Cotas inferiores para sumas de potencias afines

Buscando paja en un pajar y pinchándome con las agujas

Ignacio García Marco

Universidad de La Laguna

Seminario GASIULL - 18/02/2019

Based on joint work with:

Pascal Koiran & Timothée Pecatte
ENS Lyon

Let \mathbb{F} be a characteristic zero field and $f \in \mathbb{F}[x]$.

Let \mathbb{F} be a characteristic zero field and $f \in \mathbb{F}[x]$.

We consider expressions of f as:

$$f = \sum_{i=1}^{s} \alpha_i (x + a_i)^{e_i},$$

with $\alpha_i, a_i \in \mathbb{F}$, and $e_i \in \mathbb{N}$

Let \mathbb{F} be a characteristic zero field and $f \in \mathbb{F}[x]$.

We consider expressions of f as:

$$f = \sum_{i=1}^{s} \alpha_i (x + a_i)^{e_i},$$

with $\alpha_i, a_i \in \mathbb{F}$, and $e_i \in \mathbb{N}$

$$f = 3(x+0)^4 + 12(x+0)^3 + (x+0)^0$$

Let \mathbb{F} be a characteristic zero field and $f \in \mathbb{F}[x]$.

We consider expressions of f as:

$$f = \sum_{i=1}^{s} \alpha_i (x + a_i)^{e_i},$$

with $\alpha_i, a_i \in \mathbb{F}$, and $e_i \in \mathbb{N}$

Example:
$$f = 3x^4 + 12x^3 + 1 \in \mathbb{C}[x]$$

$$f = 3(x+0)^4 + 12(x+0)^3 + (x+0)^0 =$$

$$= 3(x+1)^4 - 18(x+\frac{1}{3})^2$$

Let \mathbb{F} be a characteristic zero field and $f \in \mathbb{F}[x]$.

We consider expressions of f as:

$$f = \sum_{i=1}^{s} \alpha_i (x + a_i)^{e_i},$$

with $\alpha_i, a_i \in \mathbb{F}$, and $e_i \in \mathbb{N}$

$$f = 3(x+0)^4 + 12(x+0)^3 + (x+0)^0 =$$

$$= 3(x+1)^4 - 18(x+\frac{1}{3})^2$$
 This is better!

Let \mathbb{F} be a characteristic zero field and $f \in \mathbb{F}[x]$.

We consider expressions of f as:

$$f = \sum_{i=1}^{s} \alpha_i (x + a_i)^{e_i},$$

with $\alpha_i, a_i \in \mathbb{F}$, and $e_i \in \mathbb{N}$

$$f = 3(x+0)^4 + 12(x+0)^3 + (x+0)^0 =$$

$$= 3(x+1)^4 - 18(x+\frac{1}{3})^2$$
 This is better!

A complexity measure

For all $f \in \mathbb{F}[x]$, we set

A complexity measure

For all $f \in \mathbb{F}[x]$, we set

Example:
$$f = 3x^4 + 12x^3 + 1 \in \mathbb{C}[x]$$

$$f = 3(x+1)^4 - 18(x+\frac{1}{3})^2 \Longrightarrow c(f) \le 2$$

A complexity measure

For all $f \in \mathbb{F}[x]$, we set

Example:
$$f = 3x^4 + 12x^3 + 1 \in \mathbb{C}[x]$$

$$f = 3(x+1)^4 - 18(x+\frac{1}{3})^2 \Longrightarrow c(f) \le 2$$

Indeed, c(f) = 2.

Lemma. Let $f \in \mathbb{F}[x]$ a (nonzero) polynomial of degree d. Then,

$$c(f) \le d+1$$

Lemma. Let $f \in \mathbb{F}[x]$ a (nonzero) polynomial of degree d. Then,

$$c(f) \le \left\lceil \frac{d+1}{2} \right\rceil$$

Lemma. Let $f \in \mathbb{F}[x]$ a (nonzero) polynomial of degree d. Then,

$$c(f) \le \left\lceil \frac{d+1}{2} \right\rceil$$

Proof. By induction over *d*:

If
$$d = 0$$
, $f = a_0 = a_0 x^0$
if $d = 1$, $f = a_1 x + a_0 = a_1 (x + (a_0/a_1))^1$ $\Rightarrow c(f) = 1$

Lemma. Let $f \in \mathbb{F}[x]$ a (nonzero) polynomial of degree d. Then,

$$c(f) \le \left\lceil \frac{d+1}{2} \right\rceil$$

Proof. By induction over *d*:

