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Abstract

We extend the results of Hamkins and Thomas concerning the malleability of automor-
phism tower heights of groups by forcing. We show that any reasonable sequence of ordinals
can be realized as the automorphism tower heights of a certain group in consecutive forcing
extensions or ground models, as desired. For example, it is possible to increase the height
of the automorphism tower by passing to a forcing extension, then increase it further by
passing to a ground model, and then decrease it by passing to a further forcing extension,
etc., transfinitely. We make sense of the limit models occurring in such a sequence of models.
At limit stages, the automorphism tower height will always be 1.

1 Introduction

If G is a centerless group, then there is a natural embedding

ιG : G −→ Aut(G); g 7→ ιg :=
[
h 7→ hg := g ◦ h ◦ g−1

]
that maps G to the subgroup Inn(G) of inner automorphisms of G. An easy computation shows
that π ◦ ιg ◦π−1 = ιπ(g) holds for all g ∈ G and π ∈ Aut(G). Hence Inn(G) is a normal subgroup
of Aut(G), CAut(G)(Inn(G)) = {idG} and Aut(G) is also a group with trivial center.

By iterating this process, we inductively construct the automorphism tower of G.

Definition 1.1. A sequence 〈Gα | α ∈ On〉 of groups is the automorphism tower of a group G
if the following statements hold.

1. G0 = G.

2. Gα is a normal subgroup of Gα+1 and the induced homomorphism

ϕα : Gα+1 −→ Aut(Gα); g 7→ ιg � G
α

is an isomorphism.

∗The research of the second author was supported by DFG Grant SCHI 484/4-1.
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3. Gλ =
⋃
{Gα | α < λ}, if λ ∈ Lim.

In this definition, we took Gα+1 to be an isomorphic image of Aut(Gα) of which Gα is a
normal subgroup. This enables us to take unions at limits. Without this isomorphic correction,
we would have to take direct limits at limit stages, and could have let Gα+1 be Aut(Gα), as it
is sometimes done in the literature.

This definition implies that the center of G is trivial and we can construct such a tower for
each centerless group by induction. It is easy to show that each group Gα is uniquely determined
up to an isomorphism which is the identity on G, and therefore we can speak of the α-th group
Gα in the automorphism tower of a centerless group G.

We say that the automorphism tower of a centerless group G terminates after α steps, if
Gα = Gα+1 and therefore Gα = Gβ for all β ≥ α. Simon Thomas’ elegant proof of the following
theorem uses Fodor’s Lemma to show that every infinite centerless group has a terminating
automorphism tower.

Theorem 1.2 ([Tho98]). The automorphism tower of every infinite centerless group of cardi-
nality κ terminates in fewer than (2κ)+ many steps.

Definition 1.3. If G is a centerless group, then τ(G) denotes the least ordinal α such that
Gα = Gα+1. τ(G) is called the height of the automorphism tower of G.

Although the definition of automorphism towers is purely algebraic, it has a set-theoretic
essence, since there are groups whose automorphism tower heights depend on the model of set
theory in which they are computed. In [Tho98], Simon Thomas constructs a centerless, complete
(i.e. τ(G) = 0) group G and a c.c.c. forcing P such that P  “τ(G) = 1”. In the other direction,
he also constructs a centerless group H such that τ(G) = 2 and Q  “τ(H) = 1” for every forcing
Q that adjoins a new real.

Let M , N be transitive models of ZFC with M ⊆ N and G ∈ M be a centerless group. By
the above, the height of the automorphism tower of G computed in M , τ(G)M , can be higher
or smaller than the height computed in N , τ(G)N . This leads to the natural question whether
the value of τ(G)M places any constraints on the value of τ(G)N , and vice versa. Obviously,
τ(G)N = 0 implies τ(G)M = 0. The following result by Joel Hamkins and Simon Thomas
suggests that this is the only provable implication that holds for all centerless groups in the
above situation. In short, the theorem states that the existence of centerless groups whose
automorphism towers are highly malleable by forcing is consistent with the axioms of ZFC.

Theorem 1.4 ([HT00]). It is consistent that for every infinite cardinal κ and every ordinal
α < κ, there exists a centerless group G with the following properties.

1. τ(G) = α,

2. If β is any ordinal such that 0 < β < κ, then there exists a notion of forcing Pβ, which
preserves cofinalities and cardinalities, such that Pβ  “τ(G) = β”.

The proof of this theorem splits into an algebraic and a set-theoretic part. The following
definition features the key concept of both parts of the proof. The terminology is taken from
[FH08].

Definition 1.5. Let κ be a cardinal, 〈Γα | α < κ〉 be a sequence of rigid graphs and E be an
equivalence relation on κ. We say that a forcing notion P is able to realize E, if P forces that all
Γα are rigid and, that for all β, γ < κ, Γβ ∼= Γγ ⇔ βEγ.

The following theorem sums up the results of the set-theoretic part of the proof.
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Theorem 1.6 ([HT00]). It is consistent that for every regular cardinal κ ≥ ω, there exists
a sequence 〈Γα | α < κ+〉 of pairwise nonisomorphic connected rigid graphs with the following
property: Whenever E is an equivalence relation on κ+, there exists a notion of forcing PE with
the following properties:

1. PE preserves cardinals and cofinalities and adds no new κ-sequences,

2. PE is able to realize E.

The algebraic part of the proof then shows that the conclusions of Theorem 1.4 are a conse-
quence of this theorem. Since we are going to adopt the techniques developed in these proofs,
the next section contains an overview of the the construction of the groups in the algebraic part
of the proof.

The consistency result of the former theorem is obtained by a class-sized forcing over a model
of ZFC + GCH. In [FH08], Joel Hamkins and the first author showed that the conclusions of
this theorem also hold in the constructible universe L. They deduce these conclusions from
combinatorial principles that hold in L and that we will introduce presently.

Definition 1.7. Let κ be a cardinal and let Cofκ denote the set {α < κ+ | cf(α) = κ}.
Then ♦κ+(Cofκ) is the assertion that there is a sequence ~D = {Dα | α ∈ Cofκ} such that for

any A ⊂ κ+ the set {α ∈ Cofκ|A ∩ α = Dα} is stationary in κ+.

In L, the hypotheses that 2<κ = κ and ♦κ+(Cofκ) are known to hold for every regular
cardinal κ. Note that ♦κ+(Cofκ) implies that κ is regular, for otherwise Cofκ is empty.

For the remainder of this paper, we fix a cardinal κ that satisfies the following assumption.

Assumption 1.8. κ is a regular, uncountable cardinal such that 2<κ = κ and ♦κ+(Cofκ) holds.

Definition 1.9. Let E be an equivalence relation on κ. If γ < κ, then we let [γ]E denote the
E-equivalence class of γ. We call E bounded, if there is some κ̄ < κ such that [γ]E = {γ} for all
γ ∈ [κ̄, κ).

Now we are ready to formulate the statement of the theorem mentioned above.

