definition of D(G) over 〈H(κ+)V[G],∈〉 using the parameters
ṡG and ṫG.

Lemma 6.6. Let α < κ and G be Pλ-generic over V. Then Sα is a
stationary subset of κ in V[G] if and only if there is a p ∈ G such that dp,α
is required to be the empty set by one of the statements in Definition 5.1(iii).

Proof. By Lemma 5.9, the partial order of conditions in Pλ below p is
strongly S∗α-complete whenever dp,α is required to be the empty set by one of
the statements in Definition 5.1(iii). Thus, if there is such a condition p in G,
then Corollary 3.6 shows that forcing with Pλ preserves the fat stationarity
of S∗α. In the other case, forcing with Pλ destroys the stationarity of Sα,
because Proposition 6.4 shows that

⋃
{dp,α | p ∈ G, α ≤ βp} is a closed

unbounded subset of S̃α in V[G].

Lemma 6.7. Let G be Pλ-generic over V. Then the sets ṡG, ṫG and ~T
are ∆1-definable in 〈H(κ+)V[G],∈〉 using the sequence ~S as a parameter.

Proof. From Definition 5.1(iii) and Lemma 6.6, it follows that the fol-
lowing equivalences hold for all β, γ, δ < κ with β = ≺γ, δ�:

ṡG(γ)(δ) = 0 ⇔ Sβ·7 is stationary

⇔ Sβ·7+1 is not stationary ∧ Sβ·7+2 is not stationary,

ṡG(γ)(δ) = 1 ⇔ Sβ·7+1 is stationary

⇔ Sβ·7 is not stationary ∧ Sβ·7+2 is not stationary,

ṫG(β) = 0 ⇔ Sβ·7+3 is stationary ⇔ Sβ·7+4 is not stationary,

ṫG(β) = 1 ⇔ Sβ·7+4 is stationary ⇔ Sβ·7+3 is not stationary,

ṡG(γ) /∈ Tδ ⇔ Sβ·7+5 is stationary ⇔ Sβ·7+6 is not stationary,

ṡG(γ) ∈ Tδ ⇔ Sβ·7+6 is stationary ⇔ Sβ·7+5 is not stationary.
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These equivalences yield ∆1-definitions of ṡG, ṫG and ~T in H(κ+)V[G] that

only use the sequence ~S as a parameter.

Lemma 6.8. Let G be Pλ-generic over V. Then there is a well-order
of H(κ+)V[G] that is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with

parameter ~S.

Proof. Define W = {wδ | δ < λ}. Then our assumptions (made at
the beginning of Section 5) imply that W and ~w are both definable over

〈H(κ+)V[G],∈〉 by Σ1-formulas that use the sequence ~T of subtrees of <κκ
as a parameter.

Claim 1. If p ∈ G and δ < γp, then

ȦGp,δ = {α < κ | wδ ⊕ c(α, 1) ∈ D(G)} = {α < κ | wδ ⊕ c(α, 0) /∈ D(G)}.

Proof. By the definition of D(G), we have

α ∈ ȦGp,δ ⇔ ∃q ∈ G [δ < γq ∧ α ∈ ȦGq,δ] ⇔ wδ ⊕ c(α, 1) ∈ D(G)

and

α /∈ ȦGp,δ ⇔ ∃q ∈ G [δ < γq ∧ α /∈ ȦGq,δ] ⇔ wδ ⊕ c(α, 0) ∈ D(G).

Working in V[G], we define P to be the set of all pairs 〈z, v〉 such that
z ∈ H(κ+)V[G], v ∈W and there is a subset A of κ coding z that satisfies

[α ∈ A→ v ⊕ c(α, 1) ∈ D(G)] ∧ [α /∈ A→ v ⊕ c(α, 0) ∈ D(G)].

Claim 2. Let z ∈ H(κ+)V[G] and let δz be the unique ordinal (given by
Lemma 6.1) such that δz < γp and ȦGp,δz codes z for some p ∈ G. Then wδz
is the unique element of W with 〈z, wδz〉 ∈ P .

