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Ascending paths and forcings that specialize
higher Aronszajn trees

by

Philipp Lücke (Bonn)

Abstract. We study trees of uncountable regular heights containing ascending paths
of small width. This combinatorial property of trees generalizes the concept of a cofinal
branch, and it causes trees to be non-special not only in V, but also in every cofinality-
preserving outer model of V. Moreover, under certain cardinal-arithmetic assumptions,
the non-existence of such paths through a tree turns out to be equivalent to the statement
that the given tree is special in a cofinality preserving forcing extension of the ground
model. We will use certain combinatorial principles to construct trees without cofinal
branches containing ascending paths of small width. In contrast, we will also present a
number of consistency results on the non-existence of such trees.

As an application of our results, we show that the consistency strength of a potential
forcing axiom for σ-closed, well-met partial orders satisfying the ℵ2-chain condition and
collections of ℵ2-many dense subsets is at least a weakly compact cardinal. In addition,
we will use our results to show that the infinite productivity of the Knaster property
characterizes weak compactness in canonical inner models. Finally, we study the influence
of the Proper Forcing Axiom on trees containing ascending paths.

1. Introduction. The purpose of this paper is to study combinato-
rial properties of trees of uncountable regular heights that cause these trees
to be non-special in a very absolute way. Recall that a partial order T is
a tree if it has a unique minimal element root(T) and it sets of the form
predT(t) = {s ∈ T | s <T t} are well-ordered by <T for every t ∈ T. Given
a tree T and t ∈ T, we define lhT(t) to be the order-type of 〈predT(t), <T〉
and we define ht(T) = supt∈T lhT(t) to be the height of T. Moreover, we
define T(γ) = {t ∈ T | lhT(t) = γ} and T<γ = {t ∈ T | lhT(t) < γ} for
every tree T and γ < ht(T). Finally, given a subset S of ht(T), we de-
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2 P. Lücke

fine T�S to be the suborder of T whose underlying set is the set
⋃
{T(γ) |

γ ∈ S}.
One of the most basic questions about trees of infinite height is the

question of the existence of cofinal branches, i.e. the existence of a subsetB of
the tree T such that B is linearly ordered by <T and the set {lhT(t) | t ∈ B}
is unbounded in ht(T). In particular, the existence of a cofinal branch is
upwards-absolute between transitive models of set theory. As phrased by
Todorčević in the introduction of [27, Section 6.1], it turns out that a large
class of trees of uncountable regular height have no cofinal branches for very
special reasons.

In what follows, θ will denote an uncountable regular cardinal, and unless
otherwise stated, T will denote a tree of height θ.

Definition 1.1 (Todorčević). Let S be a subset of θ.

(i) A map r : T�S → T is regressive if r(t) <T t for every t ∈ T�S that
is not minimal in T.

(ii) We say that S is non-stationary with respect to T if there is a re-
gressive map r : T�S → T with the property that for every t ∈ T
there is a function ct : r−1{t} → θt such that θt is a cardinal smaller
than θ and ct is injective on ≤T-chains.

(iii) The tree T is special if the set θ is non-stationary with respect to T.

Todorčević showed that the above definition generalizes the classical def-
inition of special trees of successor height, i.e. trees of height ν+ for some
infinite cardinal ν that are the union of ν-many antichains (see [24, Theo-
rem 14]). Moreover, his result shows that a tree of height ν+ is special if and
only if the set of all ordinals less than ν+ of cofinality cof(ν) is non-stationary
with respect to the given tree.

Proposition 1.2. If S is a stationary subset of θ that is non-stationary
with respect to T, then there are no cofinal branches through T.

The above proposition directly shows that the non-existence of cofinal
branches through special trees is absolute in a strong sense. If T is special
and W is an outer model of the ground model V (i.e. W is a transitive model
of ZFC with V ⊆W and On ∩ V = On ∩W) with the property that θ is a
regular cardinal in W, then there are no cofinal branches through T in W.

In this paper, we want to study special reasons that cause trees with-
out cofinal branches to be non-special in a very absolute way. Examples of
such properties were already studied by Baumgartner, Brodsky, Cummings,
Devlin, Laver, Rinot, Shelah, Stanley, Todorčević, Torres Pérez and others
(see, for example, [4], [6], [7], [23], [26] and [28]). For reasons described later,
we will focus on the following property that directly generalizes the concept
of cofinal branches and is a consequence of the properties studied in the
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above papers. Moreover, this property pertains to all cardinal-preserving
outer models.

Definition 1.3. Given a cardinal λ > 0, a sequence 〈bγ : λ → T(γ) |
γ < θ〉 of functions is an ascending path of width λ through T if for all
γ̄ < γ < θ, there are α, ᾱ < λ such that bγ̄(ᾱ) <T bγ(α).

Then the existence of a cofinal branch through T is equivalent to the
existence of an ascending path of width 1 through T. The following lemma
shows that the same is true for ascending paths of any finite width. The
proof of this result is a modification of Baumgartner’s elegant proof of [3,
Theorem 8.2]. It is contained in Section 3 below.

Lemma 1.4. If there is an ascending path of finite width through T, then
there is a cofinal branch through T.

In combination with the above lemma, the following basic observations
show that the notion of an ascending path through a tree of height θ is
non-trivial if we consider paths of width λ with ω ≤ λ and λ+ < θ.

Proposition 1.5.

(i) There is an ascending path of width θ through T.
(ii) Assume that θ = ν+ for some cardinal ν. Then there is an ascending

path of width ν through T if and only if for every γ < θ, there is
t ∈ T(γ) such that for every γ ≤ δ < θ there is u ∈ T(δ) with the
property that t <T u.

Proof. (i) Fix a sequence 〈tγ ∈ T(γ) | γ < θ〉. Given γ, γ̄ < θ, define
bγ(γ̄) to be the unique element s of T(γ) with s <T tγ̄ if γ < γ̄, and define
bγ(γ̄) = tγ otherwise. The resulting sequence 〈bγ | γ < θ〉 is an ascending
path of width θ through T.

(ii) First, assume that for every γ < θ there is tγ ∈ T(γ) such that for
every γ ≤ δ < θ there is uγ,δ ∈ T(δ) with tγ <T uγ,δ. Given γ < θ, fix
a surjection sγ : ν → γ + 1 and define bγ(α) = usγ(α),γ for all α < ν. If
γ̄ < γ < θ, then there are α, ᾱ < ν with γ̄ = sγ(α) = sγ̄(ᾱ) and hence
bγ̄(ᾱ) = tγ̄ <T uγ̄,γ = bγ(α). This shows that the resulting sequence 〈bγ |
γ < θ〉 is an ascending path of width θ through T.

Now, assume that 〈bγ | γ < θ〉 is an ascending path of width ν. If γ < θ,
then the regularity of θ implies that there is α < ν with the property that
the set {δ < θ | ∃β < ν bγ(α) <T bδ(β)} is unbounded in θ. This shows that
for all γ < θ we can find α < ν such that for every γ ≤ δ < θ there is
u ∈ T(δ) with bγ(α) <T u.

The next lemma shows how ascending paths cause certain trees to be
non-special. Its proof is a generalization of the proof of [28, Proposition 2.3].
Given an infinite regular cardinal κ < θ, we let Sθκ denote the set of all limit
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ordinals less than θ of cofinality κ. Moreover, given some cardinal λ < θ, we
let Sθ>λ denote the set of all limit ordinals less than θ of cofinality greater

than λ. The sets Sθ<λ, Sθ≤κ and Sθ≥κ are defined analogously.

Lemma 1.6. Let λ < θ be a cardinal with the property that θ is not a
successor of a cardinal of cofinality less than or equal to λ and let S ⊆ Sθ>λ
be stationary in θ. If S is non-stationary with respect to T, then there is no
ascending path of width λ through T.

Proof. Assume that 〈bγ :λ→T(γ)|γ<θ〉 is an ascending path through T.
Let r : T�S → T and 〈ct : r−1{t} → θt | t ∈ T〉 witness that S is non-
stationary with respect to T. Then there is a club C in θ with θr(bγ̄(α)) < γ

for all γ ∈ C, γ̄ < γ and α < λ. Since S ⊆ Sθ>λ is stationary in θ, we can
find δ < θ and E ⊆ C ∩S stationary in θ such that the following statements
hold for all δ ∈ E and α < λ:

(i) r(bγ(α)) ∈ T<δ.
(ii) If r(bγ(α)) = r(bγ̄(α)) for some γ̄ < γ, then cr(bγ(α))(bγ(α)) < δ.

By our assumptions, there is a cardinal ν < θ of cofinality greater than λ
and a surjection s : ν → δ. Fix a strictly increasing cofinal sequence 〈νξ |
ξ < cof(ν)〉 in ν. Given γ ∈ E, there is a minimal ξγ < cof(ν) such that for
all α < λ, there are ζ0, ζ1 < νξγ with r(bγ(α)) ∈ T(s(ζ0)) and, if r(bγ(α)) =
r(bγ̄(α)) for some γ̄ < γ, then cr(bγ(α))(bγ(α)) = s(ζ1). Then there is U ⊆ E
unbounded in θ and ξ∗ < cof(ν) such that ξ∗ = ξγ for all γ in U .

Let γ∗ denote that νth element in the monotone enumeration of U . Given
γ ∈ U ∩ γ∗, our assumptions imply that there are α, β < λ with bγ(α) <T
bγ∗(β). Since the cofinality of ν is greater than λ, there are α∗, β∗ < λ such
that the set

A = {γ ∈ U ∩ γ∗ | bγ(α∗) <T bγ∗(β∗)}

has cardinality ν. Pick a function f : A → νξ∗ × νξ∗ with the property
that f(γ) = 〈ζ0, ζ1〉 implies that r(bγ(α∗)) ∈ T(s(ζ0)) and, if r(bγ(α∗)) =
r(bγ̄(α∗)) for some γ̄ < γ, then cr(bγ(α∗))(bγ(α∗)) = s(ζ1). By our assump-
tions, there are γ0, γ1, γ2 ∈ A and ζ0, ζ1 < νξ∗ such that γ0 < γ1 < γ2 and
f(γi) = 〈ζ0, ζ1〉 for all i < 3. Given i < 3, we have r(bγi(α∗)) ∈ T(s(ζ0)) and

r(bγi(α∗)) <T bγi(α∗) <T bγ∗(β∗).

This implies that r(bγ0(α∗)) = r(bγ1(α∗)) = r(bγ2(α∗)). In this situation, the
above choices ensure that

cr(bγ0 (α∗))(bγ1(α∗)) = s(ζ1) = cr(bγ0 (α∗))(bγ2(α∗)).

This implies that the nodes bγ1(α∗) and bγ2(α∗) are incompatible in T, a con-
tradiction.
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Proposition 1.2 shows that trees containing cofinal branches are not spe-
cial. Lemma 1.6 allows us to generalize this conclusion to the class of all
trees containing ascending paths of small widths.

Corollary 1.7. Let λ < θ be a cardinal with the property that θ is not
a successor of a cardinal of cofinality less than or equal to λ. If T contains
an ascending path of width λ, then T is not special.

Proof. Our assumptions imply that the set Sθλ+ is stationary in θ and
non-stationary with respect to T. In this situation, the statement of the
corollary follows directly from Lemma 1.6.

Note that the above result leaves open the question whether there can
be a special tree whose height is the successor of a singular cardinal ν that
contains an ascending path of width λ with cof(ν) ≤ λ < ν. After seeing an
earlier version of this paper, Chris Lambie-Hanson answered this question
affirmatively. In [11], it is shown that if �ν holds for some singular cardinal ν,
then there is a special ν+-Aronszajn tree containing an ascending path of
width cof(ν).

The above corollary shows that ascending paths cause trees to be non-
special in an absolute way: in the situation of the corollary, the tree T
remains non-special in every outer model in which θ and λ satisfy the as-
sumptions of the corollary. We will later show that, if θ and λ satisfy certain
cardinal arithmetic assumptions, then the converse of this implication also
holds true, i.e. if there is no ascending path of width λ through T, then T
is special in a forcing extension of the ground model in which the above as-
sumptions on θ and λ hold. This follows from the fact that ascending paths
are closely related to maximal antichains in the canonical partial order that
specializes a tree of uncountable regular height.