If
$$d = 0$$
, $f = a_0 = a_0 x^0$
if $d = 1$, $f = a_1 x + a_0 = a_1 (x + (a_0/a_1))^1$ $\} \Rightarrow c(f) = 1$
If $f = \sum_{i=0}^d a_i x^i$ has degree d . Let
$$g := f - a_d \left(x + \frac{a_{d-1}}{da_d} \right)^d$$

Lemma. Let $f \in \mathbb{F}[x]$ a (nonzero) polynomial of degree d. Then,

$$c(f) \le \left\lceil \frac{d+1}{2} \right\rceil$$

Proof. By induction over *d*:

If
$$d = 0$$
, $f = a_0 = a_0 x^0$
if $d = 1$, $f = a_1 x + a_0 = a_1 (x + (a_0/a_1))^1$ $\Rightarrow c(f) = 1$

If $f = \sum_{i=0}^{d} a_i x^i$ has degree d. Let

$$g:=f-a_d\left(x+\frac{a_{d-1}}{da_d}\right)^d \begin{array}{c} \text{Tschirnhausen} \\ \text{Transformation} \\ \deg(g)\leq d-2 \end{array}$$

Tschirnhausen

Lemma. Let $f \in \mathbb{F}[x]$ a (nonzero) polynomial of degree d. Then,

$$c(f) \le \left\lceil \frac{d+1}{2} \right\rceil$$

Proof. By induction over *d*:

If
$$d=0$$
, $f=a_0=a_0x^0$ if $d=1$, $f=a_1x+a_0=a_1(x+(a_0/a_1))^1$ $\Rightarrow c(f)=1$

If $f = \sum_{i=0}^{d} a_i x^i$ has degree d. Let

$$g:=f-a_d\left(x+\frac{a_{d-1}}{da_d}\right)^d \begin{array}{c} \text{Tschirnhausen} \\ \text{Transformation} \\ \deg(g)\leq d-2 \end{array}$$

Tschirnhausen

Then,
$$c(f) \le c(g) + 1 \le \left\lceil \frac{d-1}{2} \right\rceil + 1 = \left\lceil \frac{d+1}{2} \right\rceil$$

Theorem If $f \in \mathbb{F}[x]$ is a **generic** polynomial of degree d, then

$$c(f) = \left\lceil \frac{d+1}{2} \right\rceil$$

Theorem If $f \in \mathbb{F}[x]$ is a **generic** polynomial of degree d, then

$$c(f) = \left\lceil \frac{d+1}{2} \right\rceil$$

In other words

$$\left\{ (a_0, \dots, a_d) \in \mathbb{F}^{d+1} \mid c \left(\sum_{i=0}^d a_i x^i \right) < \left\lceil \frac{d+1}{2} \right\rceil \right\} \subset X,$$

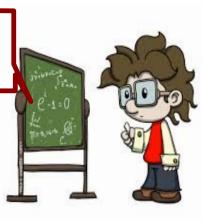
where $X \subseteq \mathbb{F}^{d+1}$ is an algebraic set.

Theorem If $f \in \mathbb{F}[x]$ is a **generic** polynomial of degree d, then

$$c(f) = \left\lceil \frac{d+1}{2} \right\rceil$$

So, tell me one polynomial $f \in \mathbb{C}[x]$ of degree 100 such that c(f) = 51.

Almost anyone works!



Theorem If $f \in \mathbb{F}[x]$ is a **generic** polynomial of degree d, then

$$c(f) = \left\lceil \frac{d+1}{2} \right\rceil$$

So, tell me one polynomial $f \in \mathbb{C}[x]$ of degree 100 such that c(f) = 51.

Almost anyone works!

But, could you tell me one explicitly.

Mmmmmm, ...

The problem

For every $d \in \mathbb{N}$, find an explicit $f_d \in \mathbb{C}[x]$, such that

- \circ f_d has degree d, and
- \circ $c(f_d) = \lceil (d+1)/2 \rceil$.

The problem

For every $d \in \mathbb{N}$, find an explicit $f_d \in \mathbb{C}[x]$, such that

- \circ f_d has degree d, and
- \circ $c(f_d) = \lceil (d+1)/2 \rceil.$

Theorem [Kayal, Koiran, Pecatte & Saha (2015)]

For all $k \in \mathbb{N}$ and all $a_1 \neq a_2 \in \mathbb{C}$, the polynomial

$$f = [(x + a_1)(x + a_2)]^k$$

of degree d=2k satisfies that $c(f) \ge (\sqrt{d})/2$.