Theorem 1.10 ([FH08], under Assumption 1.8). There are sequences ~T = 〈Tα | α < κ〉 and
~C = 〈Cα,β | α < β < κ〉 of κ+-Souslin trees with the following property: Whenever E is a bounded
equivalence relation on κ, the full support product forcing

CE :=
∏
γ<κ

γ 6=min[γ]E

Cmin[γ]E ,γ

has the following properties.

1. CE preserves cardinals and cofinalities and adds no new κ-sequences.

2. CE is able to realize E.

The aim of this paper is to show that this theorem already implies the existence of groups
whose automorphism tower is even more malleable by forcing than those of the groups mentioned
in Theorem 1.4. It gives rise to groups whose automorphism tower heights can be changed
multiple times to any non-zero height by passing from one model of set-theory to another, either
by always going to a forcing extension, by always passing to a ground model, or by mixing these
possibilities. In fact, for the given cardinal κ, we will use Assumption 1.8 to construct a single
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complete group G = Gκ the height of whose automorphism tower can be changed in each of
these ways, repeatedly.

Let us now formulate precisely the three ways in which the height of the automorphism tower
of G can be changed repeatedly. The first main result, Theorem 3.10, addresses the possibility
of passing from models to larger and larger forcing extensions in each step:

Theorem (Under Assumption 1.8). For every function s : κ −→ (κ \ {0}), there is a sequence
of partial orders 〈Psγ | 0 < γ < κ〉, such that the following statements hold for each 0 < α < κ.

1. Psα preserves cardinals and cofinalities and adds no new κ-sequences.

2. Psα+1  “τ(G) = s(α)”.

3. If α is a limit ordinal, then Psα  “τ(G) = 1”.

4. If β < α, then Psα extends Psβ.

Moreover, if t : κ −→ κ \ {0}, and s � γ = t � γ for some 0 < γ < κ, then Psγ = Ptγ .

The next main theorem addresses the possibility of producing a model with the property that
the height of the automorphism tower of G can be changed by passing to smaller and smaller
ground models.

Theorem (Under Assumption 1.8). For every ordinal λ < κ, there is a notion of forcing Qλ
with the following properties.

1. Qλ preserves cardinals and cofinalities and adds no new κ-sequences.

2. Qλ  “τ(G) = 1”.

3. In every Qλ-generic forcing extension the following holds.

For every sequence s : λ −→ (λ \ {0}) there exists a decreasing sequence of ground models
〈Ms

α | 0 < α < λ〉 such that for all 0 < α < λ the following statements hold.

(a) Ms
α+1 |= “τ(G) = s(α)”.

(b) If α is a limit ordinal, then Ms
α |= “τ(G) = 1”.

Moreover, if t : λ −→ (λ \ {0}), then s(α) = t(α) implies Ms
α+1 = Ms

α+1 for all α < λ and
Ms
ν = M t

ν for all limit ordinals ν < λ.

This is Theorem 4.1, proven in Section 4.
Next, the possibilities of passing to a ground model or to a forcing extension can be mixed.

In order to make sense of models that are reached by unboundedly often passing to a forcing
extension and unboundedly often passing to a ground model, we need a suitable notion of limit.
We make this precise and prove in Theorem 5.2, vaguely speaking, that all patterns can be
realized, provided that the set of α < κ at which one passes to a forcing extension contains a
club.

Finally, the last section shows that the lightface Closed Maximality Principle at the successor
of a cardinal κ such that 2<κ = κ implies the existence of a centerless group satisfying the
statements mentioned in 2. and 3. of Theorem 4.1 with λ = κ+ in V.
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2 Preliminaries

As it is very difficult to compute the automorphism tower of a given group, we will use a technique
developed by Simon Thomas which enables us to construct examples of automorphism towers of a
given height without the need of computing each automorphism group. The so called Normalizer
Tower Technique was developed in [Tho85].

Definition 2.1. If H is a subgroup of the group G, then the normalizer tower 〈Nα
G (H) | α ∈ On〉

of H in G is defined inductively as follows.

1. N0
G (H) = H,

2. Nα+1
G (H) = NG (Nα

G (H)) =
{
g ∈ G | gNα

G (H) g−1 = Nα
G (H)

}
,

3. Nλ
G (H) =

⋃
{Nα

G (H) | α < λ}, if λ ∈ Lim.

An easy cardinality argument shows that for each group G of cardinality κ and each subgroup
H of G there is an α < κ+ such that Nα

G (H) = Nα+1
G (H). The normalizer length τnlgG (H) of H

in G is the least such α.

The following theorem reduces the problem of manipulating automorphism towers to the
problem of manipulating normalizer towers in automorphism groups of first-order structures.

Theorem 2.2 ([Tho85]). Let M be a structure for the first-order language L and let H be a
subgroup of Aut(M). Then there exists a centerless group G such that the statement

τ(G) = τnlgAut(M)
(H)

holds and is upwards-absolute between transitive models of ZFC.

We will now summarize the results that we need in order to construct structures whose
automorphism groups can be changed by forcing.

We call a pair (G,Ω) a permutation group, if G is a subgroup of Sym(Ω). Given a family
〈(Gi,Ωi) | ∈ I〉 of permutation groups, the direct product of the family is defined to be the
permutation group ∏

i∈I
(Gi,Ωi) =

(∏
i∈I

Gi,
⊔
i∈I

Ωi

)
,

where the direct product of groups acts on the disjoint union of sets in the obvious manner.
We say that two permutation groups (G,Ω) and (H,∆) are isomorphic, if there is a bijection
f : Ω → ∆ such that the induced isomorphism f∗ : Sym(Ω) → Sym(∆), σ 7→ f ◦ σ ◦ f−1 maps
G onto H. We write (H0,Ω0) × (H1,Ω1) instead of

∏
i<2 (Hi,Ωi) and τnlg (H,Ω) instead of

τnlgSym(Ω)
(H).

For each ordinal α, we inductively define permutation groups (Hα,∆α) and (Fα,∆α) in the
following way.

1. ∆0 = {∅} and H0 = F0 = {id∆0},

2. If α > 0, then we define

(Hα,∆α) = (H0,∆0)×
∏
β<α

(Fβ ,∆β) ,

Fα = Nα
Sym(∆α)

(Hα) .
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Note that the second clause directly implies

(Hα,∆α) ∼= (Hβ ,∆β)×
∏

β≤γ<α

(Fγ ,∆γ)

for all β < α. In order to keep our calculation clear, we also define

(H∗α,∆
∗
α) = (Hα,∆α)× (F1,∆1)× (F1,∆1)

for α > 1.
An easy induction shows max({ω, α}) is an upper bound for the cardinality of ∆α and this

means that the definitions of (Hα,∆α) and (Fα,∆α) are absolute between models with the same
α-sequences of ordinals, because the symmetric group of ∆β is the same in those models for all
β ≤ α.

These permutation groups are the first ingredient in our construction. The following theorem
summarizes their important properties deduced in the algebraic part of [HT00].

Theorem 2.3. For each ordinal α, the following statements hold.

1. τnlg (Hα,∆α) = α.

2. τnlg (Fα,∆α) = 0.