Definition 1.8. Let κ < θ be an infinite regular cardinal. We define
Pκ(T) to be the partial order that consists of partial functions from T to κ
of cardinality less than κ that are injective on chains in T and are ordered
by reverse inclusion.

It is easy to see that partial orders of the form Pκ(T) are <κ-closed, and
forcing with Pκ(T) collapses every cardinal in the interval (κ, θ). Moreover,
if forcing with Pκ(T) preserves the regularity of θ, then the tree T is special
in all Pκ(T)-generic extensions. Therefore it is natural to ask under which
conditions this regularity is preserved. We will later show (see Corollary 2.2)
that the assumption that forcing with Pκ(T) preserves the regularity of θ im-
plies that µ<κ < θ for all µ < θ. Under this cardinal arithmetic assumption,
this preservation can be characterized by the non-existence of ascending
paths of width less than κ.
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Theorem 1.9. The following statements are equivalent for every infinite
regular cardinal κ < θ with µ<κ < θ for all µ < θ:

(i) There is no ascending path of width less than κ through T.
(ii) The partial order Pκ(T) satisfies the θ-chain condition.

(iii) Forcing with the partial order Pκ(T) preserves the regularity of θ.

The above remarks show that, in the setting of Theorem 1.9, the three
statements listed in the theorem are also equivalent to the statement that
there is some outer model W of the ground model V such that κ and θ are
regular cardinals in W and T is a special tree in W. Given an uncountable
regular cardinal κ with κ = κ<κ, the above theorem allows us to show that
the collection of specializable trees of height κ+ (i.e. the collection of all
trees that are special in a cofinality-preserving outer model of the ground
model V) can be defined through the existence of ascending paths of width
less than κ. It is not known to the author whether this collection is also
definable if κ < κ<κ (see Question 6.3).

In combination with Lemma 1.4, the above theorem directly implies the
statement of a classical result of Baumgartner (see [3, Theorem 8.2] and
[5, Lemma 5.3]) stating that the partial order Pω(T) satisfies the θ-chain
condition if and only if there is no cofinal branch through T.

We present an application of the above result to questions dealing with
potential generalizations of Martin’s Axiom to larger cardinalities. Given a
partial order P, we let FAθ(P) denote the statement that for every collection
D of θ-many dense subsets of P, there is a D-generic filter, i.e. a filter F on P
with D ∩ F 6= ∅ for all D ∈ D. By a result of Shelah (see [22, Theorem 6]),
CH implies that there is a σ-closed partial order P satisfying the ℵ2-chain
condition and such that FAℵ2(P) fails. This partial order is not well-met,
i.e. there are compatible conditions without a greatest lower bound in this
partial order. Since recent work of Shelah (see [21]) shows that some well-
met condition is necessary for such generalizations of Martin’s Axiom to hold
and results of Baumgartner and Shelah (see [3, Section 4] and [19]) show
that such forcing axioms can consistently hold for all σ-closed, well-met
partial orders satisfying certain strengthenings of the ℵ2-chain condition, it
is natural to ask whether the statement that FAℵ2(P) holds for all σ-closed,
well-met partial orders P satisfying the ℵ2-chain conditions is consistent.

Note that, given an uncountable regular cardinal κ, every non-atomic
<κ-closed partial order contains an antichain of cardinality κ<κ. Since we
are interested in forcing axioms for partial orders satisfying the κ+-chain
condition, we will restrict ourselves to cardinals satisfying the cardinal arith-
metic assumption κ = κ<κ to obtain non-trivial axioms.

With the help of Todorčević’s method of walks on ordinals and a result
of Todorčević from [26], we will prove the following result showing that the
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consistency strength of such a forcing axiom is at least a weakly compact
cardinal.

Theorem 1.10. Let κ be an uncountable regular cardinal with κ = κ<κ.
If κ+ is not weakly compact in L, then there is a <κ-closed, well-met partial
order P satisfying the κ+-chain condition with the property that FAκ+(P)
fails.

Next, we discuss an application of the notion of ascending paths to ques-
tions about the productivity of certain chain conditions and characteriza-
tions of weak compactness (see, for example, [5] and [17]). Baumgartner’s
result mentioned above shows that, if T has no cofinal branches, then the
partial order Pω(T) satisfies the θ-chain condition. Since special trees have no
cofinal branches, this argument actually shows that finite support products
of the partial order Pω(T) satisfy the θ-chain condition in this case. The
next theorem is a strengthening of Theorem 1.9. It shows that ascending
paths of infinite width provide examples of trees where this chain condition
fails in infinite products.

Theorem 1.11. The following statements are equivalent for every infi-
nite regular cardinal κ < θ with µ<κ < θ for all µ < θ:

(i) There is no ascending path of width less than κ through T.
(ii) If ν ≤ κ is an infinite regular cardinal, then <κ-support products of

the partial order Pν(T) satisfy the θ-chain condition.

In the following, we are interested in the infinite productivity of stronger
chain conditions. Recall that a partial order P is θ-Knaster if every set of θ-
many conditions in P contains a subset of cardinality θ consisting of pairwise
compatible conditions. This property of partial orders is of great interest,
because it implies the θ-chain condition and is preserved under finite prod-
ucts. Moreover, it is easy to see that, if θ is weakly compact, then the class
of θ-Knaster partial orders is closed under <ν-support products for every
ν < θ (see [5, Proposition 1.1] and the proof of Theorem 1.12 in Section 4).
It is now natural to ask whether this productivity characterizes weakly com-
pact cardinals. It was shown by Cox and the author that it is consistent that
there is an inaccessible cardinal ϑ that is not weakly compact and has the
property that the class of ϑ-Knaster partial orders is closed under ν-support
products for all ν < ϑ (see [5, Theorem 1.13]). In contrast, we will use The-
orem 1.11 to show that the infinite productivity of the ϑ-Knaster property
characterizes weak compactness in canonical inner models of set theory (so-
called Jensen-style extender models, see [30]). The proof of the following
theorem relies on Todorčević’s method of walks on ordinals and results of
Schimmerling and Zeman on the existence of square sequences in canonical
inner models (see [18] and [31]) that extend the seminal results of Jensen [8].
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Theorem 1.12. Let L[E] be a Jensen-style extender model. In L[E], the
following statements are equivalent for all uncountable regular cardinals ϑ:

(i) ϑ is weakly compact.
(ii) The class of ϑ-Knaster partial orders is closed under ν-support prod-

ucts for all ν < ϑ.
(iii) ϑ is not the successor of a subcompact cardinal and the class of ϑ-

Knaster partial orders is closed under countable support products.

In particular, it is consistent with the axioms of ZFC that weak com-
pactness is characterized by the countable productivity of the Knaster prop-
erty.

Next, we present results concerning the existence and non-existence of
trees without cofinal branches containing ascending paths of small width.
The proofs of most these results make use of the notion of a narrow system
introduced by Magidor and Shelah [16] and recent results of Lambie-Hanson
[13] about these systems. Statements (i), (ii) and (v) of the following theorem
are direct consequences of results in [13]. Moreover, (iii) is implicitly proven
in the base case of the inductive proof of the main theorem of [15]. Recall
that a regular cardinal κ is indestructibly weakly compact if κ is weakly
compact in every forcing extension by a <κ-closed partial order.

Theorem 1.13.

(i) If θ is weakly compact, then every tree of height θ that contains an
ascending path of width less than θ has a cofinal branch.

(ii) If κ ≤ θ is a θ-compact cardinal, then every tree of height θ that
contains an ascending path of width less than κ has a cofinal branch.

(iii) If θ is weakly compact, κ < θ is an uncountable regular cardinal and
G is Col(κ,<θ)-generic over V, then in V[G] every tree of height θ
that contains an ascending path of width less than κ has a cofinal
branch.

(iv) If κ ≤ θ is indestructibly weakly compact, then every tree of height θ
that contains an ascending path of width less than κ has a cofinal
branch.

(v) If κ ≤ θ is θ-compact, ν < κ is an uncountable regular cardinal and
G is Col(ν,<κ)-generic over V, then in V[G] every tree of height θ
that contains an ascending path of width less than ν has a cofinal
branch.

Moreover, a result of Lambie-Hanson shows that it is possible to use
very strong large cardinal assumptions to prove global non-existence results.
In the model constructed in the proof of [13, Theorem 5.2], every tree of
uncountable regular height ϑ containing an ascending path of width λ with
λ+ < ϑ has a cofinal branch.
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In contrast to the above non-existence results, we will also show that
trees without cofinal branches containing ascending paths of small width
can be constructed from certain combinatorial principles (see Theorems 4.12
and 5.8). These constructions allow us to derive lower bounds for some of
the consistency results listed in Theorem 1.13.

Finally, we study the influence of the Proper Forcing Axiom PFA on
trees containing ascending paths. We show that PFA implies an analogue
of Lemma 1.4 for trees of height greater than ω1 that contain an ascending
path of countable width. In contrast, we show that PFA does not prove
a similar conclusion for ascending paths of width ω1. Recall that T is a
θ-Souslin tree if the partial order induced by T satisfies the θ-chain con-
dition. The proof of the second statement of the next theorem relies on a
construction of an ω3-Souslin tree containing an ascending path of width
ω1 using a partial square principle introduced by Baumgartner (see Defini-
tion 5.5).

Theorem 1.14. Assume that PFA holds.

(i) If θ > ω1, then every tree of height θ that contains an ascending
path of width ω has a cofinal branch.

(ii) There is a partial order P with the property that, whenever G is
P-generic over V, then PFA holds in V[G] and in V[G] there is an
ω3-Souslin tree that contains an ascending path of width ω1.

(iii) If κ is a strongly compact cardinal and G is Col(ω2, <κ)-generic
over V, then, in V[G], PFA holds and every tree of regular height
greater than ω2 that contains an ascending path of width ω1 has a
cofinal branch.

We outline the structure of this paper. Section 2 contains the proofs of
Theorems 1.9 and 1.11. In Section 3, we will prove Lemma 1.4 and Theo-
rem 1.13. The proofs of Theorems 1.10 and 1.12 are contained in Section 4.
Theorem 1.14 is proven in Section 5. In Section 6, we list several open ques-
tions motivated by the above results.

2. Ascending paths and antichains. This section is devoted to the
proofs of Theorems 1.9 and 1.11. We start by showing that the cardinal
arithmetic assumptions of Theorem 1.9 are necessary for the equivalence of
statements (i)–(iii).

Given a regular cardinal κ < θ, let Add(κ, θ) denote the partial order

consisting of partial functions f : θ
par−−→ 2 of cardinality less than κ ordered

by reverse inclusion. Then forcing with Add(κ, θ) adds θ-many Cohen sub-
sets of κ to the ground model. Moreover, given an ordinal µ ≥ κ, we let

Col(κ, µ) denote the partial order consisting of partial injections i : κ
par−−→ µ
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of cardinality less than κ ordered by reverse inclusion. This partial order is
forcing equivalent to the usual Levy collapse of µ to κ.

Proposition 2.1. If κ < θ is a regular cardinal and κ ≤ µ < θ, then
there is a forcing projection π : Pκ(T)→ Add(κ, θ)× Col(κ, µ).

Proof. Fix a sequence 〈tγ ∈ T(γ) | γ < θ〉 with tγ <T tµ for all γ < µ.
Pick a condition p in Pκ(T). Define f(p) to be the unique condition in
Add(κ, θ) with dom(f(p)) = {γ < θ | tµ+γ ∈ dom(p)} and

f(p)(γ) = 1 ⇔ p(tµ+γ) is an odd ordinal

for all γ ∈ dom(f(p)). Moreover, define i(p) to be the unique condition in
Col(κ, µ) with dom(i(p)) = {p(tγ) | γ < µ, tγ ∈ dom(p)} and i(p)(p(tγ))=γ
for all γ < µ with tγ ∈ dom(p). It is easy to check that the resulting map

π : Pκ(T)→ Add(κ, θ)× Col(κ, µ), p 7→ 〈f(p), i(p)〉,
is a forcing projection.

Corollary 2.2. If κ < θ is a regular cardinal such that forcing with
Pκ(T) preserves the regularity of θ, then µ<κ < θ for all µ < θ.