Proof. By Claim 1, the subset ȦGp,δz of κ witnesses that 〈z, wδz〉 is an
element of P . Now assume, towards a contradiction, that there is δ < λ
with δ 6= δz and 〈z, wδ〉 ∈ P . Let A ⊆ κ witness that 〈z, wδ〉 ∈ P . By
Claim 1, A = ȦGq,δ for some q ∈ G with γ̄ = max{δ, δz} < γq. If we set

Ḡ = G ∩ Pγ̄ , then Corollary 5.12 implies |γ̄|V[Ḡ] < |λ|V[Ḡ], and the subsets

ȦḠq,δ = ȦGq,δ and ȦḠq,δz = ȦGq,δz code the same element of H(κ+)V[Ḡ]. This
contradicts Definition 5.1(v).

Let ≺~w denote the well-order on W induced by its enumeration ~w. Define
≺∗ to be the set of all pairs 〈z, z̄〉 in H(κ+) such that

∃v, v̄ ∈W [〈z, v〉 ∈ P ∧ 〈z̄, v̄〉 ∈ P ∧ v ≺~w v̄].

Lemma 6.5 implies that P is Σ1-definable over H(κ+)V[G] with param-

eters ~T , ṡG and ṫG. Thus the assumptions made at the beginning of Sec-
tion 5 imply that ≺∗ is Σ1-definable over H(κ+)V[G] with parameters ~T , ṡG

and ṫG. Lemma 6.7 shows that each of these parameters is itself definable
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in H(κ+)V[G] by a Σ1-formula with parameter ~S. In particular, the relation

≺∗ is definable over H(κ+)V[G] by a Σ1-formula with parameter ~S.

Given z0, z1 ∈ H(κ+)V[G] and δ0, δ1 < λ such that δi is the unique ordinal
with the property that δi < γp and ȦGp,δi codes zi for some p ∈ G, we have

z0 ≺∗ z1 if and only if δ0 < δ1. This shows that ≺∗ is a well-order of H(κ+).

Proof of Theorem 1.4. Let κ and 〈Sα | α ≤ κ〉 be as in the statement
of the theorem and λ = 2κ. Fix an injective sequence ~w = 〈wγ | γ < λ〉 of
elements of κ2 and define A = {wδ ⊕ wγ | δ < γ < λ}. Fix an enumeration ~s
of <κκ as in Definition 2.1. Let C~s(A) be the notion of forcing correspond-
ing to A given by Definition 2.1. Since forcing with C~s(A) preserves our
assumptions on κ and Corollary 4.2 shows that all assumptions listed at
the beginning of Section 5 hold in C~s(A)-generic extensions of the ground
model V, there is a canonical C~s(A)-name Q̇ with the property that Q̇G = Pλ
whenever G is C~s(A)-generic over V and PV[G]

~w = 〈Pγ | γ ≤ λ〉 is the corre-
sponding sequence of partial orders constructed in V[G] with respect to ~w.

Then the combination of Proposition 2.2, Lemma 5.9 and Corollaries 5.12
and 6.2 implies that P = C~s(A)∗ Q̇ is <κ-distributive, and that forcing with
P preserves all cofinalities less than or equal to λ and the value of 2κ. If
G ∗ H is (C~s(A) ∗ Q̇)-generic over V, then Lemma 6.8 implies that there
is a well-order of H(κ+)V[G∗H] that is definable over 〈H(κ+)V[G∗H],∈〉 by a

Σ1-formula with parameter ~S.

7. Sigma-1-definable sequences of disjoint fat stationary sets.
This section contains the proofs of Theorems 1.5 and 1.7. We start with a
definition that will allow us to prove both theorems using the same tech-
niques.

Definition 7.1. Let κ be an uncountable regular cardinal. We say that
a tuple 〈δ, θ, ν,C〉 is suitable for κ if θ > κ is a regular cardinal, δ ≥ θ is
a strong limit cardinal, ν ≤ κ is an ordinal, C is a well-ordering of H(θ) of
order-type θ, and the following statements hold:

(i) The set I(C) = {{x | xC y} | y ∈ H(θ)} of all proper initial seg-
ments of C is definable over 〈H(θ),∈〉 by a Σ1-formula with param-
eter ν.