3. If α > 1, then τnlg (H∗α,∆
∗
α) = 1.

Proof. The first statement is [HT00, Lemma 2.10] and the second statement follows directly from
the first, together with the definition of Fα. The third statement is [HT00, Lemma 2.14] with
β = 1.

The trees 〈Cα | α < κ〉 and 〈Tα | α < κ〉 constructed in 1.10 are the second ingredient in our
construction. By coding the trees Tα into connected graphs1 (see [Tho, Theorem 4.1.8]), we see
that under Assumption 1.8 there exists a sequence 〈Γα | α < κ〉 of rigid, pairwise non-isomorphic
connected graphs such that for every bounded equivalence relation E on κ the notion of forcing
CE mentioned in Theorem 1.10 is able to realize E.

If E and F are equivalence relations on κ, then we define

E � F ⇔ E ⊆ F ∧ (∀α < κ)([α]E 6= {α} → min[α]E = min[α]F ).

Note that, as the notation suggests, � is a reflexive, transitive relation. Moreover, by checking
the definition of the forcing CE in Theorem 1.10, we arrive at the following observation.

Observation 2.4 (Under Assumption 1.8). If E � F are bounded equivalence relations on κ,
then the forcing CF extends CE, in the strong sense that there is a partial order Q such that
CF ∼= CE ×Q.

The following construction allows us to combine the two ingredients.
If 〈Γi = (Xi, Ei) | i ∈ I〉 is a family of graphs, then we define the direct sum of the family to

be the graph ⊕
i∈I

Γi =

(⊔
i∈I

Xi,
⊔
i∈I

Ei

)
obtained by taking the disjoint unions of the sets of vertices and edges, respectively.

1By a graph (without further qualification), we mean a nondirected graph.
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We call a pair (G,Γ) a graph permutation group, if Γ is a graph and G is a subgroup of
Aut(Γ). As above, if a 〈(Gi,Γi) | i ∈ I〉 is a family of graph permutation groups, then we define
the direct product of the family to be the graph permutation groups

∏
i∈I

(Gi,Γi) =

(∏
i∈I

Gi,
⊕
i∈I

Γi

)
,

where the product of groups acts on the direct sum of graphs in the obvious way. We say
that two graph permutation groups are isomorphic, if there is an isomorphism of the underlying
graphs such that the induced isomorphism of automorphism groups maps the subgroups correctly.
Again, we write (G0,Γ0)×(G1,Γ1) instead of

∏
i<2(Gi,Γi) and τnlg(G,Γ) instead of τnlgAut(Γ)

(G).

If Ω is a set and Γ is a graph, then we define

GΩ(Γ) =
⊕
x∈Ω

Γ

to be the graph obtained by replacing each element of Ω by a copy of Γ. We can embed Sym(Ω)
into Aut(GΩ(Γ)) in a natural way and, if Γ is connected and rigid, then it is not hard to show
that this embedding is an isomorphism.

If (G,Ω) is a permutation group, then we get a new graph permutation group (G(Γ),GΩ(Γ)),
where G(Γ) is the image of G under the above embedding of Sym(Ω) into Aut(GΩ(Γ)).

In the following lemma, we list facts about graph permutation groups used in the algebraic
part of [HT00]. They will play an important role in our later constructions, because they will
enable us to compute normalizer towers in products of graph permutation groups.

Lemma 2.5. If ~Γ = 〈Γi | i ∈ I〉 is a sequence of connected rigid graphs and 〈(Gi,Ωi) | i ∈ I〉 is
a sequence of permutation groups, then then following statements hold for all i0 ∈ I.

1. τnlg
(
Gi0(Γi0),GΩi0

(Γi0)
)

= τnlg(Gi0 ,Ωi0).

2. If ~Γ consists of pairwise non-isomorphic graphs, τnlg (Gi0 ,Ωi0) ≥ 1 and τnlg (Gj ,Ωj) ≤ 1
holds for all j ∈ I \ {i0}, then

τnlg

(∏
i∈I

(Gi(Γi),GΩi(Γi))

)
= τnlg (Gi0 ,Ωi0) .

3. If ~Γ consists of pairwise isomorphic graphs and (G,Ω) =
∏
i∈I (Gi,Ωi), then

(G(Γi0),GΩ(Γi0)) ∼=
∏
i∈I

(Γi(Gi),GΩi(Γi)) .

Proof. By the assumption, the embedding of Sym(Ωi) into Aut(GΩi(Γi)) is an isomorphism and
maps G onto G(Γi). This proves the first statement.

The set of connected components of
∏
i∈I (Gi(Γi),GΩi(Γi)) consists of a copy of Γi for each

element of Ωi and each i ∈ I. If all Γi’s are pairwise non-isomorphic, then each subgraph of the
form GΩi(Γi) is invariant under all automorphisms and therefore each automorphism of the graph
is induced by an element of the group

∏
i∈I Aut(GΩi(Γi)) acting on the graph in the obvious way.

By the rigidity of the Γi’s, this means that the automorphism group of
⊕

i∈I GΩi(Γi) is isomorphic
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to
∏
i∈I Sym(Ωi) and this isomorphism sends

∏
i∈I Gi(Γi) to

∏
i∈I Gi. An easy induction then

shows

Nα∏
i∈I Sym(Ωi)

(∏
i∈I

Gi

)
∼= Nα

Sym(Ωi0 )
(Gi0)×

∏
j∈I\{i0}

N1
Sym(Ωj)

(Gj)

for all α > 0 and, by the existence of the above isomorphism, this proves the second statement.
Each automorphism of

⊕
i∈I GΩi(Γi) that fixes a connected component setwise also fixes

it pointwise by rigidity. This shows that the natural isomorphism between
⊕

i∈I GΩi(Γi) and⊕
j∈I GΩj (Γi0) induced by the ismorphisms between Γi0 and the Γi’s is also an ismorphism

between the graph permutation groups (G(Γi0),GΩ(Γi0)) and
∏
i∈I (Γi(Gi),GΩi(Γi)).

We now introduce the group G which is the protagonist of the present article. Fix, once
and for all, a sequence 〈(Gα,Ωα) | α < κ〉 of permutation groups such that each (Gα,Ωα) is of
the form (Fᾱ,∆ᾱ), for some ᾱ < κ, and such that for every β < κ, the set of δ < κ such that
(Gδ,Ωδ) = (Fβ ,∆β) is unbounded in κ. So for example, using the Gödel pairing function, we
could let (Gγ ,Ωγ) = (Fα,∆α), if γ = ≺α, β� < κ. We write Gα(Γ) instead of GΩα(Γ).

Definition 2.6. If ~Π = 〈Πα | α < κ〉 is a sequence of graphs, then we define

G(~Π) =
∏
α<κ

(Gα(Πα),Gα(Πα)) .

As noted above, the definition of G(~Π) is absolute between models with the same κ-sequences

of ordinals that contain ~Π.
Under Assumption 1.8, we also fix sequences ~T = 〈Tα | α < κ〉 and ~C = 〈Cα,β | α < β < κ〉

as in Theorem 1.10, as well as the corresponding sequence ~Γ = 〈Γα | α < κ〉 of graphs coding the
trees 〈Tα | α < κ〉.