The problem

For every $d \in \mathbb{N}$, find an explicit $f_d \in \mathbb{C}[x]$, such that

- \circ f_d has degree d, and
- \circ $c(f_d) = \lceil (d+1)/2 \rceil$.

Theorem [Kayal, Koiran, Pecatte & Saha (2015)]

For all $k \in \mathbb{N}$ and all $a_1 \neq a_2 \in \mathbb{C}$, the polynomial

$$f = [(x + a_1)(x + a_2)]^k$$

of degree d=2k satisfies that $c(f) \geq (\sqrt{d})/2$.

This is, provide explicit polynomials $f \in \mathbb{R}[x]$ of degree d such that c(f) is equal (or close) to $\lceil (d+1)/2 \rceil$.

An easy observation

Let
$$f\in\mathbb{F}[x]$$
, if:
$$f=\sum_{i=1}^s\alpha_i(x+a_i)^{e_i}$$
 and
$$f=\sum_{j=1}^\ell\beta_j(x+b_j)^{d_j}.$$

An easy observation

Let
$$f \in \mathbb{F}[x]$$
, if:
$$f = \sum_{i=1}^{s} \alpha_i (x + a_i)^{e_i}$$

and

$$f = \sum_{j=1}^{\ell} \beta_j (x + b_j)^{d_j}.$$

Then,

$$\{(x+a_i)^{e_i} \mid 1 \le i \le s\} \cup \{(x+b_j)^{d_j} \mid 1 \le j \le \ell\},$$

is a linearly dependent set.

Our approach

If $I := \{(x + a_i)^{e_i} \mid 1 \le i \le s\}$ satisfies the following nice property:

For all $L = \{(x+b_i)^{d_i} \mid 1 \le i \le \ell\}$ \mathbb{F} -linearly independent with $\ell < s \Rightarrow L \cup I$ is also \mathbb{F} -linearly independent.

Our approach

If $I := \{(x + a_i)^{e_i} \mid 1 \le i \le s\}$ satisfies the following nice property:

For all $L = \{(x+b_i)^{d_i} \mid 1 \le i \le \ell\}$ \mathbb{F} -linearly independent with $\ell < s \Rightarrow L \cup I$ is also \mathbb{F} -linearly independent.

Taking $\alpha_1, \ldots, \alpha_s \in \mathbb{F} \setminus \{0\}$ and setting $f = \sum_{i=1}^s \alpha_i (x + a_i)^{e_i}$

we have that c(f) = s.

Our approach

If $I := \{(x + a_i)^{e_i} \mid 1 \le i \le s\}$ satisfies the following nice property:

For all $L = \{(x+b_i)^{d_i} \mid 1 \le i \le \ell\}$ \mathbb{F} -linearly independent with $\ell < s \Rightarrow L \cup I$ is also \mathbb{F} -linearly independent.

Taking $\alpha_1,\ldots,\alpha_s\in\mathbb{F}\setminus\{0\}$ and setting $f=\sum_{i=1}^s\alpha_i(x+a_i)^{e_i}$ we have that c(f)=s.

Goal: find a set I with the nice property and s large.

To carry out this, we need a **good criterion for deciding** \mathbb{F} -linear independence of polynomials of the form $(x+a_i)^{e_i}$.

Our approach: study linear independence of affine powers

Let $\ell_1, \ldots, \ell_s \in \mathbb{F}[x]$ be affine powers:

$$\ell_i = (x + a_i)^{e_i} = \sum_{j=0}^{e_i} {e_i \choose j} a_i^{e_i - j} x^j.$$

Are ℓ_1, \ldots, ℓ_s linearly independent?

Our approach: study linear independence of affine powers

Let $\ell_1, \ldots, \ell_s \in \mathbb{F}[x]$ be affine powers:

$$\ell_i = (x + a_i)^{e_i} = \sum_{j=0}^{e_i} {e_i \choose j} a_i^{e_i - j} x^j.$$

Are ℓ_1, \ldots, ℓ_s linearly independent?