Proof. Assume, towards a contradiction, that there is κ ≤ µ < θ with
µ<κ ≥ θ. Let G be Pκ(T)-generic over V. By Proposition 2.1, we can find
H0, H1 ∈ V[G] such that H0 is Add(κ, θ) over V and H1 is Col(κ, µ)-generic
over V. Then V[H0] contains a bijection between κ and κ<κ, and V[H1]
contains a bijection between κ and µ. This shows that V[G] contains a
surjection from κ onto θ.

The following proposition shows how ascending paths induce antichains
in infinite products of partial orders of the form Pκ(T).

Proposition 2.3. If 〈bγ : λ→T(γ) | γ<θ〉 is an ascending path through
T and κ is an infinite regular cardinal, then the corresponding full support
product

∏
λ×λ Pκ(T) does not satisfy the θ-chain condition.

Proof. Given γ < θ, let ~pγ denote the unique condition in
∏
λ×λ Pκ(T)

with the property that dom(~pγ(α, ᾱ)) = {bγ(α), bγ(ᾱ)} and

~pγ(α, ᾱ)(bγ(α)) = ~pγ(α, ᾱ)(bγ(ᾱ)) = 0

for all α, ᾱ < λ. By our assumption, the sequence 〈~pγ | γ < θ〉 is an injective
enumeration of an antichain in

∏
λ×λ Pκ(T).

The starting point of the proof of Theorem 1.11 is the following basic
observation.

Proposition 2.4. If κ < θ is an infinite regular cardinal and p, q ∈
Pκ(T) are incompatible, then either

p�(dom(p) ∩ dom(q)) 6= q�(dom(p) ∩ dom(q))
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or there are s ∈ dom(p) \dom(q) and t ∈ dom(q) \dom(p) with the property
that p(s) = q(t) and the nodes s and t are compatible in T.

In particular, given regular cardinals ν ≤ κ < θ, every antichain in Pν(T)
is an antichain in Pκ(T).

Proposition 2.5. Let κ be an infinite regular cardinal and let Dκ(T)
denote the set of all conditions p in the partial order Pκ(T) with the property
that for all s, u ∈ dom(p) with lhT(s) < lhT(u), there is t ∈ dom(p) with
t <T u and lhT(s) = lhT(t). Then the set Dκ(T) is dense in Pκ(T).

Proof. Pick a condition p in Pκ(T) and set A = {lhT(t) | t ∈ dom(p)}.
Define D to be the set of all s ∈ T such that lhT(s) ∈ A and s ≤T t for
some t ∈ dom(p). Then D is a subset of T of cardinality less than κ with
dom(p) ⊆ D, and we can find a function q : D → κ such that q�dom(p) = p,
q�(D \ dom(p)) is an injection and q[D \ dom(p)] ⊆ κ \ ran(p). We conclude
that q ∈ Dκ(T) with q ≤Pκ(T) p.

In the proof of Theorem 1.11, we want to restrict ourselves to trees that
satisfy the following normality condition.

Definition 2.6. We say that a tree T does not split at limit levels if for
all γ ∈ θ ∩ Lim and all t0, t1 ∈ T(γ) with t0 6= t1, we can find γ̄ < γ and
s0, s1 ∈ T(γ̄) such that s0 6= s1 and si <T ti for all i < 2.

Note that a standard construction (see [10, Section III.3]) shows that for
every tree T of height θ there is a tree T̄ of height θ that does not split at
limit levels such that T is isomorphic to the tree T̄�(θ\Lim). This means that
the existence of an ascending path of width λ through T̄ implies the exis-
tence of an ascending path of width λ through T. Moreover, Proposition 2.4
shows that every antichain in a product of the partial order Pκ(T) induces
an antichain of the same size in the corresponding product of the partial
order Pκ(T̄). In combination, this shows that, in order to prove (i)⇒(ii) in
Theorem 1.11, it suffices to prove this implication for all trees of height θ
that do not split at limit levels.

Proof of Theorem 1.11. Let ν ≤ κ < θ be infinite regular cardinals with
µ<κ < θ for all µ < θ.

First, assume that T contains an ascending path of width λ < κ. Then
Proposition 2.3 shows that for every regular cardinal ν ≤ κ, the full support
product

∏
λ×λ Pν(T) does not satisfy the θ-chain condition.

In the other direction, assume that there is a <κ-support product of the
partial order Pν(T) that does not satisfy the θ-chain condition. By the above
remarks, we may assume that T does not split at limit levels. Moreover, our
cardinal arithmetic assumption allows us to find µ < κ and an injective
enumeration 〈~pγ | γ < θ〉 of an antichain in the full support product P =
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µ Pν(T). By Proposition 2.5, there is a sequence 〈~qγ | γ < θ〉 of conditions

in P such that ~qγ ≤P ~pγ and ~qγ(β) ∈ Dν(T) for all γ < θ and β < µ.

Fix γ ∈ Sθκ. Set Aγ = {〈t, β〉 ∈ T× µ | t ∈ dom(~qγ(β))} and pick a
bijective enumeration 〈tγ(α) | α < λγ〉 of the set

{t ∈ T(γ) | ∃β < µ ∃u ∈ dom(~qγ(β)) t ≤T u}
for some cardinal λγ < κ. Since T does not split at limit levels, there is
r(γ) < γ and an injection ιγ : λγ → T(r(γ)) with the property that Aγ ∩
(T<γ × µ) ⊆ T<r(γ) × µ and ιγ(α) <T tγ(α) for all α < λγ .

By our assumptions, we may apply Fodor’s Lemma to find λ < κ, ρ < θ,
E ⊆ Sθκ stationary in θ and a sequence 〈Hβ ⊆ ρ | β < µ〉 such that λ = λγ ,
ρ = r(γ) and Hβ = {lhT(s) | s ∈ dom(~qγ(β)) ∩ T<γ} for all γ ∈ E and
β < µ. In this situation, our cardinal arithmetic assumption allows us to
use the ∆-system lemma to find F ⊆ E unbounded in θ, Q ⊆ T × µ and
R ⊆ T(ρ) such that the set {Aγ | γ ∈ F} is a ∆-system with root Q and the
set {ran(ιγ) | γ ∈ F} is a ∆-system with root R. Next, we use the pigeonhole
principle and our cardinal arithmetic assumption to find U ⊆ F unbounded
in θ, B ⊆ λ, a map c : Q → ν and an injection ι : B → R such that
c(t, β) = ~qγ(β)(t), B = {α < λ | ιγ(α) ∈ R} and ι(α) = ιγ(α) for all γ ∈ U ,
α ∈ B and 〈t, β〉 ∈ Q.

Pick γ0, γ1 ∈ U such that γ0 < γ1 and Aγ0 ⊆ T<γ1 × µ. Since the
conditions ~qγ0 and ~qγ1 are incompatible in P, there is a β < µ such that
the conditions ~qγ0(β) and ~qγ1(β) are incompatible in Pν(T). By the above
choices, we have

~qγ0(β)(t) = c(t, β) = ~qγ1(β)

for all t ∈ dom(~qγ0(β)) ∩ dom(~qγ1(β)). In this situation, Proposition 2.4
shows that there are t0 ∈ dom(~qγ0(β)) and t1 ∈ dom(~qγ1(β)) such that
~qγ0(β)(t0) = ~qγ1(β)(t1) and tI <T t1−I for some I < 2.

Assume, towards a contradiction, that tI ∈ T<γI . Then lhT(tI) ∈ Hβ and
there is an s ∈ dom(~qγ1−I (β)) with lhT(s) = lhT(tI). Since ~qγ1−I (β) ∈ Dν(T),
we can find t ∈ dom(~qγ1−I (β)) with t <T t1−I and lhT(s) = lhT(t). But then
t = tI ∈ Q and

~qγ1−I (β)(tI) = c(tI , β) = ~qγI (β)(tI) = ~qγ1−I (β)(t1−I),

a contradiction.

The above computations show that tI /∈ T<γI . This implies I = 0 and
t1 /∈ T<γ1 , because dom(~qγ0(β)) ⊆ T<γ1 and dom(~qγ1) ∩ T<γ1 ⊆ T<ρ. Then
there are α0, α1 < λ with tγ0(α0) ≤T t0 and tγ1(α1) ≤T t1. In particular,
this implies that λ > 0. By the above choices, we have

ιγ0(α0) <T tγ0(α0) ≤T t0 <T t1

and ιγ1(α1) <T tγ1(α1) ≤T t1. This implies that ιγ0(α0) = ιγ1(α1) ∈ R and
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α0, α1 ∈ B. But then ι(α0) = ιγ0(α0) = ιγ1(α1) = ι(α1) and α0 = α1. Since
tγ0(α0) ≤T t0 <T t1, tγ1(α0) ≤T t1 and

lhT(tγ0(α0)) = γ0 < γ1 = lhT(tγ1(α0)),

we can conclude that tγ0(α0) <T tγ1(α0).

Given γ < θ and α < λ, let δ ∈ U \ γ be minimal with Aδ̄ ⊆ T<δ × µ
for all δ̄ ∈ U ∩ δ and define bγ(α) to be the unique element of T(γ) with
bγ(α) ≤T tγ(α). By the above computations, if γ̄ < γ < θ, then there
is α < λ with bγ̄(α) <T bγ(α). This shows that the resulting sequence
〈bγ : λ→ T(γ) | γ < θ〉 is an ascending path of width less than κ through
the tree T.

Proof of Theorem 1.9. Let κ < θ be a regular cardinal with µ<κ < θ
for all µ < θ. If forcing with the partial order Pκ(T) does not preserve
the regularity of θ, then Pκ(T) does not satisfy the θ-chain condition and
Theorem 1.11 shows that there is an ascending path of width less than κ
through T. In the other direction, assume that there is an ascending path of
width less than κ through T, and forcing with Pκ(T) preserves the regularity
of θ. Let G be Pκ(T)-generic over V. In V[G], T contains an ascending path
of width less than κ, and θ is not the successor of a cardinal of cofinality less
than κ. In this situation, Corollary 1.7 implies that T is not special in V[G],
a contradiction.

Note that the proof of Theorem 1.11 shows that if κ < θ is a regular
cardinal with µ<κ < θ for all µ < θ and there is an ascending path of
width λ < κ through T, then there is such a path 〈bγ : λ→ T(γ) | γ < θ〉
with the additional property that for all γ̄ < γ < θ there is an α < λ
with bγ̄(α) <T bγ(α). In the general terminology of [4], such a path is called
an Fλ-ascent path through T. It is not known to the author whether the
existence of an Fλ-ascent path is always equivalent to the existence of an
ascending path of width λ (see Question 6.4).

3. Narrow systems and ultrafilters. In this section, we will prove
the non-existence results stated in Lemma 1.4 and Theorem 1.13. These
proofs rely on the notion of narrow systems introduced by Magidor and
Shelah [16], and recent results of Lambie-Hanson [13].

Definition 3.1 ([16, Definition 2.2]). Let ϑ be a limit ordinal, let D be
an unbounded subset of ϑ and let λ > 0 be a cardinal.

(i) A set R of binary transitive relations on D × λ is a ϑ-system of
width λ on D if the following statements hold:

(a) If γ, γ̄ ∈ D, α, ᾱ < λ and R ∈ R with 〈γ̄, ᾱ〉 R 〈γ, α〉, then
γ̄ < γ.



14 P. Lücke

(b) If γ, γ0, γ1 ∈ D, α, α0, α1 < λ and R ∈ R are such that γ0 ≤ γ1

and 〈γi, αi〉 R 〈γ, α〉 for all i < 2, then 〈γ0, α0〉 R 〈γ1, α1〉.
(c) If γ, γ̄ ∈ D with γ̄ < γ, then there are α, ᾱ < λ and R ∈ R with
〈γ̄, ᾱ〉 R 〈γ, α〉.

(ii) A ϑ-system R of width λ is narrow if |R| < λ+ < |ϑ|.
(iii) Given a ϑ-system R of width λ on D and R ∈ R, a subset B of

D×λ is an R-branch through R if for all 〈γ0, α0〉, 〈γ1, α1〉 ∈ B with
〈γ0, α0〉 6= 〈γ1, α1〉 there is an i < 2 with 〈γi, αi〉 R 〈γ1−i, α1−i〉.

