Definable clubs

Philipp Moritz Lücke Institut de Matemàtica, Universitat de Barcelona.

> Descriptive set theory and combinatorics Torino, 20. December 2022

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 842082.

Joint work in progress with Omer Ben-Neria (Jerusalem).

Introduction

The work presented in this talk contributes to a programme that aims to study strong combinatorial properties of uncountable cardinals through the interaction of these properties with set-theoretic definability.

More specifically, we study definable closed unbounded subsets of uncountable cardinals, focusing on large cardinals and singular cardinals, and the corresponding collections of *stationary* sets that intersect all of these definable closed unbounded sets.

Definition

- A formula in the language L_∈ of set theory is a Σ₀-formula if it is contained in the smallest collection of L_∈-formulas that contains all atomic L_∈-formulas and is closed under negation, disjunction and bounded quantification.
- Given n < ω, an L_∈-formula is a Σ_{n+1}-formula if it is of the form ∃x ¬φ(x) for some Σ_n-formula φ.

Definition

A class X is definable by a formula $\varphi(v_0,\ldots,v_n)$ and parameters z_0,\ldots,z_{n-1} if

$$X = \{ y \mid \varphi(y, z_0, \dots, z_{n-1}) \}.$$

Definition

Let $n < \omega$, let κ be a uncountable cardinal and let S be a subset of κ .

- Given a class A, the set S is Σ_n(A)-stationary in κ if C ∩ S ≠ Ø holds for every closed unbounded subset C of κ with the property that {C} is definable by a Σ_n-formula with parameters in A ∪ {κ}.
- The subset S is Σ_n -stationary in κ if it is $\Sigma_n(\emptyset)$ -stationary in κ .
- Given a class A, the subset S is $\Sigma_n(A)$ -stationary in κ if it is $\Sigma_n(A \cup H(\kappa))$ -stationary in κ .
- The subset S is Σ_n -stationary in κ if it is $\Sigma_n(\emptyset)$ -stationary in κ .

We focus on the following two questions:

- How much can the collection of Σ_n(A)-stationary subsets of an uncountable cardinal κ differ from the collection of all stationary subsets of κ? What is the situation at cardinals of countable cofinality, where stationarity coincides with coboundedness?
- For which cardinals is it possible to develop a non-trivial structure theory for $\Sigma_n(A)$ -stationary subsets?

Proposition

Assume that V = L holds and κ is an uncountable cardinal. Then a subset of κ is $\Sigma_1(\kappa^+)$ -stationary in κ if and only if it is stationary in κ .

Proposition

Assume that Martin's Maximum holds. Then a subset of ω_1 is Σ_1 -stationary in ω_1 if and only if it is stationary in ω_1 .

Proof.

Woodin proved that *Martin's Maximum* implies *admissible club guessing*, i.e., every closed unbounded subset of ω_1 contains a closed unbounded subset of the form

 $\{\alpha < \omega_1 \mid \mathcal{L}_{\alpha}[x] \models \mathcal{KP}\}$

for some $x \in \mathbb{R}$.

Proposition

If κ is a cardinal of uncountable cofinality, A is a set of cardinality at most $cof(\kappa)$ and $0 < n < \omega$, then there is an unbounded, non-stationary subset of κ that is $\Sigma_n(A)$ -stationary in κ .

Proposition

If κ is a singular cardinal of countable cofinality, A is a set of cardinality at most κ and $0 < n < \omega$, then there is an unbounded subset of κ that is $\Sigma_n(A)$ -stationary in κ and whose complement in κ is unbounded in κ .

Proof.

By the König's Lemma, the set $[\kappa]^{\omega}$ contains an almost disjoint family of cardinality κ^+ that consists of unbounded subsets of κ and hence we can find an element $b \in [\kappa]^{\omega}$ that is unbounded in κ and has the property that no infinite subset of b is definable by a Σ_n -formula with parameters in $A \cup \{\kappa\}$.

The Σ_1 -undefinability property

Definition

Given uncountable cardinals $\mu < \kappa$, we say that the cardinal κ has the $\Sigma_1(\mu)$ -undefinability property if no ordinal α in the interval $[\mu, \kappa)$ has the property that the set $\{\alpha\}$ is definable by a Σ_1 -formula with parameters in the set $H(\mu) \cup \{\kappa\}$.

Lemma

Given uncountable cardinals $\mu < \kappa$ and $0 < n < \omega$, if the cardinal κ has the $\Sigma_n(\mu)$ -undefinability property, then $\{\mu\}$ is $\Sigma_n(H(\mu))$ -stationary in κ .

