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Abstract. We show that it is consistent with the axioms of ZFC that there

exists an infinite centreless group G with the property that for every ordinal α

there is a notion of forcing P that preserves cardinalities and cofinalities and
forces the automorphism tower of G to be taller than α.

1. Introduction

We start by giving a brief introduction to the so-called automorphism tower

problem1. Let G be a group with trivial centre. For each g ∈ G, the map

ιg : G −→ G; h 7→ g ◦ h ◦ g−1

is an automorphism of G and is called the inner automorphism corresponding to g.
Clearly, ιg = idG if and only if g = 1lG. The map

ιG : G −→ Aut(G); g 7→ ιg

is an embedding of groups that maps G onto the subgroup Inn(G) of all inner
automorphisms of G. An easy computation shows that π ◦ ιg ◦ π−1 = ιπ(g) holds
for all g ∈ G and π ∈ Aut(G). This shows that Inn(G) is a normal subgroup of
Aut(G) and Aut(G) is also a group with trivial centre. By iterating this process,
we inductively construct the automorphism tower of G.

Definition 1.1. A sequence 〈Gα | α ∈ On〉 of groups is the automorphism tower

of a centreless group G if the following statements hold.

(1) G0 = G.
(2) For all α ∈ On, Gα is a normal subgroup of Gα+1 and the induced homo-

morphism

ϕα : Gα+1 −→ Aut(Gα); g 7→ ιg ↾ Gα

is an isomorphism.
(3) For all α ∈ Lim, Gα =

⋃

{Gβ | β < α}.

In this definition, we replaced Aut(Gα) by an isomorphic copy Gα+1 that con-
tains Gα as a normal subgroup. This allows us to take unions at limit stages.
Without this isomorphic correction, we would have to take direct limits at limit
stages. By induction, we can construct such a tower for each centreless group and
it is easy to show that each group Gα in this tower is uniquely determined up to an

The author’s research was supported by the Deutsche Forschungsgemeinschaft (Grant SCHI
484/4-1 and SFB 878).

1An extensive account of all aspects of the automorphism tower problem can be found in Simon

Thomas’ forthcoming monograph [Tho].
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isomorphism which is the identity on G. We can therefore speak of the α-th group
Gα in the automorphism tower of a centreless group G.

It is natural to ask whether the automorphism tower of a centreless group eventu-
ally terminates, in the sense that there is an α ∈ On with Gα = Gα+1 and therefore
Gα = Gβ for all β ≥ α. A classical result of Helmut Wielandt (see [Wie39, page
212]) says that the automorphism tower of a finite centreless group terminates after
finitely many steps. In [Tho85] and [Tho98], Simon Thomas uses Fodor’s Lemma
to show that every infinite centreless group has a terminating automorphism tower
by proving the following result.

Theorem 1.2 (Tho98, Theorem 1.3). If G is an infinite centreless group of cardi-

nality κ, then there is an α < (2κ)
+

with Gα = Gα+1.

This result allows us to make the following definitions.

Definition 1.3. Given a centreless group G, we let τ(G) denote the least ordinal
α satisfying Gα = Gα+1 and call this ordinal the height of the automorphism tower

of G. For every infinite cardinal κ, we define

τκ = lub{τ(G) | G is a centreless group of cardinality κ}.

There are only 2κ-many centreless groups of infinite cardinality κ and this shows
that Simon Thomas’ result implies τκ < (2κ)

+
for all infinite cardinals κ. The

following result of Winfried Just, Saharon Shelah and Simon Thomas shows that
(2κ)

+
is the best upper cardinal bound for τκ provable in ZFC for uncountable

regular κ.

Theorem 1.4 (JST99, Theorem 1.4). Assume (GCH). Let κ be a regular uncount-

able cardinal, ν be a cardinal with κ < cof(ν) and α be an ordinal with α < ν+.

Then there exists a <κ-closed partial order P that satisfies the κ+-chain condition

and the following statements are true in every P-generic extension of V.

(1) 2κ = ν.

(2) There exists a centreless group G of cardinality κ such that τ(G) = α.

Note that the following problem is still open.

Problem 1.5. Find a model 〈M,∈M 〉 of ZFC and an infinite cardinal κ in M such

that it is possible to compute2 the exact value of τκ in M .