(iv) Given a ϑ-system R of width λ on D and R ∈ R, an R-branch
B through R is cofinal if the set {γ ∈ D | ∃α < λ 〈γ, α〉 ∈ B} is
unbounded in ϑ.

(v) Given a ϑ-system R of width λ on D and a set B of cardinality at
most λ with the property that every element of B is an R-branch
throughR for some R ∈ R, we call B a full set of branches through R
if for every γ ∈ D there are B ∈ B and α < λ with 〈γ, α〉 ∈ B.

A simple cardinality argument shows that the existence of a full set of
branches through a narrow θ-system R implies the existence of a cofinal
branch through R.

It is easy to see that if a tree T has no cofinal branches and there is an
ascending path of width λ through T, then there is a θ-system R of width λ
such that |R| = 1 and there are no cofinal branches through R. This shows
that the statements of Lemma 1.4 and Theorem 1.13 follow from the next
lemma. Most of the statements of the lemma already appear in [13]. For the
sake of completeness, we also present the proofs of these results.

Lemma 3.2.

(i) A narrow θ-system of finite width has a full set of branches.
(ii) If θ is weakly compact, then every narrow θ-system has a full set of

branches.
(iii) If κ ≤ θ is θ-compact, then every narrow θ-system of width less than

κ has a full set of branches.
(iv) If κ ≤ θ is indestructibly weakly compact, then every narrow θ-

system of width less than κ has a cofinal branch.
(v) If θ is weakly compact, κ < θ is an uncountable regular cardinal and

G is Col(κ,<θ)-generic over V, then in V[G] every narrow θ-system
has a cofinal branch.

(vi) If κ ≤ θ is θ-compact, ν < κ is an uncountable regular cardinal and
G is Col(ν,<κ)-generic over V, then in V[G] every narrow θ-system
of width less than ν has a cofinal branch.

The proof of the last three statements relies on the following preservation
lemma proven by Lambie-Hanson [13].
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Lemma 3.3 ([13, Lemma 4.1]). Let κ < θ be an infinite regular cardinal,
let D be an unbounded subset of θ and let R be a narrow θ-system of width
less than κ on D. If there is a <κ-closed partial order P with the property that
in some P-generic extension there is a complete set of branches through R,
then there is a cofinal branch through R in V.

The idea used in the proof of the next lemma is taken from Baumgart-
ner’s elegant proof of [3, Theorem 8.2]. Recall that, given a collection S of
subsets of some set D, a filter F on D is an S-ultrafilter if for all S ∈ S,
either S ∈ F or D \ S ∈ F .

Lemma 3.4. Let θ be an uncountable regular cardinal and let κ < θ be a
cardinal. Then for every narrow θ-system R of width less than κ there is a
collection SR of θ-many subsets of θ such that:

(i) If there is a <κ-closed SR-ultrafilter on θ that consists of unbounded
subsets of θ, then there is a full set of branches through R.

(ii) If there is a <κ-closed partial order P with the property that forc-
ing with P adds a <κ-closed SR-ultrafilter on θ that consists of un-
bounded subsets of θ, then R has a cofinal branch in V.

Proof. Let D be an unbounded subset of θ, let 0 < λ < κ be a cardinal
and let R be a narrow θ-system of width λ on D. Set I = λ×λ×R. Define
SR to be the set consisting of all subsets of D of the form

Sγ,I = {δ ∈ D | 〈γ, αI〉 RI 〈δ, βI〉}
for some γ ∈ D and I = 〈αI , βI , RI〉 ∈ I. Then SR has cardinality θ.

Both of the above assumptions imply that there is a <κ-closed partial
order P, a filter G on P that is generic over V and a <κ-closed SR-ultrafilter
F on D in V[G] that consists of unbounded subsets of θ. Work in V[G].
Given γ ∈ D, we have

D \ (γ + 1) =
⋃
{Sγ,I | I ∈ I}.

In this situation, our assumptions on F imply that there is a sequence
〈Iγ | γ ∈ D〉 with the property that Sγ,Iγ ∈ F for all γ ∈ D. Given I ∈ I,
define

BI = {〈γ, αI〉 | γ ∈ D, I = Iγ}.
Pick I ∈ I and γ0, γ1 ∈ D with γ0 < γ1 and I = Iγ0 = Iγ1 . Then we have

S = Sγ0,I ∩ Sγ1,I ∈ F and our assumptions imply that there is a δ ∈ S with
δ > γi for all i < 2. This implies that 〈γi, αI〉 RI 〈δ, βI〉 for all i < 2. By the
definition of narrow systems, this implies that 〈γ0, αI〉 RI 〈γ1, αI〉.

The above computations show that BI is an RI -branch though R for
every I ∈ I. Since 〈γ, αIγ 〉 ∈ BIγ for all γ ∈ D, the set {BI | I ∈ I} is a full
set of branches through R in V[G]. By Lemma 3.3, this implies that there
is a cofinal branch through R in V.



16 P. Lücke

Proof of Lemma 3.2. (i) Let U be an ultrafilter on θ that extends the
filter of cobounded subsets of θ. Then U is closed under finite intersections
and consists of unbounded subsets of θ. If R is a narrow θ-system of finite
width, then U is an SR-ultrafilter and we can use the first part of Lemma 3.4
to conclude that there is a full set of branches through R.

(ii) Assume that θ is weakly compact and let R be a narrow θ-system.
By the filter property of weakly compact cardinals, there is a non-principal
<κ-closed SR-ultrafilter on θ and the above statement follows directly from
the first part of Lemma 3.4.

(iii) Assume that κ ≤ θ is θ-compact. By the filter property of θ-compact
cardinals, there is a <κ-closed ultrafilter on θ that extends the filter of all
cobounded subsets of θ. In this situation, the first part of Lemma 3.4 implies
that every narrow θ-system of width less than κ has a full set of branches.

(iv) Assume that κ ≤ θ is indestructibly weakly compact, let R be a
narrow θ-system of width less than κ and let G be Col(κ, θ)-generic over V.
Then κ is weakly compact in V[G] and the proof of (ii) shows that there is a
non-principal <κ-closed SR-ultrafilter in V[G]. In this situation, the second
part of Lemma 3.4 shows that there is a cofinal branch through R in V.

(v) Assume that θ is weakly compact, κ < θ is an uncountable regular
cardinal and G is Col(κ,<θ)-generic over V. Let R be a narrow θ-system in
V[G] and let SR denote the corresponding collection of subsets of θ given by
Lemma 3.4. Since the partial order Col(κ,<θ) satisfies the θ-chain condition,
there is a Col(κ,<θ)-name Ṡ ∈ H(θ+)V with SR = ṠG.

Work in V and pick an elementary submodel M of H(θ+) of cardinality θ
with Ṡ ∈M and <θM ⊆M . By the embedding property of weakly compact
cardinals, there is a transitive setN of cardinality θ with <θN ⊆ N and an el-
ementary embedding j : M → N with critical point θ. Then Col(κ,<θ) is an
element ofM and j(Col(κ,<θ)) is isomorphic to Col(κ,<θ)×Col(κ, [θ, j(θ)))
both in V and in N .

Let H be Col(κ, [θ, j(θ)))-generic over V[G]. Then we can lift j to an
elementary embedding j∗ : M [G]→ N [G,H]. Let

F = {A ∈ P(θ) ∩M [G] | θ ∈ j∗(A)}
be the induced M [G]-ultrafilter in V[G,H]. Since Col(κ, [θ, j(θ))) is <κ-
closed and SR∈M [G], the filter F is a non-principal <κ-closed SR-ultrafilter
on θ in V[G,H] and the second part of Lemma 3.4 shows thatR has a cofinal
branch in V[G].

(vi) Assume that κ ≤ θ is θ-compact, ν < κ is an uncountable regu-
lar cardinal and G is Col(ν,<κ)-generic over V. In V, the θ-compactness
of κ yields an elementary embedding j : V → M with critical point κ such
that j[θ] ⊆ λ for some λ < j(θ). Then j(Col(κ,<θ)) is isomorphic to the
partial order Col(κ,<θ) × Col(κ, [θ, j(θ))) both in V and in M . Let H be
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Col(κ, [θ, j(θ)))-generic over V[G]. Then we can lift j to an elementary em-
bedding j∗ : V[G] → M [G,H] in V[G,H]. Define F = {A ∈ P(θ)V[G] |
λ ∈ j∗(A)}. Since Col(κ, [θ, j(θ))) is <κ-closed, we deduce that F is a <κ-
closed V[G]-ultrafilter on θ in V[G,H] that consists of unbounded subsets
of θ. With the help of the second part of Lemma 3.4, we conclude that in
V[G] every narrow θ-system has a cofinal branch.

As mentioned in Section 1, the results of [13] also provide a global non-
existence result for trees without cofinal branches containing ascending paths
of small width. In the proof of [13, Theorem 5.2], Lambie-Hanson starts with
a model containing a proper class of supercompact cardinals and produces
a class forcing extension in which every narrow ϑ-system for an uncountable
regular cardinal ϑ has a cofinal branch. By the above remarks, every tree of
uncountable regular height ϑ containing an ascending path of width λ with
λ+ < ϑ has a cofinal branch in this model.

4. Trees constructed from walks on ordinals. This section con-
tains the proofs of Theorems 1.10 and 1.12. These proofs show that certain
combinatorial principles allow us to construct trees with very specific prop-
erties. The construction of these trees uses the concept of walks on ordinals
and their characteristics introduced by Todorčević.

Definition 4.1 (Todorčević).

(i) A sequence ~C = 〈Cγ | γ < θ〉 is a C-sequence of length θ if the
following statements hold for all γ < θ:

(a) If γ is a limit ordinal, then Cγ is a club subset of γ.
(b) If γ = γ̄ + 1, then Cγ = {γ̄}.

(ii) Let ~C = 〈Cγ | γ < θ〉 be a C-sequence of length θ.

(a) Given γ ≤ δ < θ, the walk from δ to γ through ~C is the unique
sequence 〈ε0, . . . , εn〉 of ordinals satisfying ε0 = δ, εn = γ and
εi+1 = min(Cεi \γ) for all i < n. In this situation, we define the

full code of the walk from δ to γ through ~C to be the sequence

ρ
~C
0 (γ, δ) = 〈otp(Cε0 ∩ γ), . . . , otp(Cεn−1 ∩ γ)〉.

(b) Given δ < κ, we define

ρ
~C
0 (·, δ) : δ + 1→ <ωθ, γ 7→ ρ

~C
0 (γ, δ).

(c) We define T(ρ
~C
0 ) to be the tree of height θ consisting of all

functions of the form ρ
~C
0 (·, δ)�γ with γ ≤ δ < θ ordered by

inclusion.
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Recall that a tree T is a θ-Aronszajn tree if T has no cofinal branches
and |T(γ)| < θ for all γ < θ. The following results of Todorčević show how
such sequences can be used to construct θ-Aronszajn trees.

Lemma 4.2 ([25, Lemma 1.3]). If ~C = 〈Cγ | γ < θ〉 is a C-sequence and

γ < θ, then |T(ρ
~C
0 )(γ)| ≤ |{Cδ ∩ γ | γ ≤ δ < θ}|+ ℵ0.

Lemma 4.3 ([25, Lemma 1.7]). The following statements are equivalent

for every C-sequence ~C = 〈Cγ | γ < θ〉 of length θ:

(i) There is a cofinal branch through the tree T(ρ
~C
0 ).

(ii) There is a club subset C of θ and ξ < θ such that for all ξ ≤ γ < θ
there is γ ≤ δ < θ with C ∩ γ = Cδ ∩ [ξ, γ).

We will now show that trees of the form T(ρ
~C
0 ) do not contain ascending

paths of small width if they contain no cofinal branches and the underlying
sequence ~C is coherent in the following sense.

Definition 4.4. Given S ⊆ θ, we say that a C-sequence ~C = 〈Cγ |
γ<θ〉 is S-coherent if Cγ̄ = Cγ ∩ γ̄ for all γ ∈ θ∩Lim and γ̄ ∈ Lim(Cγ)∩S.