Corollary

Let κ be a limit cardinal, let $0 < n < \omega$ and let E be the set of uncountable cardinals $\mu < \kappa$ with the property that κ has the $\Sigma_n(\mu)$ -undefinability property for all $\mu \in E$. If E is unbounded in κ , then E is Σ_n -stationary in κ .

Lemma

Given uncountable cardinals $\mu < \kappa$ and $0 < n < \omega$, if the cardinal κ has the $\Sigma_n(\mu)$ -undefinability property, then $\{\mu\}$ is $\Sigma_n(H(\mu))$ -stationary in κ .

Proof.

Let C be a closed unbounded subset of κ with the property that the set $\{C\}$ is definable by a Σ_n -formula with parameters in $H(\mu) \cup \{\kappa\}$.

Assume, towards a contradiction, that μ is not an element of C. Set $\nu = \min(C \setminus \mu) > \mu$.

Then $C \cap \mu \neq \emptyset$, because otherwise $\nu = \min(C)$ and this would imply that $\{\nu\}$ is definable by a Σ_n -formula with parameters in $H(\mu) \cup \{\kappa\}$.

Define $\rho = \max(C \cap \mu) < \mu$. Then $\nu = \min(C \setminus (\rho + 1))$ and hence $\{\nu\}$ is definable by a Σ_n -formula with parameters in $H(\mu) \cup \{\kappa\}$, a contradiction.

Large cardinals

Proposition

A measurable cardinal κ has the $\Sigma_1(\mu)$ -undefinability property for every uncountable cardinal $\mu < \kappa$.

Proof.

Assume that there is a Σ_1 -formula $\varphi(v_0, v_1, v_1)$, an uncountable cardinal $\mu < \kappa$, $z \in H(\mu)$ and an ordinal $\mu \leq \alpha < \kappa$ with the property that α is the unique ordinal ξ such that $\varphi(\xi, \kappa, z)$ holds.

Let X be an elementary substructure of $H(\kappa^+)$ of cardinality less than μ with $tc(\{z\}) \cup \{\kappa, \alpha\} \subseteq X$ and let $\pi : X \longrightarrow M$ denote the corresponding transitive collapse. Then $\pi(z) = z$ and $\pi(\alpha) < \alpha$.

Let U be a normal ultrafilter on κ and set $F = \pi[U \cap X]$. Then F is a weakly amenable M-ultrafilter and $\langle M, \in, F \rangle$ is ω_1 -iterable.

Hence, we can find N transitive and an elementary embedding $j: M \longrightarrow N$ with $j(\pi(\kappa)) = \kappa$ and $j \upharpoonright \pi(\kappa) = id_{\pi(\kappa)}$.

Then $\varphi(\pi(\alpha), \kappa, z)$ holds in N and V, a contradiction.

Definition (Welch)

An uncountable regular cardinal κ is *stably measurable* if there exists a transitive set M with $\operatorname{H}(\kappa) \cup \{\kappa\} \subseteq M \prec_{\Sigma_1} \operatorname{H}(\kappa^+)$, a transitive set N with $M \cup {}^{<\kappa}N \subseteq N$ and a weakly amenable N-ultrafilter F on κ with the property that $\langle N, \in, F \rangle$ is ω_1 -iterable.

Lemma

A stably measurable cardinal κ has the $\Sigma_1(\mu)$ -undefinability property for every uncountable cardinal $\mu < \kappa$.

Theorem

Let κ be a stably measurable cardinal.

- If E is an unbounded subset of κ that consists of cardinals, then E is Σ₁-stationary in κ.
- If S is a Σ₁-stationary subset of κ and r : κ → κ is a regressive function that is definable by a Σ₁-formula with parameters in H(κ) ∪ {κ}, then r is constant on a Σ₁-stationary subset of S.

We let K^{DJ} denote the *Dodd-Jensen core model*.

Theorem

If $V = K^{DJ}$, then the following statements are equivalent for every limit cardinal κ :

- The cardinal κ is stably measurable.
- Every unbounded subset of κ that consists of cardinals is Σ_1 -stationary in κ .

Theorem

The following statements are equiconsistent over **ZFC**:

- There exists a stably measurable cardinal.
- There exists a limit cardinal κ with the property that every unbounded subset of κ that consists of cardinals is Σ₁-stationary in κ.

By replacing iterations of small models with iterations of V, we can extend the above conclusions to, possibly singular, limits of measurable cardinals:

Theorem

Let κ be a cardinal that is a limit of measurable cardinals.

- Every unbounded subset S of κ consisting of cardinals is $\Sigma_1(Ord)$ -stationary.
- If S is a Σ₁(Ord)-stationary subset of κ and r : κ → κ is a regressive function that is definable by a Σ₁-formula with parameters in H(κ) ∪ Ord, then r is constant on a Σ₁(Ord)-stationary subset of S.