One of the reasons why it is so difficult to compute the value of τκ is that
although the definition of automorphism towers is purely algebraic, there can be
groups whose automorphism tower heights depend on the model of set theory in
which they are computed. Therefore, you always have to take into account the
set-theoretic background in which the computation of τκ takes place. This shows
that the automorphism tower construction contains a set-theoretic essence (this
formulation is due to Joel David Hamkins, see [Ham02]). We give a short overview
on results concerning the existence of such groups and continue by introducing a
new class of groups whose automorphism towers are highly malleable by forcing.

In [Tho98], Simon Thomas constructs a centreless group G with τ(G) = 0 and a
partial order P that satisfies the countable chain condition and 1lP 

P
“τ(Ǧ) ≥ 1 ”.

2By “compute ”, we mean set-theoretic characterizations of τκ. Examples of such characteri-

zations are 〈M,∈M 〉 |= “τκ = κ+ ” or 〈M,∈M 〉 |= “τκ = 2κ ”.
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In the other direction, he also constructs a centreless group H with τ(H) = 2 and
1lQ 

Q
“τ(Ȟ) = 1 ” for every notion of forcing Q that adds a new real.

Let G be an infinite centreless group, P be a partial order and F be P-generic
over V. By the results mentioned above, the height of the automorphism tower of G
computed in V, τ(G)V, can be higher or smaller than the height computed in V[F ],
τ(G)V[F ]. It is natural to ask whether the value of τ(G)V places any constraints on
the value of τ(G)V[F ], and vice versa. Obviously, τ(G)V[F ] = 0 implies τ(G)V = 0.
The following result by Joel David Hamkins and Simon Thomas suggests that this
is the only implication provable in ZFC that holds for all centreless groups in the
above situation.

Theorem 1.6 (HT00, Theorem 1.4). It is consistent with the axioms of ZFC that

for every infinite cardinal κ and every ordinal α < κ, there exists a centreless group

G with the following properties.

(1) τ(G) = α.

(2) Given 0 < β < κ, there exists a partial order P, which preserves cofinalities

and cardinalities, such that 1lP 
P
“τ(Ǧ) = β̌ ”.

In [FH08], Gunter Fuchs and Joel David Hamkins showed that Gödel’s con-
structible universe L is a model of the above statement. Using techniques developed
in [HT00] and [FH08], Gunter Fuchs and the author extended the above results by
constructing ZFC-models containing groups whose automorphism tower height can
changed again and again by passing to another model of set theory.

Theorem 1.7 (FL10). It is consistent with the axioms of ZFC that for every

infinite cardinal κ there is a centreless group G with τ(G) = 0 and the property that

for every function s : κ −→ (κ \ {0}) there is a sequence 〈Pα | 0 < α < κ〉 of partial

orders such that the following statements hold.

(1) For all 0 < α < κ, Pα preserves cardinalities and cofinalities.

(2) For all 0 < α < β < κ, there is a partial order Q with Pβ = Pα × Q.

(3) For all α < κ, we have 1lPα+1


Pα+1
“τ(Ǧ) = š(α̌) ”.

(4) If 0 < α < κ is a limit ordinal, then 1lPα


Pα
“τ(Ǧ) = 1 ”.

Again, L is a model of this statement. In another direction, [FL10] also shows
how to construct a model of ZFC that contains an infinite centreless group whose
automorphism tower height can be changed again and again by passing to smaller
and smaller inner models.

Next, we introduce another class of groups whose automorphism tower height
can be changed drastically by passing to forcing extensions of the ground model.
We state the main result of this note.

Theorem 1.8. It is consistent with the axioms of ZFC that there is a centreless

group G of cardinality ℵ1 with the property that for every ordinal α there is a partial

order P satisfying the following statements.

(1) P is σ-distributive and satisfies the ℵ2-chain condition.

(2) 1lP 
P
“τ(Ǧ) ≥ α̌ ”.

In the above situation, we say that G has unbounded potential automorphism

tower heights. The following section contains the proof of this result. We close this
introduction with questions motivated by this result.

Question 1.9. Is L a model of the statement of Theorem 1.8?
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Given a partial order P, consider the following property.

(∗) P is σ-closed and satisfies the ℵ2-chain condition.

Question 1.10. Is it consistent with the axioms of ZFC that there is a centreless

group G of cardinality ℵ1 with the property that for every ordinal α there is a partial

order P that satisfies (∗) and 1lP 
P
“τ(Ǧ) ≥ α̌ ”?

If this question has a positive answer, then it is natural to ask the following
question.