The proof of the following lemma relies on some computations of full
codes of walks that are presented in detail in [9, Section 3].

Lemma 4.5. Let λ < θ be a cardinal, let S ⊆ Sθ>λ be stationary in θ and

let ~C be an S-coherent C-sequence of length θ. If the tree T(ρ
~C
0 ) contains an

ascending path of width λ, then T(ρ
~C
0 ) has a cofinal branch.

Proof. Let ~C = 〈Cγ | γ < θ〉. Set T = T(ρ
~C
0 ) and ρ0 = ρ

~C
0 . Assume,

towards a contradiction, that 〈bγ : λ→ T(γ) | γ < θ〉 is an ascending path
through T.

Given γ ∈ S and α < λ, let γ ≤ δαγ < θ be minimal with the property
that bγ(α) = ρ0(·, δαγ )�γ, let 〈εαγ (0), . . . , εαγ (nαγ )〉 denote the walk from δαγ
to γ through ~C and let kαγ ≤ nαγ be minimal with Cεαγ (kαγ ) ∩ γ unbounded

in γ. By our assumptions, we can find µ ≤ ν < θ and E ⊆ S \ (ν + 1)
stationary in θ such that max(Cεαγ (l) ∩ γ) < µ and min(Cγ \ µ) = ν for all
γ ∈ E, α < λ and l < kαγ .

Claim 1. If γ0, γ1 ∈ E and α < λ with γ0 < γ1 and bγ0(α) <T bγ1(α),
then kαγ0

= kαγ1
.

Proof. Note that our assumptions imply that ν ∈ Cεαγi (kαγi ) for all i < 2.

Given i < 2, we can combine this observation with [9, Lemma 3.2] to see

that the sequence 〈εαγi(0), . . . , εαγi(k
α
γi), ν〉 is the walk from δαγi to ν through ~C.

Since our assumptions imply that ρ0(ν, δαγ0
) = ρ0(ν, δαγ1

), we conclude that

kαγ0
= lh(ρ0(ν, δαγ0

))− 1 = lh(ρ0(ν, δαγ1
))− 1 = kαγ1

.
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Claim 2. If γ0, γ1 ∈ E with γ0 < γ1, then Cγ0 = Cγ1 ∩ γ0.

Proof. By our assumption, there is an α < λ with bγ0(α) <T bγ1(α).
In this situation, Claim 1 shows that kαγ0

= kαγ1
. Set k = kαγ0

and pick
an ordinal ξ ∈ Cγ0 ∩ [µ, γ0). Since our assumptions imply that Cγ0 =
Cεαγ0

(k)∩γ and hence ξ ∈ Cεαγ0
(k), an application of [9, Lemma 3.2] shows that

〈εαγ0
(0), . . . , εαγ0

(k), ξ〉 is the walk from δαγ0
to ξ through ~C. Another applica-

tion of [9, Lemma 3.2] shows that 〈εαγ1
(0), . . . , εαγ1

(k)〉 is an initial segment of
the walk from δαγ1

to ξ. In this situation, ρ0(ξ, δαγ0
) = ρ0(ξ, δαγ1

) implies that

〈εαγ1
(0), . . . , εαγ1

(k), ξ〉 is the walk from δαγ1
to ξ through ~C. In particular, this

shows that ξ is an element of Cεαγ1
. Since our assumptions also imply that

Cγ1 = Cεαγ1
∩ γ1, we conclude that ξ ∈ Cγ1 . Therefore Cγ0 ⊆ Cγ1 , and hence

we have γ0 ∈ Lim(Cγ1) ∩ S and S-coherence implies Cγ0 = Cγ1 ∩ γ0.

Claim 2 implies that C =
⋃
{Cγ | γ ∈ E} is a club in θ with Cγ = C ∩ γ

for all γ ∈ E. Using Lemma 4.3, we conclude that T has a cofinal branch.

We will later show that it is not possible to prove Lemma 4.5 without
some coherence assumption on the C-sequence (see Theorem 4.12).

Definition 4.6 (Todorčević). We say a C-sequence ~C = 〈Cγ | γ < θ〉 is

a �(θ)-sequence if ~C is θ-coherent and there is no club C in θ with Cγ = C∩γ
for all γ ∈ Lim(C).

If ~C is a �(θ)-sequence, then Lemmas 4.3 and 4.2 imply that T(ρ
~C
0 ) is a

θ-Aronszajn tree. In combination with Lemma 4.5, this yields the following
result.

Corollary 4.7. If ~C is a �(θ)-sequence and λ is a cardinal with λ+<θ,

then the tree T(ρ
~C
0 ) does not contain an ascending path of width λ.

Seminal results of Jensen and Todorčević (see [8, Section 6] and [25, The-
orem 1.10]) show that the existence of a constructible �(θ)-sequence follows
from the assumption that θ is not weakly compact in L. In combination with
the main result of [26], these results allow us to prove Theorem 1.10.

Proof of Theorem 1.10. Let κ be an uncountable cardinal such that
κ = κ<κ and κ+ is not weakly compact in L. In this situation, [25, The-
orem 1.10] implies that there is a �(κ+)-sequence, and [26, Theorem 3]

implies that there is a �(κ+)-sequence ~C with the property that the tree

T = T(ρ
~C
0 ) is not special. Then the partial order Pκ(T) is <κ-closed and

well-met. Moreover, Corollary 4.7 shows that there are no ascending paths
of width less than κ through T, and by our assumptions on κ, we can apply
Theorem 1.9 to conclude that Pκ(T) satisfies the κ+-chain condition. Given
t ∈ T, define Dt to be the dense subset {p ∈ Pκ(T) | t ∈ dom(p)} of Pκ(T).
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Since T is a κ+-Aronszajn tree, the collection D = {Dt | t ∈ T} has cardinal-
ity κ+. But then there is no D-generic filter on Pκ(T), because the existence
of such a filter would imply that T is special. This shows that FAκ+(Pκ(T))
fails.

In the remainder of this section, we will prove Theorem 1.12. The fol-
lowing definition and lemmas are crucial for the proof.

Definition 4.8. A C-sequence ~C = 〈Cγ | γ < θ〉 avoids a subset S of θ
if Lim(Cγ) ∩ S = ∅ holds for all γ ∈ Lim ∩ θ.

Lemma 4.9 ([5, Lemma 6.7]). There is a club D in θ with the property

that whenever ~C is a C-sequence of length θ that avoids a subset S of θ,

then D ∩ S is non-stationary with respect to T(ρ
~C
0 ).

Lemma 4.10 ([5, Lemma 6.4]). Assume that T is a θ-Aronszajn tree
that does not split at limit levels. If there is a stationary subset S of θ such
that S is non-stationary with respect to T, then the partial order Pω(T) is
θ-Knaster.

Note that trees of the form T(ρ
~C
0 ) for some C-sequence ~C consist of

functions ordered by inclusion and therefore such trees do not split at limit
levels. In the following, we will start from the assumption that there is a
�(θ)-sequence that avoids a stationary set consisting of ordinals of small

cofinality, and use the above lemma to find a C-sequence ~C of length θ with

the property that the tree T(ρ
~C
0 ) is a θ-Aronszajn tree containing an ascend-

ing path of small width and the property that the partial order Pω(T(ρ
~C
0 )) is

θ-Knaster. The path constructed will satisfy the following stronger property
first considered by Laver (see [7] and [23]). In the general terminology of [4],
such paths are called Fbdλ -ascent paths.

Definition 4.11 (Laver). Let λ > 0 be a cardinal. Then a λ-ascent path
through T is a sequence 〈bγ : λ→ T(γ) | γ < θ〉 with the property that for

all γ, γ̃ < θ, there is a λ̃ < λ such that bλ̃(α) ≤T bγ(α) for all λ̃ < α < λ.

In [26], Todorčević constructed a θ-Aronszajn tree containing such a

κ-ascent path assuming the existence of a �(θ)-sequence ~C = 〈Cγ | γ < θ〉
with the property that there is an infinite regular cardinal κ < θ such that
the cardinal θ is not the successor of a cardinal of cofinality κ and the set
{γ < θ | otp(Cγ) = κ} is stationary in θ. The results of [12, Section 3] show
that this assumption is slightly stronger than the assumptions of the next
theorem. This theorem also shows that the conclusion of Lemma 4.5 does
not hold without some coherence assumptions on the sequence ~C.

Theorem 4.12. Let λ < θ be an infinite regular cardinal and let S ⊆ Sθλ
be stationary in θ. Assume that there is a �(θ)-sequence that avoids S. Then
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there is a C-sequence ~C of length θ that avoids S and has the property that

the tree T(ρ
~C
0 ) is a θ-Aronszajn tree that contains a λ-ascent path.

Proof. Fix a �(θ)-sequence ~D = 〈Dγ | γ < θ〉 that avoids S and let
A denote the set of all ordinals less than θ that are divisible by ω · λ, i.e.
A = {ω · λ · γ | γ < θ}. Then 0 ∈ A and A is closed in θ.

In the following, we inductively construct a sequence〈
〈Cγ+ω·α | α < λ〉

∣∣ γ ∈ A〉
that satisfies the following statements for all γ ∈ A:

(i) Cγ = Dγ .
(ii) If 0 < α < λ, then Cγ+ω·α is a club in γ+ω ·α with Cγ+ω·α∩S = ∅.

(iii) If γ̃ < γ and 0 < α < λ, then there is γ̄ < min(A \ γ̃) + ω · λ with

(4.1) Cγ+ω·α ∩ γ̃ = (Cγ̄ ∪ {γ̄}) ∩ γ̃.

(iv) If γ ∈ A \S and γ̄ ∈ Lim(A∩Dγ), then Cγ+ω·α is an end-extension
of Cγ̄+ω·α for all 0 < α < λ.

(v) If γ̃ ∈ A∩γ, then there is λ̃ < λ such that Cγ+ω·α is an end-extension

of Cγ̃+ω·α for all λ̃ < α < λ.

In the construction of this sequence, we will distinguish several cases:

Case 0: γ = 0. Define Cω·α = ω · α for all α < λ.

Case 1: A is bounded in γ > 0. Pick ordinals γ0 ≤ γ1 < γ with the
property that γ1 = max(A ∩ γ) and either Lim(A ∩ Dγ) 6= ∅ and γ0 =
max(Lim(A ∩ Dγ)) or Lim(A ∩ Dγ) = ∅ and γ0 = γ1. By our induction
hypothesis, there is λ1 < λ such that Cγ1+ω·α is an end-extension of Cγ0+ω·α
for all λ1 < α < λ. Set λ0 = 0 and λ2 = λ. Given 0 < α < λ, pick i < 2
with λi < α ≤ λi+1 and define

Cγ+ω·α = Cγi+ω·α ∪ {γi + ω · α} ∪ (γ, γ + ω · α).

Given 0 < α < λ, the set Cγ+ω·α is a club in γ + ω · α that is disjoint
from S. Moreover, for all γ̃ < γ and 0 < α < λ, we can find i < 2 with

Cγ+ω·α ∩ γ̃ = (Cγi+ω·α ∪ {γi + ω · α}) ∩ γ̃.
Together with our induction hypothesis, this allows us to find an ordinal
γ̄ < min(A \ γ̃) + ω · λ such that (4.1) holds. If Lim(A ∩Dγ) 6= ∅, then our
induction hypothesis implies that Cγ+ω·α is an end-extension of Cγ̄+ω·α for
all γ̄ ∈ Lim(A∩Dγ) and 0 < α < λ, because the above construction ensures
that Cγ+ω·α is an end-extension of Cγ0+ω·α for all 0 < α < λ. Finally, for

every γ̃ ∈ A∩γ there is λ1 ≤ λ̃ < λ such that Cγ1+ω·α is an end-extension of

Cγ̃+ω·α for all λ̃ < α < λ, and this implies that Cγ+ω·α is an end-extension

of Cγ̃+ω·α for all λ̃ < α < λ.
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Case 2: A is unbounded in γ and Lim(A ∩ Dγ) is bounded in γ. Then
cof(γ) = ω and we can pick a strictly increasing sequence 〈γn ∈ A | n < ω〉
cofinal in γ such that Lim(A∩Dγ) 6= ∅ implies γ0 = max(Lim(A∩Dγ)). By
our induction hypothesis, we can find a strictly increasing sequence 〈λn < λ |
n < ω〉 such that λ0 = 0, Cγn+1+ω·α is an end-extension of Cγn+ω·α for all
n < ω and λn+1 ≤ α < λ, and if cof(λ) = ω, then this sequence is cofinal
in λ. Then Cγn+ω·α is an end-extension of Cγm+ω·α for all m ≤ n < ω and
λn ≤ α < λ. Set λω = supn<ω λn ≤ λ. Note that λω < λ implies that λ > ω
and γ /∈ S. Given 0 < α < λω, let n < ω be maximal with λn ≤ α and define

Cγ+ω·α = Cγn+ω·α ∪ {γβ + ω · α} ∪ (γ, γ + ω · α).