Undefinability and the Dodd-Jensen Core model

Lemma

If κ is an infinite cardinal and $c : cof(\kappa)^{K^{DJ}} \longrightarrow \kappa$ is the $<_{K^{DJ}}$ -least cofinal function, than the sets $\{cof(\kappa)^{K^{DJ}}\}$ and $\{c\}$ are both definable by Σ_1 -formulas with parameter κ .

Corollary

Assume that there is no inner model with a measurable cardinal. If κ is a singular cardinal, then the following statements hold:

- There is an unbounded subset of κ that consists of cardinals and is not Σ_1 -stationary.
- There exists a regressive function r : κ → κ that is definable by a Σ₁-formula with parameter κ and is not constant on any unbounded subset of κ.
- If κ has countable cofinality, then the complement of Σ₁-stationary subset of κ is not Σ₁-stationary.

Theorem

If U is a normal ultrafilter on κ and G is generic over V for Prikry forcing with G, then the following statements hold in V[G]:

- Every unbounded subset of κ that consists of cardinals is Σ_1 -stationary in κ .
- If S is a Σ₁-stationary subset of κ and r : κ → κ is a regressive function that is definable by a Σ₁-formula with parameters in H(κ) ∪ {κ}, then r is constant on a Σ₁-stationary subset of S.

Corollary

The following statements are equiconsistent over **ZFC**:

- There is a measurable cardinal.
- There is a singular cardinal κ with the property that every unbounded subset of κ that consists of cardinals is Σ₁-stationary in κ.
- There is a singular cardinal κ with the property that every regressive function r : κ → κ that is definable by a Σ₁-formula with parameters in H(κ) ∪ {κ} is constant on an unbounded subset of κ.
- There is a singular cardinal κ of countable cofinality with the property that there exists a subset E of κ such that both E and κ \ E are Σ₁-stationary in κ.

Partition properties

Remember that, given uncountable cardinals $\mu < \kappa$, the cardinal κ is μ -Rowbottom if the square brackets partition relation

$$\kappa \longrightarrow [\kappa]^{<\omega}_{\lambda,<\mu}$$

holds true for all $\lambda < \kappa,$ i.e., for every $\lambda < \kappa$ and every function

$$c: [\kappa]^{<\omega} \longrightarrow \lambda,$$

there exists $H \in [\kappa]^{\kappa}$ with $|c[[H]^{<\omega}]| < \mu$.

Lemma

If ω_{ω} is an ω_n -Rowbottom cardinal, then ω_{ω} has the $\Sigma_1(\omega_n)$ -undefinability property.

Recall that a cardinal κ is *Jónsson* if for every function $f : [\kappa]^{<\omega} \longrightarrow \kappa$ there is a proper subset H of κ of cardinality κ with $f[[H]^{<\omega}] \subseteq H$.

Theorem

If ω_{ω} is a Jónsson cardinal, then the following statements hold:

- Every infinite subset of $\{\omega_n \mid n < \omega\}$ is Σ_1 -stationary in ω_{ω} .
- If r : ω_ω → ω_ω is a regressive function that is definable by a Σ₁-formula with parameters in H(ℵ_ω) ∪ {ω_ω}, then r is constant on an infinite subset of {ω_n | n < ω}.

We can use the above results to reduce the class of models of set theory in which ω_{ω} possesses strong partition properties.

In particular, we will show that ω_{ω} is not ω_2 -Rowbottom in the standard models of strong forcing axioms, where the given axiom was forced over a model of the GCH by turning some large cardinal into ω_2 .

Lemma

Assume that there is a natural number m > 1 such that there are no special ω_m -Aronszajn trees and for all $m < n < \omega$, there is a special ω_n -Aronszajn tree. Then the set $\{\omega_m\}$ is definable by a Σ_1 -formula with parameter ω_ω and the cardinal ω_ω is not ω_m -Rowbottom.

Theorem

The following statements are equiconsistent over **ZFC**:

- There is a measurable cardinal.
- ω_{ω} has the $\Sigma_1(\omega_n)$ -undefinability property for every $0 < n < \omega$.
- Every infinite subset of {ω_n | n < ω} is Σ₁-stationary in ω_ω.
- Every regressive function r : ω_ω → ω_ω that is definable by a Σ₁-formula with parameters in H(ℵ_ω) ∪ {ω_ω} is constant on an infinite subset of {ω_n | n < ω}.
- There exists a subset E of ω_{ω} such that both E and $\omega_{\omega} \setminus E$ are Σ_1 -stationary in ω_{ω} .

Thank you for listening!