Definition 2.7. Let G = Gκ be the centerless group the existence of which is postulated in
Theorem 2.2, with respect to G(~Γ).

So by definition, τ(G) = τnlg(G(~Γ)) holds and is upwards-absolute. Hence we can change the

height of the automorphism tower of G by changing the height of the normalizer tower of G(~Γ)
in the corresponding symmetric group.

Since all Γα are rigid and pairwise non-isomorphic and τnlg(Gα,Ωα) = τnlg(Fᾱ,∆ᾱ) = 0, we
may use Theorem 2.3 and the second part of Lemma 2.5 to get the following statement.

Observation 2.8 (Under Assumption 1.8). τ(G) = τnlg(G(~Γ)) = 0.

3 Consecutive Forcing Extensions

To make the following constructions clearer, we introduce some vocabulary. We would like to
remind the reader that we are working under Assumption 1.8, and that we have fixed the objects
mentioned at the end of the previous section.

Definition 3.1. Let X be a subset of κ with monotone enumeration 〈γα | α < otp(X)〉.

1. We call X active if the order type of X is of the form otp(X) = β + 1 > 2 and

(a) For all α < β, (Gγα ,Ωγα) = (Fα,∆α).

(b) (Gγβ ,Ωγβ ) = (F0,∆0).
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2. We call X sealed if the order type of X is of the form otp(X) = β + 3, X ∩ (γβ + 1) is
active and

(
Gγβ+1

,Ωγβ+1

)
=
(
Gγβ+2

,Ωγβ+2

)
= (F1,∆1).

3. If X is a sealed subset of κ with order type β + 3 and 1 < β̄ ≤ β, then {γα|α < β̄} ∪ {γβ}
is the active segment of X of order type β̄ + 1.

4. We call X trimmed, otp(X) = 2 and (Gγ0
,Ωγ0

) = (Gγ1
,Ωγ1

) = (F0,∆0). If Y is an
active subset of κ with monotone enumeration 〈δα | α < β + 1〉 or a sealed subset of κ with
monotone enumeration 〈δα | α < β + 3〉, then {δ0, δβ} is the trimmed segment of Y .

So the permutation groups associated to a sealed subset X of κ with monotone enumeration
〈γα | α < β + 3〉 look as follows:

(Gγ0
,Ωγ0

) (Gγ1
,Ωγ1

), (Gγ2
,Ωγ2

) . . . (Gγβ ,Ωγβ ) (Gγβ+1
,Ωγβ+1

) (Gγβ+2
,Ωγβ+2

)

= = = = = =

(F0,∆0) (F1,∆1) (F2,∆2) . . . (F0,∆0) (F1,∆1) (F1,∆1)

Note that a sealed subset of κ must have order type at least 5. By definition, the following
equation holds for the above set X.

(1)
∏
δ∈X

(Gδ,Ωδ) = (F0,∆0)×

∏
α<β

(Fα,∆α)

× (F1,∆1)× (F1,∆1) =
(
H∗β ,∆

∗
β

)
.

If β̄ ≤ β and Y is the active segment of X of order type β̄ + 1, then the following equation
holds.

(2)
∏
δ∈Y

(Gδ,Ωδ) = (F0,∆0)×
∏
α<β̄

(Fα,∆α) =
(
Hβ̄ ,∆β̄

)
.

Finally, if Z = {ξ0, ξ1} is a trimmed subset of κ, then the following equation holds.

(3)
∏
δ∈Z

(Gδ,Ωδ) = (F0,∆0)× (F0,∆0) = (H1,∆1) .

We extend the above definitions to equivalence relations on κ and show how we can use them
to change the height of the automorphism tower of G.

Definition 3.2. Let E be a non-trivial equivalence relation on κ.

1. We call E inactive, if every non-trivial equivalence class is either a sealed or a trimmed
subset of κ.

2. We call E active, if all non-trivial E-equivalence classes are either active, sealed or trimmed
subsets of κ and there is a unique active E-equivalence class.

Lemma 3.3 (Under Assumption 1.8). If E is a bounded, inactive equivalence relation on κ,
then CE  “τ(G) = 1”.

Proof. We work in VCE . As noted after Definition 2.6, G(~Γ) =
∏
α<κ (Gα(Γα),Gα(Γα)) still

holds. Let S denote the set of all sealed E-equivalence classes, and for c ∈ S, let 〈γcα | α < βc + 3〉
be the monotone enumeration of c. Define T to be the set of all trimmed E-equivalence classes
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and let d = {ξd0 , ξd1} for each d ∈ T . Finally, let N denote the union of all trivial E-equivalence
classes. Using the third part of Lemma 2.5 and the equations (1) and (3), the following holds in
VCE .

G(~Γ) ∼=

(∏
α∈N

(Gα(Γα),Gα(Γα))

)
×

(∏
c∈S

(∏
δ∈c

(
Gδ(Γγc0 ),Gδ(Γγc0 )

)))
×
∏
d∈T

(
(Gξd0 (Γξd0 ),Gξd0 (Γξd0 ))× (Gξd1 (Γξd0 ),Gξd1 (Γξd0 ))

)
∼=

(∏
α∈N

(Gα(Γα),Gα(Γα))

)
×

(∏
c∈S

(H∗βc(Γγc0 ),G∆∗
βc

(Γγc0 ))

)
×
∏
d∈T

(H1(Γξd0 ),G∆1
(Γξd0 )).

By assumption, all graphs appearing in this product are rigid and pairwise non-isomorphic. The
first part of Lemma 2.5 and Theorem 2.3 now yield:

1. For all α ∈ N , τnlg (Gα(Γα),Gα(Γα)) = τnlg (Gα,Ωα) = 0,

2. for all c ∈ S, τnlg(H∗βc(Γγc0 ),G∆∗
βc

(Γγc0 )) = τnlg(H∗βc ,∆
∗
βc) = 1,

3. for all t ∈ T , τnlg(H1(Γξd0 ),G∆1
(Γξd0 )) = τnlg(H1,∆1) = 1.

By definition, there is at least one non-trivial equivalence class and we can therefore apply the
second part of Lemma 2.5 to see that τ(G) = τnlg(G(~Γ)) = 1 holds.

Lemma 3.4 (Under Assumption 1.8). Let E be a bounded, active equivalence relation on κ. If
e is the unique active E-equivalence class, then CE  “τ(G) + 1 = otp(e,<)”.

Proof. We work in VCE . By the definition of active subsets, the monotone enumeration of e is
of the form 〈γα | α < β + 1〉 for some 1 < β < κ. Define N , S, T , γcα and ξdi as in the proof of
Lemma 3.3. Using the third part of Lemma 2.5 and the equations (1)-(3), we get the following
equalities.