Given λω ≤ α < λ, define

Cγ+ω·α =
⋃
{Cγn+ω·α | n < ω} ∪ [γ, γ + ω · α).

Then the set Cγ+ω·α is a club in γ + ω · α that is disjoint from S for all
0 < α < λ. If γ̃ < γ and 0 < α < λ, then there is an n < ω with

Cγ+ω·α ∩ γ̃ = (Cγn+ω·α ∪ {γn + ω · α}) ∩ γ̃.
In combination with our induction hypothesis, this shows that there is an
ordinal γ̄ < min(A \ γ̃) + ω · λ such that (4.1) holds. Next, observe that
Lim(A ∩ Dγ) 6= ∅ implies that Cγ+ω·α is an end-extension of Cγ0+ω·α for
all 0 < α < λ. If γ̄ ∈ Lim(A ∩ Dγ) and 0 < α < λ, then γ0 ∈ A \ S,
γ̄ ∈ Lim(A ∩ Dγ0) and our induction hypothesis together with the above
observation shows that Cγ+ω·α is an end-extension of Cγ̄+ω·α. Finally, pick

γ̃ ∈ A ∩ γ. By induction hypothesis, there are n < ω and λn ≤ λ̃ < λ such
that γ̃ ≤ γn and Cγn+ω·α is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ.

Fix λ̃ < α < λ and let β ≤ ω be maximal such that λβ ≤ α. Then β ≥ n,
Cγ+ω·α is an end-extension of Cγn+ω·α and therefore Cγ+ω·α is an end-
extension of Cγ̃+ω·α.

Case 3: Lim(A ∩Dγ) is unbounded in γ and γ /∈ S. Define

Cγ+ω·α =
⋃
{Cγ̄+ω·α | γ̄ ∈ Lim(A ∩Dγ)} ∪ [γ, γ + ω · α)

for all 0 < α < λ. If γ0, γ1 ∈ Lim(A ∩ Dγ) with γ0 < γ1, then we know
that γ0 ∈ Lim(A ∩Dγ1) and our induction hypothesis implies that Cγ1+ω·α
is an end-extension of Cγ0+ω·α for all 0 < α < λ. This shows that for all
0 < α < λ, the set Cγ+ω·α is a club in γ + ω · α that is disjoint from S.
Moreover, if γ̃ < γ and 0 < α < λ, then there is γ0 ∈ Lim(A ∩ Dγ) with
Cγ+ω·α ∩ γ̃ = Cγ0+ω·α ∩ γ̃, and by our induction hypothesis, this shows that
there there is a γ̄ < min(A \ γ̃) + ω · λ such that (4.1) holds. Next, the
induction hypothesis shows that Cγ+ω·α is an end-extension of Cγ̄+ω·α for
all γ̄ ∈ Lim(A∩Dγ) and 0 < α < λ. Finally, if γ̃ ∈ A∩γ, then the induction

hypothesis implies that there are γ̄ ∈ Lim(A ∩ Dγ) and λ̃ < λ such that
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γ̃ ≤ γ̄, Cγ̄+ω·α is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ, and Cγ+ω·α
is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ.

Case 4: Lim(A∩Dγ) is unbounded in γ and γ ∈ S. Then cof(γ) = λ and
there is a sequence 〈γα ∈ Lim(A ∩Dγ) | α < λ〉 that is strictly increasing,
continuous and cofinal in γ. Given 0 < α < λ, define

Cγ+ω·α = Cγα+ω·α ∪ {γα + ω · α} ∪ (γ, γ + ω · α).

Given 0 < α < λ, the set Cγ+ω·α is a club in γ+ω ·α that is disjoint from S.
Next, if γ̃ < γ and 0 < α < λ, then

Cγ+ω·α ∩ γ̃ = (Cγα+ω·α ∪ {γα + ω · α}) ∩ γ̃
and our induction hypothesis yields γ̄ < min(A \ γ̃) + ω · λ such that (4.1)
holds. Finally, pick γ̃ ∈ A∩γ. Then the induction hypothesis allows us to find
α̃ ≤ λ̃ < λ such that γ̃ ≤ γα̃ and Cγα̃+ω·α is an end-extension of Cγ̃+ω·α for

all λ̃ < α < λ. Fix λ̃ < α < λ. Since γα ∈ A \S and γα̃ ∈ Lim(A∩Dγα), the
induction hypothesis implies that Cγα+ω·α is an end-extension of Cγα̃+ω·α,
so Cγ+ω·α is an end-extension of Cγ̃+ω·α.

This completes our inductive construction. We let ~C denote the resulting

C-sequence. Set T = T(ρ
~C
0 ) and ρ0 = ρ

~C
0 .

Claim 1. The tree T is a θ-Aronszajn tree.

Proof. Pick γ < θ. Since ~D is a �(θ)-sequence, we have

|{Cδ ∩ γ | δ ∈ A \ γ}| ≤ |γ|+ ℵ0 < θ.

Moreover, the above construction ensures that

|{Cδ+ω·α ∩ γ | γ + ω · λ ≤ δ ∈ A, 0 < α < λ}|
≤ |{(Cδ ∪ {δ}) ∩ γ | δ < min(A \ γ) + ω · λ}| < θ.

In combination, this shows that |{Cδ ∩ γ | γ ≤ δ < θ}| < θ.
Together with Lemma 4.2, the above computations show that |T(γ)| < θ

for all γ < θ. Since ~C avoids S, we can apply Proposition 1.2 and Lemma 4.9
to conclude that there are no cofinal branches through T. This proves that
T is a θ-Aronszajn tree.

Given γ ∈ A and α < λ, define

tγ(α) = ρ0(·, γ + ω · (1 + α))�γ ∈ T(γ).

Claim 2. If γ, γ̃ ∈ A with γ̃ < γ, then there is λ̃ < λ such that tγ̃(α) <T
tγ(α) for all λ̃ < α < λ.

Proof. By the above construction, we can find λ̃ < λ with the property
that Cγ+ω·α is an end-extension of Cγ̃+ω·α for all λ̃ < α < λ. By the definition

of ρ0, this implies that tγ̃(α) <T tγ(α) for all λ̃ < α < λ.
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Given γ < θ and α < λ, set δ = min(A \ γ) and define bγ(α) to be the
unique element of T(γ) with bγ(α) ≤T tδ(α). Then Claim 2 shows that the
resulting sequence 〈bγ : λ→ T(γ) | γ < θ〉 is a λ-ascent path through T.

Before we prove Theorem 1.12, we use the above theorem to reprove a
result of [26] on lower bounds for the consistency strength of the conclusion
of Theorem 1.13(iii). Note that the lower bound derived is strictly smaller
than the upper bound given by the theorem (see Question 6.5).

Corollary 4.13. Assume that θ > ω1 and there is a �(θ)-sequence ~C

with the property that the tree T(ρ
~C
0 ) is special.

(i) If θ is not a successor of a cardinal of cofinality ω, then there is
a C-sequence ~C of length θ with the property that T(ρ

~C
0 ) is a θ-

Aronszajn tree that contains an ω-ascent path.
(ii) If θ is a successor of a cardinal of cofinality ω, then there is a

C-sequence ~C of length θ with the property that T(ρ
~C
0 ) is a θ-Aron-

szajn tree that contains an ω1-ascent path.

Proof. Let κ < θ be a regular cardinal with the property that θ is not a
successor of a cardinal of cofinality κ. Then a combination of [26, Lemma 4]

with [12, Proposition 30] implies that there is a �(θ)-sequence ~D and S ⊆ Sθκ
stationary in θ such that ~D avoids S. By Theorem 4.12, this proves the
corollary.

Note that results of Jensen show that the assumption of Corollary 4.13
holds if θ is not a Mahlo cardinal in L (see [26, Theorem 2]). Moreover,
Jensen’s classical definition of �κ-sequences provides examples of sequences
with the above property.

Definition 4.14 (Jensen). Let κ be an infinite cardinal. A �κ-sequence

is a κ+-coherent C-sequence ~C = 〈Cγ | γ < κ+〉 with otp(Cγ) ≤ κ for all
γ < κ+.

Basic computations contained in [26] show that for every �κ-sequence ~C,

the tree T(ρ
~C
0 ) is a special κ+-Aronszajn tree. Using results from inner model

theory, this shows that the non-existence of Aronszajn trees containing as-
cending paths of width at most ω1 at the successor of a singular cardinal or
the successor of a weakly compact has very large consistency strength.

Proof of Theorem 1.12. Assume that V is a Jensen-style extender model
and let ϑ be an uncountable regular cardinal.

First, assume that ϑ is weakly compact. Let ν < ϑ, let P =
∏
η<ρ Pη be

a ν-support product of ϑ-Knaster partial orders and let 〈~pγ | γ < ϑ〉 be a
sequence of conditions in P. By the ∆-system lemma, there is an unbounded
subset S of ϑ and a subsetR of ρ of cardinality at most ν such that supp(pη)∩
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supp(pη̄) = R for all η, η̄ ∈ S with η 6= η̄. Then there is a unique function
c : S × S → R ∪ {ρ} such that the following statements hold for all γ, γ̄ ∈ S:

• c(γ, γ̄) = ρ if and only if the conditions ~pγ and ~pγ̄ are compatible
in P.
• If c(γ, γ̄) < ρ, then c(γ, γ̄) is the minimal element η of R such that the

conditions ~pγ(η) and ~pγ̄(η) are incompatible in Pη.

Since ϑ is weakly compact and each partial order Pη satisfies the ϑ-chain
condition, there is U ⊆ S unbounded in ϑ with c(γ, γ̄) = ρ for all γ, γ̄ ∈ U .
Then the sequence 〈~pγ | γ ∈ U〉 consists of pairwise compatible conditions
in P.

Next, assume that ϑ is neither weakly compact nor the successor of
a subcompact cardinal. If ϑ is inaccessible, then [31, Theorem 0.1] shows

that there is a �(ϑ)-sequence ~C and S ⊆ Sϑω stationary in ϑ such that ~C
avoids S. In the other case, if ϑ is the successor of a cardinal κ that is not
subcompact, then [18, Theorem 0.1] shows that there is a �κ-sequence, and
a combination of [12, Proposition 30] with [12, Corollary 32] shows that in

this case we can also find a �(ϑ)-sequence ~C and S ⊆ Sϑω stationary in ϑ such

that ~C avoids S. By Lemma 4.9 and Theorem 4.12, this implies that there
is a club D in ϑ and a ϑ-Aronszajn tree T such that there is an ascending
path of width ω through T and the set D∩S is non-stationary with respect
to T. Then Lemma 4.10 shows that the partial order Pω(T) is ϑ-Knaster,
and Proposition 2.3 implies that the full support product

∏
ω Pω(T) is not

ϑ-Knaster.

Finally, assume that ϑ is the successor of a subcompact cardinal κ. Since
subcompact cardinals are weakly compact, we have κ = κ<κ and a classical
result of Specker shows that there is a normal special ϑ-Aronszajn tree T.
Then Lemma 4.10 implies that the partial order Pω(T) is ϑ-Knaster. In
this situation, Proposition 1.5 shows that T contains an ascending path of
width κ, and Proposition 2.3 shows that the full support product

∏
κ Pω(T)

is not ϑ-Knaster.