(ii) If P is a partial order of cardinality less than δ with the prop-
erty that forcing with P preserves cofinalities less than or equal
to κ+ and G is P-generic over V, then H(κ+)V is definable over
〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν.

(iii) There is a closed unbounded subset of [H(θ)]<κ consisting of ele-
mentary submodels M of H(θ) with π[I(C) ∩M ] ⊆ I(C), where
π : M → N denotes the corresponding transitive collapse.
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The following proposition shows that the last statement listed in the
above definition follows from the first statement in the case where ν < κ.

Proposition 7.2. Let κ < θ be uncountable regular cardinals and let
C be a well-ordering of H(θ). Assume that there is ν < κ such that the
set I(C) of all proper initial segments of C is definable over 〈H(θ),∈〉 by a
Σ1-formula with parameter ν. If M is an elementary substructure of H(θ)
of cardinality less than κ with κ, ν ∈ M and M ∩ κ ∈ κ and π : M → N
denotes the corresponding transitive collapse, then π[I(C) ∩M ] ⊆ I(C).

Proof. Fix a Σ0-formula ϕ(v0, v1, v2) such that

I(C) = {A ∈ H(θ) | ∃x ∈ H(θ) ϕ(A, x, ν)},
and pick A ∈ I(C) ∩ M . By elementarity, there is X ∈ M such that
ϕ(A,X, ν) holds. Since π(ν) = ν and N ⊆ H(θ), we can apply Σ0-abso-
luteness to conclude that ϕ(π(A), π(X), ν) holds and π(A) is an element
of I(C).

In the following, we present two settings in which the above requirements
are satisfied. We start by showing that in L there is a suitable tuple for every
uncountable regular cardinal.

Lemma 7.3. Assume that V = L. If θ > κ is a regular cardinal, δ ≥ θ
is a strong limit cardinal and C denotes the restriction of the canonical
well-ordering of L to H(θ), then the tuple 〈δ, θ, 0,C〉 is suitable for κ.

Proof. The set I(C) consists of all A ∈ H(θ) with the property that there
is an α < θ with A ∈ Lα and 〈Lα,∈〉 |= “A is an initial segment of <L ”.
This shows that I(C) is definable over 〈H(θ),∈〉 by a Σ1-formula without
parameters.

Let P be a partial order with the property that forcing with P preserves
cofinalities less than or equal to κ+, and let G be P-generic over V. Then
H(κ+)V is equal to L(κ+)V[G] . This shows that the set H(κ+)V is definable

over 〈H(κ+)V[G],∈〉 by a Σ1-formula without parameters.

Next, we present a setting in which suitable tuples exist for all uncount-
able regular cardinals below a measurable cardinal. The reasonings make
use of some basic properties of the Dodd–Jensen core model KDJ (see [4]).
The following observation will allow us to show that the third clause of
Definition 7.1 is satisfied in this setting.

Proposition 7.4. Assume that V = L[E] is an extender model in the
sense of [21]. If κ is an uncountable regular cardinal, C is the restriction of
the canonical well-ordering of L[E] to H(κ+) and I(C) is the set of all proper
initial segments of C, then there is a closed unbounded subset of [H(κ+)]<κ

consisting of elementary submodels M of H(κ+) with π[I(C) ∩M ] ⊆ I(C),
where π : M → N denotes the corresponding transitive collapse.
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Proof. By [6, Theorem 8], we know that Local Club Condensation holds
and we can use [7, Theorem 88] to find a closed unbounded subset of
[H(κ+)]<κ consisting of elementary submodels of H(κ+) with the desired
properties.

In the proof of the following lemma, we use the presentation of the core
model given in [13]. We only consider premice over the empty set. Therefore
we omit the index D (as used in [13]) in these arguments.

Lemma 7.5. Assume that U is a normal measure on a cardinal δ and
that V = L[U ]. If κ < δ is an uncountable regular cardinal and C denotes
the restriction of the canonical well-ordering of the Dodd–Jensen core model

KDJ to H(κ+)KDJ
, then the tuple 〈δ, κ+, κ,C〉 is suitable for κ.