G(~Γ) ∼=

(∏
α∈N

(Gα(Γα),Gα(Γα))

)
×

(∏
c∈S

(∏
δ∈c

(Gδ(Γγd0 ),Gδ(Γγd0 ))

))

×

(∏
d∈T

(
(Gξd0 (Γξd0 ),Gξd0 (Γξd0 ))× (Gξd1 (Γξd0 ),Gξd1 (Γξd0 ))

))
×
∏
δ∈e

(Gδ(Γγ0),Gδ(Γγ0))

∼=

(∏
α∈N

(Gα(Γα),Gα(Γα))

)
×

(∏
c∈S

(H∗βc(Γγc0 ),G∆∗
βc

(Γγc0 ))

)
×

(∏
d∈T

(H1(Γξd0 ),G∆1
(Γξd0 ))

)
× (Hβ(Γγ0),G∆β

(Γγ0)).

Again, all graphs in this products are rigid and pairwise non-isomorphic and

τnlg
(
Hβ(Γγ0),G∆β

(Γγ0)
)

= τnlg (Hβ ,∆β) = β > 1.

By the second part of Lemma 2.5 and the computations made in the proof of Lemma 3.3,

τ(G) + 1 = τnlg(G(~Γ)) + 1 = β + 1 = otp(e,<).
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Next, we define a family of functions that allows us the construction of special bounded
equivalence relations in our proofs of the theorems. Remember that for each α < κ the set
{β < κ | (Gβ ,Ωβ) = (Fα,∆α)} is unbounded in κ.

Lemma 3.5. For each s : κ −→ (κ \ {0, 1}), there exists a function s∗ : κ → [κ]<κ with the
following properties.

1. If β < α, then s∗(β) ⊆ min(s∗(α)).

2. For all α < κ, s∗(α) is a sealed subset of κ with otp(s∗(α), <) = s(α) + 3.2

Proof. Assume s∗ � α is already defined, for some α < κ. We define s∗(α) = {γαδ | δ < s(α) + 3}
where 〈γαδ | δ < s(α) + 3〉 is defined as follows: γα0 is the least ν < κ such that

⋃
{s∗(β)|β < α} ⊆

ν and (Gν ,Ων) = (F0,∆0). If 0 < δ < s(α) and 〈γαξ | ξ < δ〉 is already defined, then γαδ is the
least ν < κ such that ν > sup({γαξ |ξ < δ}) and (Gν ,Ων) = (Fδ,∆δ). Finally, γαs(α) is the least

ν < κ such that ν > sup({γαδ |δ < s(α)}) and (Gν ,Ων) = (F0,∆0), γαs(α)+1 is the least ν < κ such

that ν > γαs(α) and (Gν ,Ων) = (F1,∆1), and γαs(α)+2 is the least ν < κ such that ν > γαs(α)+1 and

(Gν ,Ων) = (F1,∆1).

From now on, we fix an operator s 7→ s∗ with the above properties. We may also assume
that if s, t : κ −→ (κ \ {0, 1}) are such that s � γ = t � γ, for some γ < κ, then s∗ � γ = t∗ � γ.
For each s : κ −→ (κ \ {0, 1}) and each α < κ we define a bounded, inactive equivalence relation
Esα on κ by

γEsαδ ⇔ γ = δ ∨ (∃β < α)γ, δ ∈ s∗(β).

It is easy to see that α < β < κ implies Esα � Esβ .

Definition 3.6. Let E be a bounded equivalence relation on κ. If E is active and e is the unique
active E-equivalence classe, then we define ht(E) to be the unique ordinal α with otp(e,<) =
α+ 1. If E is inactive, then we define ht(E) = 1.

As an illustration of the concepts introduced above, note the following observation which is
a direct consequence of Lemmas 3.3 and 3.4.

Observation 3.7 (Under Assumption 1.8). If E is a bounded equivalence relation on κ and E
is either active or inactive, then CE  “τ(G) = ht(E)”.

Next, we want to analyze �-ascending and -descending chains of equivalence relations.

Definition 3.8. Let ~A = 〈Aα | α < β〉 be a sequence of sets. We say that ~A converges, if for
every x there is an α < β such that either x ∈ Aγ for all α ≤ γ < β or x /∈ Aγ for all α ≤ γ < β.

If ~A converges, then we define the limit of ~A to be the set

lim
α→β

Aα =
⋃
α<β

⋂
α≤γ<β

Aγ .

If β = 0 or β = α + 1, then ~A automatically converges. Namely, limγ→0Aγ = ∅, and

limγ→α+1Aγ = Aα. Trivially, if ~A is increasing (in the inclusion relation), then ~A converges
with limit

⋃
α<β Aα, and if it is decreasing, then it converges with limit

⋂
α<β Aα. It is easy to

see that if ~A is a convergent sequence of equivalence relations on a set I, then lim ~A is also an
equivalence relation on I.

We will apply the following facts in the proofs of the first two main results. They follow
directly from the above remarks and the transitivity of “�”.

2Remember that a sealed subset of κ must have order type at least 5. This is why we require s(α) > 1 here.
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Observation 3.9. Let 〈Eα | α < κ〉 be a sequence of equivalence relations on κ.

1. If Eγ � Eβ holds for all γ < β < κ, then 〈Eβ | β < α〉 converges for all α < κ and
limβ→ᾱEβ � limβ→αEβ holds for all ᾱ ≤ α < κ.

2. If Eβ � Eγ holds for all γ < β < κ, then 〈Eβ | β < α〉 converges for all α < κ and
limβ→αEβ � limβ→ᾱEβ holds for all ᾱ ≤ α < κ.

We are now ready to apply our methods and constructions in order to prove the main theorem
of this section:

Theorem 3.10 (Under Assumption 1.8). For every function s : κ −→ κ\{0}, there is a sequence
of partial orders 〈Psγ | 0 < γ < κ〉, such that the following statements hold for each 0 < α < κ.

1. Psα preserves cardinals and cofinalities and adds no new κ-sequences.

2. Psα+1  “τ(G) = s(α)”.

3. If α is a limit ordinal, then Psα  “τ(G) = 1”.

4. If β < α, then Psα extends Psβ (in the sense that Psα ∼= Psβ ×Q, for some poset Q).

Moreover, if t : κ −→ κ \ {0}, and s � γ = t � γ for some 0 < γ < κ, then Psγ = Ptγ .

Proof. For a given s : κ −→ (κ \ {0}), let s + 1 be the function with domain κ defined by
s+ 1(α) = s(α) + 1, as usual. We construct a sequence 〈Eα | α < κ〉 of equivalence relations on
κ by defining the nontrivial equivalence classes of each relation. For α < κ, a subset Z ⊆ κ is a
nontrivial equivalence class of Eα iff one of the following conditions holds:

1. Z = (s+ 1)∗(β), for some β < α,

2. s(α) = 1 and Z = (s+ 1)∗(α),

3. s(α) > 1 and Z is the active segment of (s+ 1)∗(α) of order type s(α) + 1.

It is easy to check that the following claims hold for all α < κ:

(1) Eα is bounded and either active or inactive. Moreover, ht(Eα) = s(α).

(2) For all β < α, Eβ � Eα. In particular, 〈Eβ | β < α〉 converges and E∗α = limβ→αEβ is a
bounded equivalence relation on κ.