Take $d := \max(e_i)$, $B := \{1, \frac{x}{1!}, \dots, \frac{x^j}{j!}, \dots, \frac{x^d}{d!}\}$ and set A_i the vector of coordinates of ℓ_i with respect to B, that is

$$A_i = \left(a_i^{e_i}, \dots, \frac{e_i!}{(e_i - j)!} a_i^{e_i - j}, \dots, e_i!, 0, \dots, 0\right) \in \mathbb{F}^{d+1}$$

Let A be the matrix with rows A_1, \ldots, A_s . Then,

$$\dim_{\mathbb{F}}\langle \ell_1, \dots, \ell_s \rangle = \operatorname{rk}(A).$$

Our approach: study linear independence of affine powers

Let $\ell_1, \ldots, \ell_s \in \mathbb{F}[x]$ be affine powers:

$$\ell_i = (x + a_i)^{e_i} = \sum_{j=0}^{e_i} {e_i \choose j} a_i^{e_i - j} x^j.$$

Are ℓ_1, \ldots, ℓ_s linearly independent?

Take $d := \max(e_i)$, $B := \{1, \frac{x}{1!}, \dots, \frac{x^j}{j!}, \dots, \frac{x^d}{d!}\}$ and set A_i the vector of coordinates of ℓ_i with respect to B, that is

$$A_i = \left(a_i^{e_i}, \dots, \frac{e_i!}{(e_i - j)!} a_i^{e_i - j}, \dots, e_i!, 0, \dots, 0\right) \in \mathbb{F}^{d+1}$$

Let A be the matrix with rows A_1, \ldots, A_s . Then,

$$\dim_{\mathbb{F}}\langle \ell_1, \dots, \ell_s \rangle = \operatorname{rk}(A).$$

It is not easy to determine when A has maximal row rank!!!

Birkhoff interpolation

Birkhoff interpolation studies the set of polynomials $g \in \mathbb{F}[x]$ of degree $\leq d$ satisfying a system of equations of the form

$$g^{(k_1)}(a_1) = 0 \\ \cdots \\ g^{(k_s)}(a_s) = 0$$

with $0 \le k_i \le d$, $a_i \in \mathbb{F}$.

Birkhoff interpolation

Birkhoff interpolation studies the set of polynomials $g \in \mathbb{F}[x]$ of degree $\leq d$ satisfying a system of equations of the form

$$g^{(k_1)}(a_1) = 0 \\ \cdots \\ g^{(k_s)}(a_s) = 0$$

with $0 \le k_i \le d$, $a_i \in \mathbb{F}$.

Definition.

The Birkhoff interpolation problem is regular if its set of solutions $g \in \mathbb{F}[x]_{\leq d}$ is a vector space of dimension d+1-s.

From linear independence to Birkhoff interpolation

Example: Consider the affine powers $(x+1)^4, (x-1)^4, x^3, x$.

From linear independence to Birkhoff interpolation

Example: Consider the affine powers $(x+1)^4, (x-1)^4, x^3, x$.

They are **linearly dependent** because:

$$(x+1)^4 - (x-1)^4 = 8x^3 + 8x$$

From linear independence to Birkhoff interpolation

Example: Consider the affine powers $(x+1)^4, (x-1)^4, x^3, x$.

They are **linearly dependent** because:

$$(x+1)^4 - (x-1)^4 = 8x^3 + 8x$$

We associate the following interpolation problem:

We look for polynomials $g \in \mathbb{F}[x]$ of degree $d \leq 4$ such that

Example: Consider the affine powers $(x+1)^4, (x-1)^4, x^3, x$.

They are **linearly dependent** because:

$$(x+1)^4 - (x-1)^4 = 8x^3 + 8x$$

We associate the following interpolation problem:

We look for polynomials $g \in \mathbb{F}[x]$ of degree $d \leq 4$ such that

The set of solutions is $\langle x^4 - 1, x^2 - 1 \rangle$.

The **Birkhoff interpolation problem** is **not regular**.