Question 1.11. Is it provable in ZFC that there is a partial order P that satisfies (∗)
and forces the statement of Question 1.10 to hold true in every P-generic extension

of the ground model?

A negative answer to this questions opens the possibility of finding a solution to
Problem 1.5 using an iterated forcing construction. This solution would require an
analysis of the absoluteness properties of the long automorphism towers added by
Theorem 1.4 under σ-closed forcing and the use of techniques similar to the ones
used in the next section.

2. Constructing the Model

In this section, we construct a ZFC-model containing a group with unbounded
potential automorphism tower heights. This construction is motivated by Joel
David Hamkins’ alternative proof of the consistency of the Maximality Principle

(see [Ham03, page 533]). We combine those techniques with Theorem 1.4 and some
basic forcing results. For completeness, we provide proofs of these results.

Let L
∈,δ̇ be the first-order language extending the language L∈ of set theory by a

constant symbol δ̇. Given an L∈-formula ϕ(v0, . . . , vn−1), we let ϕV
δ̇(v0, . . . , vn−1)

denote the L
∈,δ̇-formula

(∃x)
[

ϕx(v0, . . . , vn−1) ∧ (∀y)
(

y ∈ x ↔ rnk(y) < δ̇
)]

,

where ϕx(v0, . . . , vn−1) is the usual relativization of ϕ(v0, . . . , vn−1) to x. We let
“Vδ̇ ≺ V ” denote the L

∈,δ̇ - theory of all axioms of the form

(∀x0, . . . , xn−1) [(rnk(x0), . . . , rnk(xn−1) < δ̇ ∧ ϕ(x0, . . . , xn−1))

−→ ϕV
δ̇(x0, . . . , xn−1)],

where ϕ(v0, . . . , vn−1) is an n-ary L∈-formula.

Proposition 2.1. If ZF is consistent, then so is the theory ZFC + (GCH) +
“Vδ̇ ≺ V ”.

Proof. The consistency of ZF implies the existence of a model 〈V,∈〉 of ZFC +
(GCH). Given a finite fragment F of “Vδ̇ ≺ V ”, we can apply Levy’s Reflection
Principle (see [Mos09, Theorem 8C.4]) to find an element δ of V with

〈V,∈, δ〉 |= F + “ δ̇ is a strong limit cardinal ”.

By the Compactness Theorem, this shows that the theory ZFC+(GCH)+“Vδ̇ ≺ V ”
is consistent. �

Proposition 2.2. If 〈V,∈, δ〉 is a model of ZFC + “Vδ̇ ≺ V ”, then δ is a strong

limit cardinal in V.
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Proof. By elementarity, we have 〈Vδ,∈〉 |= (Inf) and this implies ω < δ. Further
applications of elementarity yield 2κ < δ for every cardinal κ < δ. �

If V[G] is a generic extension of the ground model and α is an ordinal, then we
also write V[G]α to denote the set of all elements x of V[G] with rnk(x)V[G] < α.
Given a model 〈V,∈, δ〉 of ZFC + “Vδ̇ ≺ V ”, we investigate forcing extensions of
〈V,∈〉 by partial orders contained in Vδ.

Proposition 2.3. Let δ be a cardinal and P ∈ Vδ be a partial order. If G is

P-generic over V, then

V[G]δ = {ẋG ∈ V[G] | ẋ ∈ VP ∩ Vδ}.

Proof. Let G be P-generic over V. An easy induction shows that rnk(ẋG) ≤ rnk(ẋ)
holds for each name ẋ ∈ VP.

We define a sequence 〈v̇α ∈ VP | α < δ〉 of names in the following way.

(1) v̇0 = ∅.
(2) For all α < δ, we define v̇α+1 = P (dom(v̇α) × P) × {1lP}.
(3) If α ∈ Lim ∩ δ, then we define v̇α =

⋃

{v̇β | β < α}.

If rnk(P) = α0 < δ, then another easy induction shows that rnk(v̇α) < α0+α+ω
and

1lP 
P

“(∀x) [rnk(x) < α̌ −→ x ∈ v̇α] ”

holds for all α < δ (the proof of [Kun80, Theorem 4.2, page 201] contains the details
of the successor case).