For each α < κ, we define Psα = CE∗α . These forcings satisfy the first property of the theorem
by the first statement of Theorem 1.10. By the first part of Observation 3.9, if β < α < κ, then
E∗β � E∗α and we can use Observation 2.4 to see that the forcings satisfy the last property of the
theorem.

Let α < κ. We have E∗α+1 = Eα and therefore Psα+1 = CEα  τ(G) = ht(Eα) = s(α). If
α is a limit ordinal, then it is not hard to show that E∗α = limβ→αEβ =

⋃
β<αEβ = Es+1

α

holds and this means Psα = CEs+1
α

 τ(G) = ht(Es+1
α ) = 1, because Es+1

α is an inactive bounded
equivalence relation on κ.

Finally, if s � γ = t � γ for s, t ∈ κκ and γ < κ, then we also have s∗ � γ = t∗ � γ and it is
easy to check that the above construction yields the same equivalence relations Eδ for all δ < γ.
Since E∗γ = limδ→γ Eδ, the resulting E∗γ coincide, and therefore Psγ = Ptγ .
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4 Consecutive Ground Models

In this section, we prove the second main result:

Theorem 4.1 (Under Assumption 1.8). For every ordinal λ < κ, there is a notion of forcing
Qλ with the following properties.

1. Qλ preserves cardinals and cofinalities and adds no new κ-sequences.

2. Qλ  “τ(G) = 1”.

3. In every Qλ-generic forcing extension the following holds.

For every sequence s : λ −→ (λ \ {0}) there exists a decreasing sequence of ground models
〈Ms

α | 0 < α < λ〉 such that for all 0 < α < λ the following statements hold.

(a) Ms
α+1 |= “τ(G) = s(α)”.

(b) If α is a limit ordinal, then Ms
α |= “τ(G) = 1”.

Moreover, if t : λ −→ (λ \ {0}), then s(α) = t(α) implies Ms
α+1 = Ms

α+1 for all α < λ and
Ms
ν = M t

ν for all limit ordinals ν < λ.

Before proving this theorem, we would like to comment on the first order expressibility of its
statement. It is by now a well-known fact that every ground model is uniformly definable in a
parameter, see [Lav07]. Even this fact, though, may at first not seem to be first order expressible.
But here is a simple way to state it: There is a first order formula ϕ(x, y) in the language of set
theory3 such that the following is provable in ZFC:

(∀P)(∀z)
[
(P is a partial order and z = P(P

+
)) =⇒ P  V̌ = {x | ϕ(x, z)}

]
Vice versa, given a set z, it is a simple matter to check whether {x | ϕ(x, z)} is a ZFC model
of which the universe is a forcing extension. So point 2. of the theorem can be expressed by
saying that for every sequence s : λ −→ λ \ {0}, there is a sequence 〈zα | 0 < α < λ〉 of sets such
that, for all 0 < α < λ, Ms

α := {x | ϕ(x, zα)} is a ground model and (a), (b) hold as stated.
Formulating the additional requirement in 2. doesn’t pose a problem either. So let’s turn to the
proof.

Proof of Theorem 4.1. Let t : κ −→ κ denote the function with constant value λ+ 2, and let t∗

be the function given by Lemma 3.5. We define E to be the bounded, sealed equivalence relation
Etλ on κ, i.e.

µEη ⇔ µ = η ∨ (∃α < λ)µ, η ∈ t∗(α).

Set Qλ = CE . By Theorem 1.10 and Lemma 3.3, Qλ satisfies the first and the second statement.
Let V[G] be a Qλ-generic extension and let s : λ −→ (λ \ {0}) be a sequence in V[G]. By the

above remark, s is already an element of V and we can make the following definitions there.
For α < λ, we define an equivalence relation Eα on κ by specifying that Z ⊆ κ is a nontrivial

equivalence class of Eα iff one of the following conditions holds:

1. Z = t∗(β), for some α < β < λ,

2. s(α) = 1 and Z = t∗(α),

3Of course, this existential quantification can be eliminated by writing down the formula ϕ explicitly, but the
details of its definition are irrelevant for our purposes.
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3. s(α) > 1 and Z is the active segment of t∗(α) of order type s(α) + 1.

Again, the following claims are obvious for all α < λ:

(1) Eα is bounded and either active or inactive. Moreover, ht(Eα) = s(α).

(2) For all β < α, Eα � Eβ. In particular, 〈Eβ | β < α〉 converges and E∗α = limβ→αEβ is a
bounded equivalence relation on κ.

For each α < λ, we define Psα = CE∗α and Ms
α = V[G∩Psα]. By the second part of Observation

3.9, if β < α < λ, then E∗α � E∗β and we can use Observation 2.4 to see that the sequence 〈Ms
α |

α < λ〉 of ground models is decreasing.
Let α < λ. We have E∗α+1 = Eα and Observation 3.7 yields Psα+1 = CEα  τ(G) = ht(Eα) =

s(α). If α is a limit ordinal, then E∗α = limβ→αEβ =
⋂
β<αEβ , because the sequence 〈Eβ |

β < α〉 is decreasing. As a result, the nontrivial equivalence classes of E∗α are precisely the sets
{t∗(β) | α ≤ β < λ} and this shows that E∗α is an inactive bounded equivalence relation on κ.
By Observation 3.7, Psα = CE∗α  τ(G) = ht(E∗α) = 1.

If s(α) = s′(α) for some s, s′ : λ −→ (λ \ {0}) and α < λ, then the above construction
produces the same equivalence relation Eα for both functions and therefore the same model
Mα+1 = V[G∩CEα ]. Finally, by the above analysis, the equivalence relation E∗ν = limβ→ν Eβ is
the same for all s : λ −→ (λ \ {0}) and limit ordinal ν < λ.

5 The Mix

In this section, we are producing models of set theory, where a given sequence of nonzero ordinals
can be realized as the height of the automorphism tower of G in consecutive models such that
the next one is a forcing extension or a ground model of the previous one, as desired. There
are some limitations on the possible patterns, and to formalize them precisely, we introduce the
notion of a realizable prescription.

Definition 5.1. A function s : κ −→ (κ \ {0})× 2 is a prescription on κ. It is realizable if the
set of α < κ such that (s(α))1 = 0 is not stationary, and if (s(0))1 = 1.4

The interpretation is that the first coordinate of s(α) gives the desired height of the automor-
phism tower of G in the (α+ 1)-st model, and the second coordinate says whether the (α+ 1)-st
model should be a forcing extension or a ground model of the α-th model.

Theorem 5.2 (Under Assumption 1.8). For every realizable prescription s on κ, there is a

sequence ~E := 〈Eα | α < κ〉 of bounded equivalence relations on κ with the following properties:

1. For every limit λ < κ, ~E�λ is convergent. For α < κ, set:

Mα = VClimβ<α Eβ .