5. PFA and ascending paths. In this section, we prove the three
statements of Theorem 1.14. We start by showing how the theory of guessing
models developed by Viale and Weiß [29] can be used to show that the Proper
Forcing Axiom implies the non-existence of trees containing ascending paths
of countable width without cofinal branches. Basically the same implication
was independently proven by Lambie-Hanson [13, Section 10]. For the sake
of completeness, we still present this short application of the results of [29].
Given a set X and a cardinal κ, we let Pκ(X) denote the collection of all
subsets of X of cardinality less than κ.
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Definition 5.1. Let ϑ be an uncountable regular cardinal and let M
be an elementary substructure H(ϑ).

(i) A set X ∈ H(ϑ) is M -approximated if X ∩ Y ∈ M for all Y in
M ∩ Pω1(M).

(ii) A set X ∈ H(ϑ) is M -guessed if there is an Y ∈M with the property
that X ∩M = Y ∩M .

(iii) M is a guessing model if for all A ∈ M and every X ⊆ A that is
M -approximated, the set X is M -guessed.

Definition 5.2 ([29]). Given an uncountable regular cardinal κ, we let
ISP(κ) denote the statement that for every regular cardinal ϑ > κ, the
collection of all guessing models is stationary in M ∈ Pκ(H(ϑ)).

Theorem 5.3 ([29, Theorem 4.8]). PFA implies ISP(ω2).

The following result also appeared as [13, Theorem 10.2].

Lemma 5.4. If ISP(κ) holds and θ ≥ ω2, then every narrow θ-system of
width ω has a cofinal branch.

Proof. Let R be a narrow θ-system of width ω, let ϑ > θ be a regular
cardinal with R ∈ H(ϑ) and let M ∈ Pω2(H(ϑ)) be a guessing model with
R ∈M . Set δ = sup(M∩θ) < θ. Then cof(δ) = ω1, because our assumptions
imply that every subset of M ∩δ of order-type ω is contained in M . Also, by
our assumptions, there are β < λ ⊆M and R ∈ R ⊆M such that the set

{γ ∈ D ∩M | ∃α < λ 〈γ, α〉 R 〈δ, β〉}
is unbounded in δ. Set

A = {〈γ, α〉 ∈ D × λ | 〈γ, α〉 R 〈δ, β〉}.
Then A ⊆ D × λ ∈M is a branch through R.

Pick X ∈ M ∩ Pω1(M). Since cof(δ) = ω1, we can find γ ∈ D ∩M and
α < λ such that A ∩X ⊆ γ × λ and 〈γ, α〉 R 〈δ, β〉. Then

A ∩X = {〈γ̄, ᾱ〉 ∈ D × λ | 〈γ̄, ᾱ〉 ∈ X, 〈γ̄, ᾱ〉 R 〈γ, α〉} ∈M.

The above computations show that A is M -approximated and hence
it is M -guessed. This shows that there is B ∈ M with B ⊆ D × λ and
A ∩ M = B ∩ M . In M , the set B is a cofinal R-branch though R. By
elementarity, R has a cofinal branch in V.

In the following, we will show that PFA is compatible with the existence
of an ω3-Souslin tree that contains an ascending path of width ω1. This proof
uses the weak square principle introduced by Baumgartner in unpublished
work and parallels the constructions of [13, Section 9].

Definition 5.5 (Baumgartner). Let κ be an infinite regular cardinal,

let B be a subset of κ+ with Sκ
+

κ ⊆ B ⊆ Lim and let ~C = 〈Cγ | γ < κ+〉 be
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a C-sequence. We say that ~C is a �B
κ -sequence if the following statements

hold:

(i) otp(Cγ) ≤ κ for all γ < κ+.
(ii) If γ ∈ B ∩ Lim and γ̄ ∈ Lim(Cγ), then γ̄ ∈ B and Cγ̄ = Cγ ∩ γ̄.

In contrast to �κ-sequences, such sequences can be added by <κ-directed
closed forcings that preserve the regularity of κ+.

Lemma 5.6 ([2, Fact 2.7]). If κ is an infinite regular cardinal, then there
is a partial order P with the following properties:

(i) P is <κ-directed closed and (κ+ 1)-strategically closed.
(ii) If G is P-generic over V, then there is a �B

κ -sequence in V[G].

The following observation shows that we can modify a given �B
κ -sequence

to obtain a sequence that avoids a stationary subset of a given stationary
set.

Proposition 5.7. Let κ be an infinite regular cardinal with the property
that there is a �B

κ -sequence.

(i) The set B is a fat stationary subset of κ+. In particular, B ∩Sκ+

ν is
stationary in κ+ for every regular cardinal ν ≤ κ.

(ii) If S ⊆ B is stationary in κ+, then there is A ⊆ S stationary in κ+

and a �B
κ -sequence ~C = 〈Cγ | γ < κ+〉 such that A ∩ Lim(Cγ) = ∅

for all γ ∈ B.

Proof. Let ~D = 〈Dγ | γ < κ+〉 be a �B
κ -sequence.

(i) We may assume that κ is uncountable, as otherwise the statement

holds trivially. Let C be a club in κ+. Pick γ ∈ Lim(C) ∩ Sκ+

κ ⊆ B. Then
(C ∩ Lim(Cγ)) ∪ {γ} is a closed subset of B ∩C of order-type κ+ 1. By [1,
Lemma 1.2], this argument shows that B is fat stationary in κ+.

(ii) By our assumptions, we have otp(Cγ) < γ for all γ ∈ S \(κ+1). This
allows us to find ξ ≤ κ and A ⊆ S stationary in κ+ such that otp(Dγ) = ξ for
all γ ∈ A. Then |A ∩ Lim(Dγ)| ≤ 1 for all γ ∈ B. If γ ∈ B and A∩Lim(Dγ)
= {γ̄}, then we define Cγ = Dγ∩(γ̄, γ). In the other case, if either γ ∈ κ+\B
or γ ∈ B and A ∩ Lim(Dγ) = ∅, then we define Cγ = Dγ . The resulting
sequence 〈Cγ | γ < κ+〉 is a C-sequence with otp(Cγ) ≤ κ and A∩ Lim(Cγ)
= ∅ for all γ < κ+. If γ ∈ B and γ̄ ∈ Lim(Cγ), then γ̄ ∈ Lim(Dγ), γ̄ ∈ B \A,
Dγ̄ = Dγ ∩ γ̄ and the above computation implies that Cγ̄ = Cγ ∩ γ̄.

In combination with certain fragments of the GCH, the above principle
allows us to construct Souslin trees containing ascending paths of small
width.
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Theorem 5.8. Let κ be an uncountable regular cardinal satisfying
2κ = κ+ and 2κ

+
= κ++. If there is a �B

κ+-sequence, then there is a κ++-
Souslin tree that contains a κ-ascent path.

Proof. Set ϑ = κ++. By our assumptions and Proposition 5.7, there is
a �B

κ -sequence ~C = 〈Cγ | γ < ϑ〉 and A ⊆ B ∩ Sϑκ stationary in ϑ such
that A ∩ Lim(Cγ) = ∅ for all γ ∈ B. Set B̄ = B ∪ {0}. Results of Shelah
(see [20]) show that our assumptions imply that ♦(E) holds for all E ⊆ Sϑ≤κ
stationary in ϑ. This allows us to fix a ♦(A)-sequence 〈Aγ | γ ∈ A〉.

We construct the following objects by induction on γ < ϑ:

(i) A subtree T of <ϑ2 of height ϑ (i.e. T is a tree of height ϑ that
consists of functions t : γ → 2 with γ < ϑ ordered by inclusion and
is closed under initial segments) with the following properties:

(a) If γ < ϑ, then |T(γ)| < ϑ and every element of T(γ) has two
distinct direct successors in T(γ + 1).

(b) If ν ≤ κ and 〈tξ | ξ < ν〉 is an ascending sequence in T with the
property that supξ<ν lhT(tξ) /∈ A, then

⋃
ξ<ν tξ ∈ T.

(c) If t ∈ T and lhT(t) ≤ γ < ϑ, then there is u ∈ T(γ) with t ⊆ u.

(ii) An injection ι : T→ ϑ with the following properties:

(a) If s, t ∈ T with lhT(s) < lhT(t), then ι(s) < ι(t).
(b) If γ ∈ A and the (ι�T<γ)-preimage of Aγ is a maximal antichain

in T<γ , then for every u ∈ T(γ) there is a t ∈ T<γ with t ⊆ u
and ι(t) ∈ Aγ .

(iii) A sequence 〈aγ : κ→ T(γ) | γ ∈ B̄〉 of functions such that:

(a) If γ ∈ B\A and γ̄ ∈ Lim(Cγ), then aγ̄(α) ⊆ aγ(α) for all α < κ.
(b) If γ, γ̄ ∈ B̄ with γ̄ < γ, then there is a κ̄ < κ with aγ̄(α) ⊆ aγ(α)

for all κ̄ ≤ α < κ.

In the inductive construction of the above objects, we have to distinguish
several cases and subcases:

Case 0: γ = 0. Set T(0) = {∅} and a0(α) = ∅ for all α < κ.

Case 1: γ = γ̄+1. Define T(γ) = {t ∈ γ2 | t�γ̄ ∈ T(γ̄)}. In this situation,
our induction hypothesis ensures that |T(γ)| < ϑ and hence there is an
injection ι�T<γ+1 : T<γ+1 → ϑ that extends the previous injections and
satisfies the above requirement.

Case 2: γ ∈ Sϑ<κ. Define T(γ) = {t ∈ γ2 | ∀γ̄ < γ t�γ̄ ∈ T(γ̄)}. Then
our induction hypothesis implies that for every t ∈ T<γ there is a u ∈ T(γ)
with t ⊆ u. Moreover, our assumptions imply that γ<κ < ϑ, and this shows
that |T(γ)| < ϑ. In particular, we can use our induction hypothesis to find



Ascending paths and specialization forcings 29

an injection ι�T<γ+1 : T<γ+1 → ϑ that extends the previous injections and
satisfies the above requirements.

Now, assume that γ is an element ofB. In the construction of the function
aγ : κ→ T(γ), we distinguish several subcases:

Subcase 2.1: Lim(Cγ) is unbounded in γ. Then we define aγ(α) =⋃
{aγ̄(α) | γ̄ ∈ Lim(Cγ)} for all α < κ. In this situation, our induction

hypothesis implies that aγ(α) ∈ T(γ) for all α < κ. Given γ̄ ∈ B∩γ, there is
γ0 ∈ Lim(Cγ) with γ̄ ≤ γ0 and our induction hypothesis shows that there is
κ̄ < κ with aγ̄(α) ⊆ aγ0(α) for all κ̄ ≤ α < κ. This shows that aκ̄(α) ⊆ aγ(α)
for all κ̄ ≤ α < κ.

Subcase 2.2: γ∈Lim(B) and Lim(Cγ) is bounded in γ. Then cof(γ)=ω
and there is a strictly increasing sequence 〈γn ∈ B ∩ γ | n < ω〉 cofinal in γ
such that Lim(Cγ) 6= ∅ implies γ0 = max(Lim(Cγ)). By our induction hy-
pothesis, there is a strictly increasing sequence 〈κn < κ | n < ω〉 such that
κ0 = 0 and aγn(α) ⊆ aγn+1(α) for all n < ω and κn+1 ≤ α < κ. Then
aγm(α) ⊆ aγn(α) for all m ≤ n < ω and κn ≤ α < κ. Given n < ω
and κn ≤ α < κn+1, we define aγ(α) to be some element of T(γ) that
extends aγn(α). In the other case, if supn<ω κn ≤ α < κ, then we define
aγ(α) =

⋃
{aγn(α) | n < ω} ∈ T(γ). Then the above choices ensure that

aγn(α) ⊆ aγ(α) for all n < ω and κn ≤ α < κ. In particular, we have
aγ0(α) ⊆ aγ(α) for all α < κ, and our induction hypothesis implies that
aγ̄(α) ⊆ aγ(α) for all γ̄ ∈ Lim(Cγ) and α < κ. Finally, fix γ̄ ∈ B̄ ∩ γ and
pick n < ω with γ̄ ≤ γn. By the induction hypothesis, there is κn ≤ κ̄ < κ
with aγ̄(α) ⊆ aγn(α) for all κ̄ ≤ α < κ. By the above computations, we have
aγ̄(α) ⊆ aγ(α) for all κ̄ ≤ α < κ.