Proof. Let K abbreviate KDJ. Then the results of [4] show that H(δ) ⊆ K
and C is a well-ordering of H(κ+) of order-type κ+. Let P ∈ H(δ) be a (pos-
sibly trivial) partial order with the property that forcing with P preserves
cofinalities less than or equal to κ+, and let G be P-generic over V. Then
H(κ+)V[G] = H(κ+)K[G] and the results of [13] show that K = (KDJ)K[G].
By [13, Theorem 2.7], the set of all mice in H(κ+)V[G] is definable over the
structure 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameter κ. Since V = L[U ]
and H(δ)V ⊆ K, a standard argument using elementary substructures of
H(δ+)V of cardinality κ shows that H(κ+)V is equal to the union of all
low parts lp(M) of mice M (see [13, Section 1]) in H(κ+)V[G], and we
can conclude that H(κ+)V is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula
with parameter κ. Moreover, given A ∈ H(κ+)V[G], we can use [13, The-
orems 2.10 and 3.4] to see that A is an element of I(C) if and only if
there is a mouse M = Jα[F ] ∈ H(κ+)V[G] such that A ∈ lp(M) and
〈M,∈〉 |= “A is a proper initial segment of <J[F ] ”. This shows that I(C)

is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameter κ. Finally,
K is an extender model and therefore Proposition 7.4 implies that the third
clause of Definition 7.1 is satisfied in this setting.

In the subsequent paper mentioned after Question 1.9, we will show that
if M1 exists, δ is the unique Woodin cardinal in M1 and C is the canonical
well-ordering of H(ω2) in M1, then the tuple 〈δ, ω2, ω1,C〉 is suitable for ω1

in M1. With the help of the techniques developed in this section, we will
use this result in that paper to show that the existence of a well-ordering of
H(ω2) that is locally definable by a Σ1-formula with parameter ω1 is consis-
tent with the existence of a Woodin cardinal and a failure of the GCH at ω1.

Next, we show how the concept of κ-suitable tuples can be combined
with our previous forcing constructions to obtain well-orders of H(κ+) whose
Σ1-definition only uses the cardinal κ as a parameter. We start by proving
some direct consequences of suitability.
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Lemma 7.6. Let κ be an uncountable regular cardinal and let 〈δ, θ, ν,C〉
be suitable for κ. Define Cκ = C�(H(κ)×H(κ)).

(i) The order C is definable over 〈H(θ),∈〉 by a Σ1-formula with pa-
rameter ν.

(ii) The set H(κ) is an element of I(C) and κ is Cκ-cofinal in H(κ).
(iii) The well-order 〈H(κ),Cκ〉 has order-type κ and κ = κ<κ holds.
(iv) The set {H(κ)} is definable over 〈H(θ),∈〉 by a Σ1-formula with

parameters κ and ν.
(v) The set {Cκ} is definable over 〈H(θ),∈〉 by a Σ1-formula with pa-

rameters κ and ν.
(vi) If κ is the successor of a regular cardinal η, then the set {Sκη } is

definable over 〈H(θ),∈〉 by a Σ1-formula with parameters κ and ν.

Proof. (i) Given x, y ∈ H(θ), we have x C y if and only if there are
A,B ∈ I(C) with x ∈ A and y ∈ B \ A. By our assumptions on I(C), this
yields the first statement of the lemma.

(ii) Fix x, y ∈ H(θ) with xC y and y ∈ H(κ). Since C has order-type θ,
there is λ < θ with yC λ. Pick A,B ∈ I(C) with y ∈ A and λ ∈ B\A. Choose
an elementary submodel M of H(θ) contained in the closed unbounded set
described in Definition 7.1(iii) with tc({y}) ∪ {A,B, λ, κ, ν} ⊆ M , and let
π : M → N denote the corresponding transitive collapse. Then π(A), π(B) ∈
I(C), y = π(y) ∈ π(A) ∈ I(C) and hence x ∈ π(A) ⊆ N ⊆ H(κ). Moreover,
y = π(y) ∈ π(B) \ π(A), π(λ) ∈ π(B) and hence y C π(λ) < κ.