Given $\ell_1, \ldots, \ell_s \in \mathbb{F}[x]$ with $\ell_i = (x + a_i)^{e_i}$ and $d := \max(e_i)$. We associate the following Birkhoff interpolation problem:

Find
$$g \in \mathbb{F}_{\leq d}[x]$$
 such that
$$g^{(d-e_i)}(a_i) = 0 \text{ for } 1 \leq i \leq s.$$

Given $\ell_1, \ldots, \ell_s \in \mathbb{F}[x]$ with $\ell_i = (x + a_i)^{e_i}$ and $d := \max(e_i)$. We associate the following Birkhoff interpolation problem:

Find $g \in \mathbb{F}_{\leq d}[x]$ such that $g^{(d-e_i)}(a_i) = 0 \text{ for } 1 \leq i \leq s.$

Proposition

Set $r := \dim_{\mathbb{F}} \langle \ell_1, \dots, \ell_s \rangle$ with $\ell_i = (x + a_i)^{e_i}$. Then,

 $\dim_{\mathbb{F}} \{ g \in \mathbb{F}_{\leq d}[x]; \ g^{(d-e_i)}(a_i) = 0 \text{ for all } i \} = d+1-r.$

Given $\ell_1, \ldots, \ell_s \in \mathbb{F}[x]$ with $\ell_i = (x + a_i)^{e_i}$ and $d := \max(e_i)$. We associate the following Birkhoff interpolation problem:

Find $g \in \mathbb{F}_{\leq d}[x]$ such that $g^{(d-e_i)}(a_i) = 0 \text{ for } 1 \leq i \leq s.$

Proposition

Set $r:=\dim_{\mathbb{F}}\langle \ell_1,\ldots,\ell_s\rangle$ with $\ell_i=(x+a_i)^{e_i}$. Then,

 $\dim_{\mathbb{F}} \{ g \in \mathbb{F}_{\leq d}[x]; \ g^{(d-e_i)}(a_i) = 0 \text{ for all } i \} = d+1-r.$

Proof. We know that r = rk(A).

If
$$g = \sum_{j=0}^{d} g_j \frac{x^j}{j!}$$
 with $g_j \in \mathbb{F}$

$$g^{(d-e_i)} = \sum_{j=0}^{e_i} g_{d-e_i+j} \frac{x^j}{j!}$$
.

Then,

$$g^{(d-e_i)}(a_i) = 0 \text{ for all } 1 \le i \le s \Longleftrightarrow B \cdot \begin{pmatrix} g_d \\ g_{d-1} \\ \vdots \\ g_0 \end{pmatrix} = 0,$$

where B is the $s \times (d+1)$ matrix whose i-th row is

$$B_i := \left(\frac{a_i^{e_i}}{e_i!}, \dots, \frac{a_i^{e_i-j}}{(e_i-j)!}, \dots, a_i, 1, 0, \dots, 0\right) \in \mathbb{F}^{d+1}.$$

Then,

$$g^{(d-e_i)}(a_i) = 0 \text{ for all } 1 \le i \le s \Longleftrightarrow B \cdot \begin{pmatrix} g_d \\ g_{d-1} \\ \vdots \\ g_0 \end{pmatrix} = 0,$$

where B is the $s \times (d+1)$ matrix whose i-th row is

$$B_i := \left(\frac{a_i^{e_i}}{e_i!}, \dots, \frac{a_i^{e_i-j}}{(e_i-j)!}, \dots, a_i, 1, 0, \dots, 0\right) \in \mathbb{F}^{d+1}.$$

Then,

$$\dim\{g \in \mathbb{F}_{\leq d}[x]; g^{(d-e_i)}(a_i) = 0 \text{ for } 1 \leq i \leq s\} = d+1-\text{rk}(B).$$

We observe that $A_i = e_i! B_i \Longrightarrow r = \operatorname{rk}(A) = \operatorname{rk}(B)$.

Proposition

Set
$$r := \dim_{\mathbb{F}} \langle \ell_1, \dots, \ell_s \rangle$$
 with $\ell_i = (x + a_i)^{e_i}$. Then,

$$\dim_{\mathbb{F}} \{ g \in \mathbb{F}_{\leq d}[x]; \ g^{(d-e_i)}(a_i) = 0 \text{ for all } i \} = d+1-r.$$

Proposition

Set $r:=\dim_{\mathbb{F}}\langle \ell_1,\ldots,\ell_s\rangle$ with $\ell_i=(x+a_i)^{e_i}$. Then,

$$\dim_{\mathbb{F}} \{ g \in \mathbb{F}_{\leq d}[x]; \ g^{(d-e_i)}(a_i) = 0 \text{ for all } i \} = d+1-r.$$

Corollary

The set $\{\ell_1, \dots, \ell_s\}$ is **linearly independent** if and only if the **Birkhoff interpolation problem**

$$g \in \mathbb{F}_{< d}[x]; \ g^{(d-e_i)}(a_i) = 0 \ for \ 1 \le i \le s$$

is **regular**.