2. For every α < κ, τ(G)Mα+1 = (s(α))0.

3. If α < κ is a limit ordinal, then τ(G)Mα = 1. Of course, M0 = V, so τ(G)M0 = 0.

4. For every α < κ, the following is true:

(a) If s(α)1 = 0, then Mα+1 is a ground model of Mα, and

4Here, we use the following notation for components of ordered pairs: (〈x, y〉)0 = x, (〈x, y〉)1 = y.
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(b) if s(α)1 = 1, then Mα+1 is a forcing extension of Mα.

Proof. Let a realizable prescription s be given. Let C ⊆ κ be a club of α with (s(α))1 = 1, such
that 0 ∈ C. Let fC : κ >> C be the monotone enumeration of C. Given β < κ, let i(β) be that
ordinal less than κ such that β ∈ [fC(i(β)), fC(i(β) + 1)). Let t be the function with domain κ
defined by setting t(α) = (s(α))0 + 1.

For β < κ, we define an equivalence relation Eβ on κ by specifying its nontrivial equivalence
classes. Namely, X is a nontrivial equivalence class of Eβ iff one of the following holds:

D.1. There is an α < β such that (s(α+ 1))1 = 1 and X = t∗(α).

D.2. There is an α < β such that (s(α+ 1))1 = 0 and X is the trimmed segment of t∗(α).

D.3. There is an α ∈ (β, fC(i(β) + 1)) such that (s(α))1 = 0 and X = t∗(α).

D.4. (s(β))0 > 1 and X is the active segment of t∗(β) of order type t(β) (which is (s(β))0 + 1),
or (s(β))0 = 1 and X = t∗(β).

This defines the sequence 〈Eβ | β < κ〉 of equivalence relations. Obviously, each Eβ is bounded.
If Eβ is active, then its active equivalence class is the active segment of t∗(β) of order type

(s(β))0+1. In particular, in Mβ+1 = VCEβ , τ(G) = (s(β))0. If Eβ is not active, then (s(β))0 = 1,
Eβ is inactive, and in Mβ+1, τ(G) = (s(β))0, as well.

We have to show the sequence has the desired properties. To this end, we verify the following
claims.

(1) For every α ≤ κ, the sequence 〈Eβ | β < α〉 converges. Let E∗α denote its limit.

Proof of (1). Fix a limit ordinal α ≤ κ. Let γ, δ < κ be given. We have to find ᾱ < α such that
either for all β ∈ (ᾱ, α), γEβδ holds, or for all β ∈ (ᾱ, α), γEβδ fails. This is trivial if γ = δ,
and it is also trivial if there is no µ < α such that γEµδ holds. But if there is such a µ, then
this means that γ, δ ∈ t∗(ξ), for some ξ < fC(i(µ) + 1) – this is easily confirmed by looking at
the definition of Eµ above. If ξ < α, then for all β, β′ ∈ (ξ, α), γEβδ ⇐⇒ γEβ′γ (again, this is
easily checked by referring to the clauses D.1-D.4 defining the equivalence relations), so we can
let ᾱ = ξ. But if ξ ≥ α, then this means that t∗(ξ) is a nontrivial equivalence class of Eµ due
to condition D.3, so ξ ∈ (µ, fC(i(µ) + 1). But then, for all β ∈ [µ, α), i(β) = i(µ), and again, by
D.3, t∗(ξ) will be a nontrivial equivalence class of Eβ . So in this case, we can set ᾱ = µ. 2(1)

It is also easy to see that in case α is a limit, E∗α is inactive, so that in VCE∗α , τ(G) = 1.

(2) For α < κ with (s(α))1 = 0, it follows that CEα � CE∗α .

Proof of (2). Note that if (s(α))1 = 0, then α ∈ (fC(i(α)), fC(i(α) + 1), since α /∈ C. There are
two cases to consider here.

The first case is that α is a limit ordinal. In that case, it follows that the only disagreement
between E∗α and Eα is that the α-th nontrivial equivalence class of E∗α is t∗(α), while the α-th
nontrivial equivalence class of Eα is the active segment of t∗(α) of order type (s(α))0 + 1. So
Eα � E∗α.

The second case is that α is a successor ordinal, say α = ᾱ+1. In this case, E∗α = Eᾱ, and we
have to show that Eα � Eᾱ. Since α ∈ (fC(i(α)), fC(i(α)+1), it follows that the α-th nontrivial
equivalence class of Eᾱ is t∗(α), while the α-th nontrivial equivalence class of Eα is the active
segment of t∗(α) of order type (s(α))0 + 1 (using clause D.4. in the definition of Eα and clause
D.3. in the definition of Eᾱ). Moreover, the ᾱ-th nontrivial equivalence class of Eᾱ is the active
segment of t∗(ᾱ) (by clause D.4. in the definition of Eᾱ), and the ᾱ-th nontrivial equivalence
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class of Eα is the trimmed segment of t∗(ᾱ) (by clause D.2. in the definition of Eα). Eα and Eᾱ
agree about the other nontrivial equivalence classes, so that it follows that Eα � Eᾱ, as desired.

2(2)

(3) If α < κ is such that (s(α))1 = 1, then CE∗α � CEα .

Proof of (3). As in the proof of claim (2), we distinguish two cases. The first case is that α
is a limit ordinal. As before, Eα and E∗α agree about the γ-th equivalence classes. The α-th
equivalence class of Eα is the active segment of t∗(α) of order type (s(α))0+1, while for γ ∈ t∗(α),
{γ} = [γ]E∗α . Eα and E∗α agree about the other nontrivial equivalence classes, which are of the
form t∗(β), for β ∈ (α, fC(i(α) + 1)). So E∗α � Eα, as claimed.

In the second case to consider, α is a successor ordinal, say α = ᾱ+ 1. So E∗α = Eᾱ, and we
have to show that Eᾱ � Eα. The α-th nontrivial equivalence class of Eα is the active segment
of t∗(α) of order type (s(α))0 + 1 (using clause D.4. in the definition of Eα), and for γ ∈ t∗(α),
{γ} = [γ]Eᾱ . The ᾱ-th nontrivial equivalence class of Eᾱ is the active segment of t∗(ᾱ) (by clause
D.4. in the definition of Eᾱ), and the ᾱ-th nontrivial equivalence class of Eα is t∗(ᾱ) (by clause
D.1. in the definition of Eα). Eα and Eᾱ agree about the other nontrivial equivalence classes, so
that it follows that Eα � Eᾱ, as desired. 2(3)

This finishes the proof of the theorem.

6 The effect of Closed Maximality Principles

It was shown in [Fuc08, Section 3.3] that Closed Maximality Principles imply the existence of
groups with malleable automorphism tower heights. The Lightface Closed Maximality Principle
at a regular cardinal λ, MP<λ−closed({λ}), says that every statement about λ that can be forced
by <λ-closed forcing in such a way that it stays true in further forcing extensions obtained by
<λ-closed forcing is already true in the ground model. It is a scheme of first order statements
involving λ as a parameter.