(iii) The second statement of the lemma implies that the well-order
〈H(κ),Cκ〉 has order-type at least κ. Assume toward a contradiction that
there is A ∈ I(C), a bijection b : κ→ A and y ∈ H(κ) with A = {x ∈ H(κ) |
xC y}. Choose an elementary submodel M of H(θ) contained in the closed
unbounded set described in Definition 7.1(iii) with tc({y})∪{A, b, κ, ν}⊆M ,
and let π : M → N denote the corresponding transitive collapse. Then we
have π(A), π(A ∪ {y}) ∈ I(C), π(A) ∪ {y} = π(A ∪ {y}), which shows that
A = π(A). But elementarity implies that there is a bijection between π(A)
and π(κ) < κ, a contradiction. In particular, this shows that H(κ) has car-
dinality κ and hence we also get κ = κ<κ.

(iv) By the second part of the lemma, H(κ) is the unique element M
of H(θ) such that M ∈ I(C), M ∩ κ = κ and κ is C-cofinal in M . By
Definition 7.1(i) and the first part of the lemma, this yields the assertion.

(v) This follows from our assumptions and the above statements.
(vi) Since the sets Sκη and {η} are definable over 〈H(κ),∈〉, this follows

directly from (iv).

The next result shows how we can use suitable tuples to replace sequences
of fat stationary subsets of κ by the cardinal κ as the parameter in a Σ1-
definition of a well-ordering of H(κ+).
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Theorem 7.7. Let κ be an uncountable regular cardinal and let
〈δ, θ, ν,C〉 be suitable for κ. Then there is a sequence 〈Sα | α ≤ κ〉 of dis-
joint fat stationary subsets of κ with the property that the set {〈Sα | α < κ〉}
is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν
whenever P is a partial order of cardinality less than δ such that forcing with
P preserves cofinalities less than or equal to κ+ and G is P-generic over V.

Proof. Define F : κ ∩ Lim → κ to be the unique function such that the
following statements hold for all α ∈ κ ∩ Lim:

(i) Assume that there is a triple 〈γ, λ, C〉 such that γ, λ < α and C ⊆
α ∩ Lim is a club in α with the property that, for every closed
bounded subset c of C of order-type λ, there is ᾱ ∈ c with F (ᾱ) 6= γ.
Then F (α) = γ0, where 〈γ0, λ0, C0〉 denotes the C-minimal triple
with this property.

(ii) If there is no such triple, then F (α) = α.

By the Recursion Theorem, F is definable over 〈H(θ),∈〉 by a formula
with parameters κ and ν.

Claim 1. Given β < κ, the set F−1{β} is a fat stationary subset of κ.

Proof. Assume, towards a contradiction, that the statement of the claim
fails. Then there is a triple 〈β, λ, C〉 such that β, λ < κ and C ⊆ κ ∩ Lim is
a club subset of κ with the property that, for every closed bounded subset
c of C of order-type λ, there is an α ∈ c with F (α) 6= β. Let 〈β0, λ0, C0〉
denote the C-minimal triple with these properties, and set

A = {x | xC 〈β0, λ0, C0〉} ∪ {〈β0, λ0, C0〉} ∈ I(C).

Since 〈δ, θ, ν,C〉 is suitable for κ, we can find a monotone enumeration
〈αξ | ξ < κ〉 of a club subset of κ and a continuous ascending sequence
〈Mξ | ξ < κ〉 of elementary submodels of H(θ) of size less than κ such that,
for all ξ < κ:

(1) αξ = κ ∩Mξ and β0, λ0, κ, ν, A,C0 ∈Mξ.
(2) Mξ is contained in the club described in Definition 7.1(iii), thus if

πξ : Mξ → Nξ denotes the transitive collapse of Mξ, then we have
π[I(C) ∩M ] ⊆ I(C).