Example: Consider the affine powers $(x+1)^4, (x-1)^4, x^3, x$.

They are **linearly dependent** because:

$$(x+1)^4 - (x-1)^4 = 8x^3 + 8x$$

We associate the following interpolation problem:

We look for polynomials $g \in \mathbb{F}[x]$ of degree $d \leq 4$ such that

The set of solutions is $\langle x^4 - 1, x^2 - 1 \rangle$.

The **Birkhoff interpolation problem** is **not regular**.

Given
$$\ell_1, \ldots, \ell_s$$
 with $\ell_i = (x + a_i)^{e_i}$.

Set
$$N_j := \sharp \{i \mid e_i < j\}$$
. \blacksquare (number of polynomials of degree $< j$

Given
$$\ell_1, \ldots, \ell_s$$
 with $\ell_i = (x + a_i)^{e_i}$.

Set
$$N_j := \sharp \{i \mid e_i < j\}$$
. \blacksquare (number of polynomials of degree $< j$)

Remark: If $\{\ell_1,\ldots,\ell_s\}$ are lin. indep. $\Longrightarrow N_j \leq j$ for all $j\geq 1$

Given
$$\ell_1, \ldots, \ell_s$$
 with $\ell_i = (x + a_i)^{e_i}$.

Set
$$N_j := \sharp \{i \mid e_i < j\}$$
. \blacksquare (number of polynomials of degree $< j$

Remark: If $\{\ell_1,\ldots,\ell_s\}$ are lin. indep. $\Longrightarrow N_j \le j$ for all $j \ge 1$

And as a consequence of Atkinson-Sharma theorem (1969) for real Birkhoff interpolation:

Theorem. For $\mathbb{F} = \mathbb{R}$.

If $N_j + N_{j-1} \leq j$ for all $j \geq 1 \implies \{\ell_1, \ldots, \ell_s\}$ are lin. indep.

Given
$$\ell_1, \ldots, \ell_s$$
 with $\ell_i = (x + a_i)^{e_i}$.

Set
$$N_j := \sharp \{i \mid e_i < j\}$$
. \blacksquare (number of polynomials of degree $< j$

Remark: If $\{\ell_1,\ldots,\ell_s\}$ are lin. indep. $\Longrightarrow N_j \leq j$ for all $j\geq 1$

And as a consequence of Atkinson-Sharma theorem (1969) for real Birkhoff interpolation:

Theorem. For
$$\mathbb{F}=\mathbb{R}$$
. If $N_j+N_{j-1}\leq$ Not true for $\mathbb{F}=\mathbb{C}$ are lin. indep.

Theorem. Let $e, s \in \mathbb{N}$ with $s \leq (e+2)/4$, $a_1, \ldots, a_s \in \mathbb{R}$ distinct. Then,

$$I := \{ (x + a_i)^e \mid 1 \le i \le s \}$$

has the *nice* property.

Theorem. Let $e, s \in \mathbb{N}$ with $s \leq (e+2)/4$, $a_1, \ldots, a_s \in \mathbb{R}$ distinct and $\alpha_1, \ldots, \alpha_s \in \mathbb{R} \setminus \{0\}$. Then,

$$f := \sum_{i=1}^{s} \alpha_i (x + a_i)^e$$

satisfies that c(f) = s.

Theorem. Let $e, s \in \mathbb{N}$ with $s \leq (e+2)/4$, $a_1, \ldots, a_s \in \mathbb{R}$ distinct and $\alpha_1, \ldots, \alpha_s \in \mathbb{R} \setminus \{0\}$. Then,

$$f := \sum_{i=1}^{s} \alpha_i (x + a_i)^e$$

satisfies that c(f) = s.

Choosing s := (e+2)/4. Then,

a)
$$c(f) = (e+2)/4$$

Theorem. Let $e, s \in \mathbb{N}$ with $s \leq (e+2)/4$, $a_1, \ldots, a_s \in \mathbb{R}$ distinct and $\alpha_1, \ldots, \alpha_s \in \mathbb{R} \setminus \{0\}$. Then,

$$f := \sum_{i=1}^{n} \alpha_i (x + a_i)^e$$

satisfies that c(f) = s.

Choosing s := (e+2)/4. Then,

- a) c(f) = (e+2)/4
- b) The degree of f is $\leq e$

Theorem. Let $e, s \in \mathbb{N}$ with $s \leq (e+2)/4$, $a_1, \ldots, a_s \in \mathbb{R}$ distinct and $\alpha_1, \ldots, \alpha_s \in \mathbb{R} \setminus \{0\}$. Then,

$$f := \sum_{i=1}^{n} \alpha_i (x + a_i)^e$$

satisfies that c(f) = s.