Subcase 2.3: γ /∈ Lim(B) and sup(γ ∩ B̄) ∈ B̄. Then Lim(Cγ) is
bounded in γ and there are γ0 ≤ γ1 < γ such that γ0, γ1 ∈ B̄, γ1 =
max(B̄ ∩ γ), Lim(Cγ) 6= ∅ implies γ0 = max(Lim(Cγ)), and Lim(Cγ) = ∅
implies γ0 = γ1. By our induction hypothesis, there is a κ1 < κ with
aγ0(α) ⊆ aγ1(α) for all κ1 ≤ α < κ. Set κ0 = 0 and κ2 = κ. Given α < κ,
pick i < 2 with κi ≤ α < κi+1 and define aγ(α) to be some element of
T(γ) that extends aγi(α). Given α < κ, we have aγ0(α) ⊆ aγ(α) and the
induction hypothesis implies that aγ̄(α) ⊆ aγ(α) for all γ̄ ∈ Lim(Cγ). Fi-
nally, if γ̄ ∈ B̄ ∩ γ, then γ̄ ≤ γ1 and the induction hypothesis allows us to
find κ1 ≤ κ̄ < κ with aγ̄ ⊆ aγ1(α) for all κ̄ ≤ α < κ. This implies that
aγ̄ ⊆ aγ(α) for all κ̄ ≤ α < κ.

Subcase 2.4: γ /∈ Lim(B) and γ̃ = sup(γ ∩ B̄) /∈ B̄. Then Lim(Cγ) is
bounded in γ by γ̃ and λ = cof(γ̃) ≤ κ. Pick a strictly increasing continuous
sequence 〈γβ < γ̃ | β < λ〉 that is cofinal in γ̃ such that γβ+1 ∈ B for all
β < λ, Lim(Cγ) 6= ∅ implies γ0 = max(Lim(Cγ)), and Lim(Cγ) = ∅ implies



30 P. Lücke

γ0 = 0. By our induction hypothesis, there is a strictly increasing continuous
sequence 〈κβ < κ | β < λ〉 such that κ0 = 0 and aγβ̄ (α) ⊆ aγβ+1

(α) for all

κβ+1 ≤ α < κ and β̄ ≤ β < λ with γβ̄ ∈ B. Set κλ = supβ<λ λβ ≤ κ. Fix
α < κ and let β ≤ λ be maximal with κβ ≤ α. Then the above definitions
and the induction hypothesis imply that

āγ(α) =
⋃
{aγβ̄ (α) | β̄ < max{β, 1}, γβ̄ ∈ B} ∈ T<γ .

Define aγ(α) to be an element of T(γ) with āγ(α) ⊆ aγ(α). Then we have
aγ0(α) ⊆ aγ(α) for all α < κ. In particular, if γ̄ ∈ Lim(Cγ), then our
induction hypothesis implies that aγ̄(α) ⊆ aγ(α) for all α < κ. Finally, pick
γ̄ ∈ γ ∩ B. Then γ̄ < γ̃ and we can find β̄ < λ and κβ̄+1 ≤ κ̄ < κ with
γ̄ < γβ̄ ∈ B and aγ̄(α) ⊆ aγβ̄ (α) for all κ̄ ≤ α < κ. Fix κ̄ ≤ α < κ and

let β ≤ λ be maximal with α ≥ κβ. Then β > β̄ and aγβ̄ (α) ⊆ āγ(α). This

allows us to conclude that aγ̄(α) ⊆ aγ(α).

Case 3: γ ∈ Sϑκ \ A. Define T(γ) = {t ∈ γ2 | ∀γ̄ < γ t�γ̄ ∈ T(γ̄)}. As
above, our assumptions and the induction hypothesis imply that |T(γ)| < ϑ
and we can find an injection ι�T<γ+1 : T<γ+1 → ϑ with the desired proper-
ties.

Now, assume that γ ∈ B. Since cof(γ) > ω, we know that Lim(Cγ) ⊆ B
is unbounded in γ and the induction hypothesis shows that

aγ(α) =
⋃
{aγ̄(α) | γ̄ ∈ Lim(Cγ)} ∈ T(γ)

for all α < κ. Moreover, the induction hypothesis directly implies that this
sequence has the desired properties.

Case 4: γ ∈ A. Since cof(γ) > ω, there is a strictly increasing continu-
ous sequence 〈γα ∈ Lim(Cγ) | α < κ〉 cofinal in γ. Pick a maximal antichain
A in T<γ such that A is equal to the (ι�T<γ)-preimage of Aγ if this preimage
is a maximal antichain in T<γ . Let TA denote the set of all t ∈ T<γ with
s ≤T t for some s ∈ A. Given t ∈ TA, our induction hypothesis allows us
to find ut ∈ γ2 such that t ⊆ ut and ut�γ̄ ∈ T(γ̄) for all γ̄ < γ. We define
T(γ) = {ut | t ∈ TA}. Then the induction hypothesis implies that |T(γ)| < ϑ
and we can find a suitable injection ι�T<γ+1 : T<γ+1 → ϑ. Moreover, if the
(ι�T<γ)-preimage of Aγ is a maximal antichain in T<γ , then the above con-
struction ensures that for every u ∈ T(γ) there is a t ∈ T<γ with t ⊆ u and
ι(t) ∈ Aγ . Finally, the maximality of A in T<γ implies that for every α < κ
there is an āγ(α) ∈ TA with aγα(α) ⊆ āγ(α). Define aγ(α) = uāγ(α) ∈ T(γ)

for all α < κ. Pick γ̄ ∈ B̄ ∩ γ. Then we can find ᾱ < κ̄ < κ such that
γ̄ < γᾱ and aγ̄(α) ⊆ aγᾱ(α) for all κ̄ ≤ α < κ. Fix κ̄ ≤ α < κ. Then ᾱ < α,
γα ∈ B \A and γᾱ ∈ Lim(Cγα). Using the induction hypothesis, we conclude
that

aγ̄(α) ⊆ aγᾱ(α) ⊆ aγα(α) ⊆ āγ(α) ⊆ aγ(α).
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Case 5: γ ∈ Sϑκ+ . Then A ∩ Lim(Cγ) = ∅ and otp(Cγ) = κ+. Given
t ∈ T<γ , this shows that we can use our induction hypothesis to con-
struct ut ∈ γ2 with t ⊆ ut and ut�γ̄ ∈ T(γ̄) for all γ̄ < γ. Next, define
aγ(α) =

⋃
{aγ̄(α) | γ̄ ∈ Lim(Cγ)} for each α < κ. Given α < κ, the induc-

tion hypothesis shows that aγ(α) ∈ γ2 and aγ(α)�γ̄ ∈ T(γ̄) for all γ̄ < γ.
We define T(γ) = {ut | t ∈ T<γ} ∪ {aγ(α) | α < κ}. Then the induction
hypothesis implies that |T(γ)| < ϑ and we can find a suitable injection
ι�T<γ+1 : T<γ+1 → ϑ. Finally, the induction hypothesis implies that the
function aγ : κ→ T(γ) has the desired properties.

This completes the inductive construction of T and ι : T→ ϑ.

Claim. The tree T is a ϑ-Souslin tree.

Proof. By the above construction, T is a tree of height ϑ. Let A be a
maximal antichain in T. Using the properties of ι, we can construct a club
C in ϑ with the property that ran(ι�T<γ) = γ ∩ ran(ι) and A ∩ T<γ is a
maximal antichain in T<γ for all γ ∈ C. Then there is γ ∈ A ∩ C such that
Aγ is equal to the ι-image of A ∩ T<γ . So the (ι�T<γ)-preimage of Aγ is a
maximal antichain in T<γ , and for every u ∈ T(γ) there is a t ∈ T<γ with
t ⊆ u and ι(t) ∈ Aγ . This shows that A ⊆ T<γ and |A| < ϑ.

Given γ < ϑ and α < κ, set δ = min(B̄ \ γ) and let bγ(α) denote the
unique element of T(γ) with bγ(α) ⊆ aδ(α). By the above constructions,
if γ̄ < γ < ϑ, then there is a κ̄ < κ such that bγ̄(α) ⊆ bγ(α) for all κ̄ ≤
α < κ. This shows that the resulting sequence 〈bγ(α) : κ→ T(γ) | γ < ϑ〉 is
a κ-ascent path through T.

In the remainder of this section, we will combine the above results with a
theorem of Larson from [14] on the preservation of PFA under <ω2-directed
closed forcings to derive Theorem 1.14.

Proof of Theorem 1.14. Assume that PFA holds.
(i) Assume that θ > ω1 and T contains an ascending path of width ω.

Then Theorem 5.3 implies that ISP(ω2) holds, and Lemma 5.4 states that
every narrow θ-system of width ω has a cofinal branch. This shows that T
has a cofinal branch.

(ii) Let Ṗ be a Col(ω3, 2
ω2)-name for the partial order given by Lemma 5.6

for ω2 and let G ∗H be (Col(ω3, 2
ω2) ∗ Ṗ)-generic over V. Since the partial

order (Col(ω3, 2
ω2) ∗ Ṗ) is <ω2-directed closed, the results of [14] show that

PFA holds in V[G,H] and this implies that 2ω1 = ω2 holds in V[G,H].
Moreover, since ṖG is (ω2 + 1)-strategically closed in V[G], we have

(2ω2)V[G,H] = (2ω2)V[G] = ω
V[G]
3 = ω

V[G,H]
3 .

Finally, there is a �B
ω2

-sequence in V[G,H] and Theorem 5.8 shows that
there is an ω3-Souslin tree with an ω1-ascent path in V[G,H].
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(iii) Assume that κ is strongly compact and let G be Col(ω2, <κ)-generic
over V. Then the results of [14] show that PFA holds in V[G]. In V[G], if T
is a tree of regular height greater than ω2 containing an ascending path of
width ω1, then Theorem 1.13(v) implies that T has a cofinal branch.

6. Open questions. We close this paper with a list of questions raised
by the above results. Given an uncountable cardinal κ with κ = κ<κ, Theo-
rem 1.9 shows that a tree of height κ+ is specializable if and only if it contains
no ascending paths of width less than κ. It is natural to ask whether this
equivalence holds without the cardinal arithmetic assumption.

Question 6.1. If κ is an uncountable regular cardinal and T is a tree
of height κ+ that does not contain an ascending path of width less than κ,
is T specializable?

The following special case of this question is motivated by Theorem 1.14.

Question 6.2. Assume that PFA holds. Is every tree of height ω2 with-
out a cofinal branch specializable?

A negative answer to Question 6.1 would leave open the possibility that
specializable trees can be characterized by some combinatorial property.

Question 6.3. If κ is an uncountable regular cardinal, is the class of
specializable trees of height κ+ definable in V?

The proof of Theorem 1.11 in Section 2 shows that, under the cardinal-
arithmetic assumptions of the theorem, the existence of an ascending path
through T is equivalent to the existence of such a path with seemingly
stronger compatibility properties. It is not known to the author whether
this equivalence holds without the assumptions of the theorem.

Question 6.4. If the tree T contains an ascending sequence of width λ,
is there a sequence 〈bγ : λ→ T(γ) | γ < θ〉 such that for all γ̄ < γ < θ there
is an α < λ with bγ̄(α) <T bγ(α)?

Theorem 1.13(iii) shows that it is possible to obtain a model in which
every tree of height ω2 that contains an ascending path of width ω has a
cofinal branch. The discussion following the proof of Corollary 4.13 shows
that this statement implies that ω2 is Mahlo in L. Therefore it is natural to
ask for the exact consistency strength of this statement.

Question 6.5. Does the assumption that every tree of height ω2 that
contains an ascending path of width ω has a cofinal branch imply that ω2 is
a weakly compact cardinal in L?

The obvious strategy to answer Question 6.5 positively is to show that
the extra assumptions on the �(θ)-sequence in Theorem 4.12 are not ne-
cessary.
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Question 6.6. Does the existence of a �(θ)-sequence imply the exis-
tence of a θ-Aronszajn tree that contains an ascending path of width λ with
λ+ < θ?
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