Fix ξ < κ. Then β0, λ0 < αξ = πξ(κ) ∈ Lim, C0∩αξ = πξ(C0) ⊆ αξ∩Lim
is a club in αξ and αξ ∈ C0. Pick a closed bounded subset c of C0 ∩ αξ of
order-type λ. Then c is a closed bounded subset of C0, and there is ᾱ ∈ c
with F (ᾱ) 6= β0. This shows that the triple 〈β0, λ0, C0 ∩ κα〉 satisfies the
assumption in (i) with respect to αξ, and hence F (αξ) < αξ by elementarity
of Mξ. Next, pick 〈γ, ρ,D〉C 〈β0, λ0, C0∩κα〉, if it exists, such that γ, ρ < αξ
and D ⊆ αξ ∩ Lim is a club in αξ. Since (2) implies that πξ(A) ∈ I(C) and
〈γ, ρ,D〉 ∈ πξ(A) ⊆ Nξ, there is D̄ ⊆ κ ∩ Lim club in κ such that D̄ ∈ Mξ,
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D = πξ(D̄) = D̄ ∩ αξ and 〈γ, ρ,D〉 C 〈β0, λ0, C0〉. In this situation, the
C-minimality of 〈β0, γ0, C0〉 and elementarity imply that there is a closed
bounded subset d of D̄ of order-type ρ such that d ∈ Mξ and F (α) = γ
for all α ∈ d. Then sup(d) < αξ and d is a closed bounded subset of D
of order-type ρ. These computations show that 〈β0, λ0, C0 ∩ κα〉 is the C-
minimal triple that satisfies the assumption in (i) with respect to αξ, and
we conclude that F (αξ) = β0.

Set c = {αξ | ξ < λ0}. We have just shown that c is a closed bounded
subset of C0 with F (α) = β0 for all α ∈ c. This contradicts the choice of
〈β0, λ0, C0〉.

Set Sκ = F−1{0} and Sβ = F−1{1 + β} for all β < κ. By Claim 1,
〈Sβ | β ≤ κ〉 consists of pairwise disjoint fat stationary subsets of κ.

Claim 2. The set {〈Sβ | β < κ〉} is definable over 〈H(θ),∈〉 by a Σ1-
formula with parameters κ and ν.

Proof. By Lemma 7.6, the set {〈H(κ),∈,Cκ〉} is definable over the struc-
ture 〈H(θ),∈〉 by a Σ1-formula with parameters κ and ν. Since 〈H(κ),∈,Cκ〉
is a model of ZFC−

Ȧ
(the canonical extension of the axioms of ZFC− to the

language of set theory extended by a new predicate symbol Ȧ, that includes
all instances of Replacement and Separation for formulas in the extended
language), we can use the Recursion Theorem within this structure in or-
der to show that F is definable over {〈H(κ),∈,Cκ〉} by a formula without
parameters. In combination, these observations yield the conclusion.

Now, let P be a partial order of cardinality less than δ such that forcing
with P preserves cofinalities less than or equal to κ+, and let G be P-generic
over V. By Definition 7.1(ii), H(κ+)V is definable over 〈H(κ+)V[G],∈〉 by
a Σ1-formula with parameters κ and ν. By Claim 2 and Σ1-absoluteness,
{〈Sβ | β < κ〉} is definable over 〈H(κ+)V,∈〉 by a Σ1-formula with param-
eters κ and ν. Together, these statements imply that {〈Sβ | β < κ〉} is

definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν.
This completes the proof Theorem 7.7.

Corollary 7.8. Let η be an infinite regular cardinal and let 〈δ, θ, ν,C〉
be suitable for κ = η+. Then there is a sequence 〈Sα | α ≤ κ〉 of pair-
wise disjoint stationary subsets of Sκη with the property that {〈Sα | α < κ〉}
is definable over 〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν
whenever P is a partial order of cardinality less than δ such that forcing with
P preserves cofinalities less than or equal to κ+ and G is P-generic over V.

Proof. Let 〈S̄α | α ≤ κ〉 be the sequence of pairwise disjoint fat station-
ary subsets of κ produced by Theorem 7.7. Given α ≤ κ, set Sα = S̄α ∩ Sκη .
Then Sα is a stationary subset of κ for each α ≤ κ.
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Let P be a partial order of cardinality less than δ such that forcing with
P preserves cofinalities less than or equal to κ+, and let G be P-generic
over V. By Lemma 7.6(vi) and Σ1-reflection, the set {Sκη } is definable over

〈H(κ+)V[G],∈〉 by a Σ1-formula with parameters κ and ν. Since Theorem 7.7
shows that the set {〈S̄α | α < κ〉} is definable in the same way, this yields
the statement of the corollary.