Now, suppose ẋ ∈ VP with rnk(ẋG)V[G] < δ. By the above constructions, there
is an α < δ and a condition p ∈ G with p 

P
“ ẋ ⊆ v̇α ”. If we define

ẏ = {〈ż, r〉 ∈ VP × P | (∃q ∈ P) [r ≤P p, q ∧ 〈ż, q〉 ∈ v̇α ∧ r 
P

“ ż ∈ ẋ ”]} ∈ VP,

then rnk(ẏ) < δ and p 
P

“ ẋ = ẏ ”. �

Lemma 2.4. Let 〈V,∈, δ〉 be a model of ZFC+“Vδ̇ ≺ V ” and P ∈ Vδ be a partial

order. If G is P-generic over V, then 〈V[G],∈, δ〉 is a model of ZFC + “Vδ̇ ≺ V ”.

Proof. By our assumptions, 〈Vδ,∈〉 is a transitive ZFC-model, G is P-generic over
Vδ, G ∈ V[G]δ, VP

δ = VP ∩ Vδ and Proposition 2.3 shows Vδ[G] = V[G]δ.
Let ϕ(v0, . . . , vn−1) be an n-ary L∈-formula and x0, . . . , xn−1 ∈ V[G]δ. Fix

ẋ0, . . . , ẋn−1 ∈ VP
δ with xi = ẋG

i for all i < n. If 〈V[G],∈〉 |= ϕ(x0, . . . , xn−1),
then there is a condition p ∈ G with 〈V,∈〉 |= [p 

P
ϕ(ẋ0, . . . , ẋn−1)]. All pa-

rameters of this statement are elements of Vδ and we can conclude 〈Vδ,∈〉 |=
[p 

P
ϕ(ẋ0, . . . , ẋn−1)]. An application of the Forcing Theorem in Vδ gives us

〈V[G]δ,∈〉 |= ϕ(x0, . . . , xn−1). �

In the following, we state and prove standard results that show how a generic
extension of the ground model by a big partial order can be factored into a two-step
iteration with the property that the intermediate model contains a certain small set
from the original forcing extension and is a generic extension of the ground model
by a small partial order. Given a boolean algebra B, we let B∗ denote the partial
order with domain B \ {0B} ordered by the restriction of ≤B to this set.

Lemma 2.5. Let κ be an infinite cardinal, B be a complete boolean algebra and

ẋ ∈ VB∗

with 1lB 
B∗

“ ẋ ⊆ κ̌ ”. Then there is a κ-generated complete subalgebra C

of B in V and names Ḋ, ẏ ∈ VC∗

with the following properties.
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(1) 1lC 
C∗

“ Ḋ is a partial order ” and there is a dense embedding i : B∗ −→

C∗ ∗ Ḋ such that i(c) = 〈c, ċ〉 with c 
C∗

“ ċ = č ” for all c ∈ C∗.

(2) If G0 ∗ G1 is (C∗ ∗ Ḋ)-generic over V and G is the preimage of G0 ∗ G1

under i, then ẋG = ẏG0 ∈ V[G0].

Proof. Given α < κ, set Bα = {b ∈ B∗ | b 
B∗

“ α̌ ∈ ẋ ”} and bα = supB Bα. Let C

be the complete subalgebra of B generated by the set {bα | α < κ} and define

ẏ = {〈α̌, bα〉 ∈ VC∗

× C∗ | α < κ, bα 6= 0B} ∈ VC∗

.

Let G be B∗-generic over V. If α ∈ ẋG, then there is a b ∈ G with b 
B∗

“ α̌ ∈ ẋ ”

and this shows bα ∈ G and α ∈ ẏG∩C∗

. The other direction follows directly from
the fact that bα ∈ Bα holds for all α < κ.

There is a canonical C∗-name Ḋ with the property that, whenever G0 is C∗-
generic over V, then ḊG0 is the partial order whose domain is the set

{b ∈ B∗ | (∀c ∈ G0) b ‖B∗ c}

ordered by the restriction of ≤B to this domain.
If b ∈ B∗ and G is B∗-generic over V with b ∈ G, then b ∈ ḊG∩C∗

and there is a
c ∈ G ∩ C∗ with c 

C∗
“ b̌ ∈ Ḋ ”. This shows that the function

i0 : B∗ −→ C∗; b 7→ sup
B

{c ∈ C∗ | c 
C∗

“ b̌ ∈ Ḋ ”}

is well-defined. Pick a function i1 : B∗ −→ VC∗

with 1lC 
C∗

“ i1(b) ∈ Ḋ ” and

i0(b) 
C∗

“ b̌ = i1(b) ” for all b ∈ B∗. Define i : B∗ −→ C∗ ∗ Ḋ by setting i(b) =
〈i0(b), i1(b)〉.