It might be viewed as a defect in the previous results of this article that in Theorems 4.1 and
5.2, one first has to pass to a forcing extension in order to be able to change the height of the
automorphism tower of G by passing to ground models. But of course, there is no way around
it, if one just makes our assumption ♦κ+(Cofκ)+ 2<κ = κ. This assumption holds in L, and
there is no way to pass to a proper ground model of L.

But it is one of the merits of Maximality Principles that they imply that there are many
ground models. For example, the statement “the universe is a nontrivial forcing extension of a
ground model” can be forced to be true, and once true, it stays true in further forcing extensions
- see [Fuc08, Section 6] for the relevance of this observation. The hope is that we get groups
for which we may realize a given sequence of ordinals as the automorphism tower heights in
consecutive grounds, without being required to pass to a forcing extension in the first step. So
let’s replace ♦κ+(Cofκ) in our assumption by MP<κ+−closed({κ+}), meaning that our revised
assumption now reads:

Assumption 6.1. κ is a regular, uncountable cardinal such that

1. 2<κ = κ

2. MP<κ+−closed({κ+}) holds.

It has been shown in [Fuc08, Theorem 3.15] that from this assumption, we get a sequence of
κ+-Souslin trees which is able to realize any equivalence relation on κ+, not just any bounded
one. Here is the version of Theorem 4.1 using Maximality Principles.
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Theorem 6.2 (Under Assumption 6.1). There is a group H such that

1. τ(H) = 1.

2. For every function s : κ+ −→ (κ+ \ {0}) there exists a decreasing sequence of ground
models 〈Ms

α | 0 < α < κ+〉 such that for all 0 < α < κ+ the following statements hold.

(a) Ms
α+1 |= “τ(H) = s(α)”.

(b) If α is a limit ordinal, then Ms
α |= “τ(H) = 1”.

Moreover, if t : κ+ −→ (κ+ \ {0}), then s(α) = t(α) implies Ms
α+1 = Ms

α+1 for all α < κ+

and Ms
ν = M t

ν for all limit ordinals ν < κ+.

Proof. We adopt the proof of [HT00, Theorem 3.1]. The argument works as follows: First force

with the <κ+-closed partial order Q to add the sequence ~T of Souslin trees. Q consists of
conditions q = 〈tqα | α < κ+〉 such that for all but κ many α, tqα = ∅, and for all α, tqα is an initial
segment of the α-th Souslin tree to be added. The ordering is the obvious one - the forcing can be
viewed as a product of the Jech partial order to add a Souslin tree. The sequence ~T will consist of
rigid, mutually nonisomorphic κ+-Souslin trees that are able to realize every equivalence relation
on κ+.

Now, in a second step, we force to a model where ~T realizes a “maximal” equivalence relation
E on κ+. This will be a model from which we can pass down to consecutive grounds in order
to realize the desired patterns of automorphism tower heights. We follow the construction in
Theorem 4.1, but this time, we don’t need to be as careful as before, since we can realize every
equivalence relation. On the other hand, we have to set things up a little differently, since our
equivalence classes will have to have order type κ+. Since this is a limit ordinal, the notion of a
“sealed” equivalence class has to be changed slightly.

The “maximal” equivalence relation E on κ+ has the equivalence classes {Cα | α < κ+},
where

Cα = {≺α, ν� | ν < κ+}.

So E has κ+ many equivalence classes each of which has order type κ+. We’ll define a group H
so that in a slightly changed sense, E is sealed with respect to H. Thus, we define permutation
groups 〈Pα | α < κ+〉 so that

• P≺α,0� = (F0,∆0),

• P≺α,1� = (F1,∆1),

• P≺α,2� = (F1,∆1),

• P≺α,3+β� = (Fβ ,∆β), for β < κ+.

Let H be defined relative to 〈Pα | α < κ+〉 and ~T like G was defined relative to 〈(Gα,Ωα) |
α < κ〉 and the sequence of Souslin trees we worked with before.

Now, in V[~T ], let PE be the following variant of the usual forcing to realize E: It consists of
sequences of the form p = 〈p≺α,ν� | α, ν < λp, ν 6= 3〉, where λp < κ+ and for each α, ν < λp,
ν 6= 3, there is a ξ < κ+ such that p≺α,ν� is an isomorphism between T≺α,3�|(ξ + 1) and
T≺α,ν�|(ξ + 1), the restrictions of these trees to levels less than or equal to ξ. The ordering is
by “pointwise inclusion”. The reason for choosing ≺α, 3� instead of min(Cα) is that we want
the forcing that realizes the equivalence relation with nontrivial equivalence classes of the form
Cα \ (≺α, 3�+ 1) to be completely contained in PE . For the active segment of Cα of order type
γ < κ+ will now be the set {≺α, 3 + ν� | ν < γ}.
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Assuming that 2<κ = κ and 2κ = κ+ it was shown in [HT00, Lemma 3.12] that PE realizes
E. These assumptions are implied by our current working Assumption 6.1 (MP<κ+−closed({κ+})
implies that 2κ = κ+, see [Fuc08, Section 3]). Moreover, Q ∗ ṖE has a dense suborder that is
<κ+-closed, as was shown in [HT00, Proof of Lemma 3.12]. So, letting I be PE-generic over

V[~T ], what needs to be shown now is that the statements 1. and 2. of the theorem are <κ+-

closed-necessary in V[~T ][I]. For then, the existence of a group satisfying the statements 1. and
2. is <κ+-closed-forceably necessary. The only parameter occurring in these statements is κ+,
so that it follows by MP<κ+−closed({κ+}) that they are true, finishing the proof.

So let P ∈ V[~T ][I] be <κ+-closed, and let G be P-generic over V[~T ][I]. First, note that each

Tα is a rigid κ+-Souslin tree in V[~T ][I][G]. This is because this is the case in V[~T ][I], and that
property of Tα is <κ+-closed-necessary (since it is Π1

1(Hκ+) in Tα - see [Fuc08, Lemma 3.5]).
More generally, forcing with P won’t add any isomorphisms between κ+-Souslin trees, for the
same reason. So in V[~T ][I][G], ~T continues to realize E. In particular, statement 1. holds, since
every equivalence class of E is “sealed”, in the obviously modified sense, and the proof of Lemma
3.3 still works in this situation.

The proof of statement 2. is very similar to the proof of Theorem 4.1: Given a function
s : κ+ −→ (κ+ \{0}), define a sequence of equivalence relations 〈Eα | α < κ+〉 by specifying that
Z is a nontrivial equivalence class of Eα if and only if one of the following holds:

• Z = Cβ , for some β ∈ (α, κ+),

• s(α) = 1 and Z = Cα,

• s(α) > 1 and Z = {≺α, 3 + ν� | ν < s(α)}
Letting E∗α = limβ→αEβ , the desired sequence of ground models will be given by Mα =

V[~T ][PE∗α ∩ I], for α > 0, and, of course, M0 = V[~T ][I][G]. So in passing from M0 to M1,
all of the forcing P is undone. The verifications that this sequence of models has the desired
properties work as before, with the necessary, straightforward modifications in the proofs of
Lemma 3.3 and 3.4 caused by the change of the notion of “active” and “sealed” equivalence
classes.
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