Corollary 7.9. Assume that κ is either the successor of a regular car-
dinal or an inaccessible cardinal. Let 〈δ, θ, ν,C〉 be suitable for κ and let P
be a partial order of cardinality less than δ with the following properties:

(a) Forcing with P preserves cofinalities less than or equal to κ+ and fat
stationary subsets of κ.

(b) If G is P-generic over V, then 2κ is regular, κ = κ<κ and η<η < κ
for all η < κ in V[G].

Then there is a P-name Q̇ for a partial order such that the following state-
ments hold whenever G ∗H is (P ∗ Q̇)-generic over V:

(i) The partial order Q̇G is <κ-distributive in V[G].
(ii) Forcing with Q̇G over V[G] preserves all cofinalities less than or

equal to (2κ)V[G] and the value of 2κ.
(iii) There is a well-ordering of H(κ+)V[G,H] that is definable over the

structure 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with parameters κ
and ν.

Proof. If κ is the successor of a regular cardinal η, let ~S = 〈Sα | α ≤ κ〉
denote the sequence of pairwise disjoint stationary subsets of Sκη produced

by Corollary 7.8. If κ is an inaccessible cardinal, then we let ~S denote the
sequence of fat stationary subsets of κ provided by Theorem 7.7. In either
case, by (a), ~S is a sequence of either fat stationary subsets of κ or stationary
subsets of Sκη respectively in every P-generic extension of the ground model.

Together with (b), this shows that κ and ~S satisfy the requirements of
Theorem 1.4 in every P-generic extension of the ground model. Let Q̇ be a
P-name for the partial order given by Theorem 1.4. Since P has cardinality
less than δ, and δ is a strong limit cardinal, the construction of the forcing
in the proof of Theorem 1.4 shows that we can find such a name with P ∗ Q̇
also having cardinality less than δ.

Let G ∗ H be (P ∗ Q̇)-generic over V. By Theorem 1.4, Q̇G is <κ-
distributive in V[G], forcing with Q̇G over V[G] preserves all cofinalities less
than or equal to (2κ)V[G] and the value of 2κ, and there is a well-ordering J
of H(κ+)V[G,H] that is definable over 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with
parameter 〈Sα | α < κ〉. Since Theorem 7.7 shows that {〈Sα | α < κ〉} is
definable over 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with parameters κ and ν,
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we conclude that the well-order J is also definable over 〈H(κ+)V[G,H],∈〉 by
a Σ1-formula with parameters κ and ν.

Proof of Theorem 1.5. Let P be a partial order with properties (a)
and (b) of Corollary 7.9. Pick a strong limit cardinal δ with |P| < δ. By
Lemma 7.3, there is a well-order C of H(κ+) such that the tuple 〈δ, κ+, 0,C〉
is suitable for κ. Let Q̇ be the P-name for a partial order given by Corol-
lary 7.9. Then the corollary implies that statements (i)–(iii) of the theorem
hold.

Proof of Theorem 1.7. Let P ∈ Vδ be a partial order with properties (a)
and (b) of Corollary 7.9. By Lemma 7.5, there is a well-orderC of H(κ+) such
that the tuple 〈δ, κ+, κ,C〉 is suitable for κ. Let Q̇ be the P-name for a partial
order given by Corollary 7.9 and let G ∗H be (P ∗ Q̇)-generic over V. Then
the corollary implies that the partial order Q̇G is <κ-distributive in V[G],
forcing with Q̇G over V[G] preserves all cofinalities less than or equal to
(2κ)V[G] and the value of 2κ, and there is a well-ordering of H(κ+)V[G,H]

that is definable over 〈H(κ+)V[G,H],∈〉 by a Σ1-formula with parameter κ.
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Mathematisches Institut
Rheinische Friedrich-Wilhelms-Universität Bonn
Endenicher Allee 60
53115 Bonn, Germany
E-mail: pholy@math.uni-bonn.de

pluecke@uni-bonn.de


	1 Introduction
	2 Almost disjoint coding at uncountable cardinals
	3 Strongly S-complete forcings
	4 Almost disjoint coding and strongly S-complete forcings
	5 The main forcing construction
	6 The proof of Theorem 1.4
	7 Sigma-1-definable sequences of disjoint fat stationary sets
	References