Given c, c′ ∈ C∗, it is easy to see that c′ 
C∗

“ č ∈ Ḋ ” is equivalent to c′ ≤C c.
This shows that i0(c) = c holds for all c ∈ C∗. We show that i is a dense embedding.

Let b0, b1 ∈ B∗ with b0 ≤B b1. Given c ∈ C∗, if c 
C∗

“ b̌0 ∈ Ḋ ”, then c 
C∗

“ b̌1 ∈ Ḋ ”. This shows that i0(b0) ≤C∗∗Ḋ i0(b1) holds and hence i(b0) ≤C∗∗Ḋ i(b1).
Next, fix a0, a1 ∈ B∗ with a0 ⊥B∗ a1. Assume, toward a contradiction, that there
is a 〈c, ḋ〉 ∈ C∗ ∗ Ḋ with 〈c, ḋ〉 ≤C∗∗Ḋ i(a0), i(a1). We can find a 0C <C c∗ ≤C c

and a condition d ∈ B∗ with c∗ 
C∗

“ ḋ = ď ”. This means c∗ 
C∗

“ ď ≤Ḋ ǎ0, ǎ1 ”

and therefore 0B <B d ≤B a0, a1, a contradiction. Finally, fix 〈c, ḋ〉 ∈ C∗ ∗ Ḋ.

As above, there are 0C <C c∗ ≤C c and d ∈ B∗ with c∗ 
C∗

“ ḋ = b̌ ”. Since

c∗ 
C∗

“ č∗ ‖B̌∗ ď ”, there is a condition d∗ ∈ B∗ with d∗ ≤B c∗, d. By the above

computations, i0(d∗) ≤C i0(c∗) = c∗ ≤C c and i0(d∗) 
C∗

“ i1(d∗) ≤Ḋ ḋ ”. This

means i(d∗) ≤C∗∗Ḋ 〈c, ḋ〉 and i is a dense embedding.

If G0 ∗ G1 is (C∗ ∗ Ḋ)-generic over V and G is the preimage of G0 ∗ G1 under i,
then both G0 and G ∩ C∗ are C∗-generic over V. Since i0 ↾ C∗ = idC∗ , it follows
that G∩C∗ ⊆ G0 and the maximality of generic filters yields G∩C∗ = G0. By the
above calculations, ẋG = ẏG∩C∗

= ẏG0 ∈ V[G0]. �

Given an infinite cardinal κ and a set X, we let [X]<κ denote the set of all subsets
of X of cardinality less than κ. If B is a boolean algebra and C is a subalgebra of
B, then C is called <κ-complete in B if infB X ∈ C for all X ∈ [C]<κ.

Proposition 2.6. Let κ be an infinite regular cardinal, B be a complete boolean

algebra that satisfies the κ-chain condition and C be a subalgebra of B. If C is

<κ-complete in B, then C is a complete subalgebra of B.
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Proof. Assume, toward a contradiction, that C is not a complete subalgebra of
B and let ν be the least cardinal such that there is a sequence 〈cα ∈ C | α < ν〉
with infB{cα | α < ν} /∈ C. By our assumption, ν ≥ κ and it is easy to see that
ν is a regular cardinal. Given α < ν, we define bα = infB{cβ | β < α}. Our
assumptions imply 0B 6= bα ∈ C and bβ ≤B bα for all α ≤ β < ν. Moreover,
infB{bα | α < ν} = infB{cα | α < ν} /∈ C. If we define aα = bα − bα+1 for all α < ν,
then the set A = {aα ∈ B | α < ν, aα 6= 0B} is an anti-chain in B and has cardinality
less than κ. This means that there is an α < ν with aβ = 0B for all α ≤ β < ν and
an easy induction shows that this implies bα+1 = bβ for all α < β < ν. We can
conclude infB{bα | α < ν} = bα+1 ∈ C, a contradiction. �

Lemma 2.7. Let κ be an infinite cardinal, B be a complete boolean algebra that

satisfies the κ+-chain condition and C be a subset of B of cardinality at most κ. If

C is the complete subalgebra of B generated by C, then C has cardinality at most

2κ.

Proof. It suffices to construct a complete subalgebra C+ of B that contains C and
has cardinality at most 2κ. We define an ascending sequence 〈Cα | α < κ+〉 of
subalgebras of B in the following way.

(1) C0 is the subalgebra of B generated by C.
(2) If α ∈ κ+ ∩ Lim, then Cα =

⋃

{Cβ | β < α}.

(3) Cα+1 is the subalgebra of B generated by the set {infB X | X ∈ [Cα]<κ+

}
for all α < κ+.

An easy induction shows that the subalgebra Cα has cardinality at most 2κ

for all α < κ+ and this shows that the subalgebra C+ =
⋃

{Cα | α < κ+} also
has cardinality at most 2κ. We show that C+ is a complete subalgebra of B. By

Proposition 2.6, it suffices to show that C+ is <κ+-complete in B. If X ∈ [C+]<κ+

,
then there is an α < κ+ with X ⊆ Cα. But this means infB X ∈ Cα+1 ⊆ C+. �

We are now ready to prove our main result.

Proof of Theorem 1.8. By Proposition 2.1, the consistency of ZFC gives us a model
〈V,∈, δ〉 of ZFC + (GCH) + “Vδ̇ ≺ V ”. Work in V and apply Theorem 1.4 with
κ = ω1 and ν = α = δ+ to produce a partial order P with the above properties. By
[Kun80, Lemma 3.3, page 63], there is a complete boolean algebra B and a dense
embedding d : P −→ B∗.

We can find a name ẋ ∈ VB∗

with the property that, whenever H is B∗-generic
over V, then ẋH ⊆ ω1 and there is a centreless group G ∈ V[H] with domain ω1,
τ(G)V[H] = δ and

(1) α ◦G β = γ ⇐⇒ ≺≺α, β≻, γ≻ ∈ ẋH

for all α, β, γ < ω1.
3 Apply Lemma 2.5 with ω1, B and ẋ to find C, Ḋ, i and ẏ with

the above properties. Since B satisfies the ℵ2-chain condition, we can apply Lemma
2.7 to see that C has cardinality at most 2ℵ1 < δ. Let P0 ∈ Vδ be a partial order
isomorphic to C∗ in V. Our construct ensures that P0 is σ-distributive and satisfies
the ℵ2-chain condition. Let F be P0-generic over V. By Lemma 2, 〈V[F ],∈, δ〉 is
a model of ZFC + “Vδ̇ ≺ V ”. We will show that 〈V[F ],∈〉 contains a group with
unbounded automorphism tower heights.

3We let ≺·, ·≻ : On × On −→ On denote the Gödel pairing function.
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Let H0 ∈ V[F ] be the image of F under the isomorphism between P0 and C∗. We

have V[F ] = V[H0]. Let H1 be ḊH0 -generic over V[H0] and H be the preimage of
H0 ∗ H1 under i. In V[H] = V[H0][H1], there is a centreless group G with domain
ω1 and τV[H] = δ whose group operation is coded by ẋH as in (1). The above
construction yields ẋH ∈ V[H0] and this means G ∈ V[H0]δ = V[F ]δ. In V[H0],

ḊH0 is a σ-distributive partial order that satisfies the ℵ2-chain condition and we
have

(2) 〈V[H0],∈〉 |=
[

1lḊH0
̇

DH0
“τ(Ǧ) > δ̌ ”

]

.

Let ϕ(v0, . . . , v4) be the L∈-formula that is the conjunction of the following state-
ments:

(1) “v0 is a σ-distributive partial order satisfying the ℵ2-chain condition ”,
(2) “v1 is a centreless group and v2 is the canonical v0-name for v1 ”,
(3) “v3 is an ordinal and v4 is the canonical v0-name for v3 ”,
(4) 1lv0


v0

“τ(v2) ≥ v4 ”.

In order to show that G is a group with unbounded potential automorphism tower
heights in 〈V[F ],∈〉, it clearly suffices to show

(3) 〈V[F ],∈〉 |= (∀α ∈ On)(∃x, y, z) ϕ(x,G, y, α, z).

Given α < δ, the above (2) implies

〈V[F ],∈〉 |= (∃x, y, z) ϕ(x,G, y, α, z)

and all parameters of this statement are contained in V[F ]δ. By elementarity, we
have

〈V[F ]δ,∈〉 |= (∀α ∈ On)(∃x, y, z) ϕ(x,G, y, α, z).

and another application of elementarity shows that (3) holds. �
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