Choosing s := (e+2)/4. Then,

- a) c(f) = (e+2)/4
- b) The degree of f is $\leq e$

One can choose α_i, a_i so that $\deg(f) = e - ((e-2)/4)$

Theorem. Let $e, s \in \mathbb{N}$ with $s \leq (e+2)/4$, $a_1, \ldots, a_s \in \mathbb{R}$ distinct and $\alpha_1, \ldots, \alpha_s \in \mathbb{R} \setminus \{0\}$. Then,

$$f := \sum_{i=1}^{e} \alpha_i (x + a_i)^e$$

satisfies that c(f) = s.

Choosing s := (e+2)/4. Then,

- a) c(f) = (e+2)/4
- b) The degree of f is $\leq e$

One can choose α_i, a_i so that $\deg(f) = e - ((e-2)/4)$

Corollary 1. For each $d \in \mathbb{N}$, there is an **explicit** polynomial $f_d \in \mathbb{R}[x]$ of degree d and

$$c(f_d) = d/3$$

Theorem. Let $e, s \in \mathbb{N}$ with $s \leq (e+2)/4$, $a_1, \ldots, a_s \in \mathbb{R}$ distinct and $\alpha_1, \ldots, \alpha_s \in \mathbb{R} \setminus \{0\}$. Then,

$$f:=\sum_{i=1}^{\infty} lpha_i (x+a_i)^e$$

Solution

Not true for $\mathbb{F}=\mathbb{C}$

satisfies that c(f) = s.

Choosing s := (e+2)/4. Then,

- a) c(f) = (e+2)/4
- b) The degree of f is $\leq e$

One can choose α_i, a_i so that $\deg(f) = e - ((e-2)/4)$

Corollary 1. For each $d \in \mathbb{N}$, there is an **explicit** polynomial $f_d \in \mathbb{R}[x]$ of degree d and

$$c(f_d) = d/3$$

Corollary 2. For each $d \in \mathbb{N}$, we consider

$$g_d := (x+1)^{d+1} - (x-1)^{d+1}$$
.

Corollary 2. For each $d \in \mathbb{N}$, we consider

$$g_d := (x+1)^{d+1} - (x-1)^{d+1}$$
.

Then,

- $\circ \deg(g_d) = d$, and
- if $g_d = \sum_{i=1}^s \alpha_i (x + a_i)^{e_i}$ with $\alpha_i, a_i \in \mathbb{R}$ and $e_i \leq d$; then $s \geq \lceil \frac{d+1}{2} \rceil$.

Corollary 2. For each $d \in \mathbb{N}$, we consider

$$g_d := (x+1)^{d+1} - (x-1)^{d+1}$$
.

Then,

- $\circ \deg(g_d) = d$, and
- if $g_d = \sum_{i=1}^s \alpha_i (x+a_i)^{e_i}$ with $\alpha_i, a_i \in \mathbb{R}$ and $e_i \leq d$; then $s \geq \lceil \frac{d+1}{2} \rceil$.

Moreover,

$$(x+1)^{d+1} - (x-1)^{d+1} = \sum_{\substack{i \text{ odd} \\ 1 \le i \le d+1}} 2\binom{d}{i} x^{d+1-i}.$$

The complex case

Over \mathbb{C} one can generalize the identity:

$$(x+1)^d - (x-1)^d = \sum_{\substack{i \text{ odd} \\ 1 \le i \le d}} 2\binom{d}{i} x^{d-i}.$$

Proposition

Take $k \in \mathbb{Z}^+$ and let ξ be a k-th primitive root of unity. Then, for all $d \in \mathbb{Z}^+$ the following equality holds:

$$\sum_{j=1}^{k} \xi^{j} (x + \xi^{j})^{d} = \sum_{\substack{i \equiv -1 \pmod{k} \\ 0 \le i \le d}} k \binom{d}{i} x^{d-i} \in \mathbb{R}[x]$$

- \circ Find explicit $f \in \mathbb{C}[x]$ such that c(f) is linear in d.
- Find a good sufficient condition for $\ell_1, \ldots, \ell_s \in \mathbb{C}[x]$ to be \mathbb{C} -linearly independent with $\ell_i = (x + a_i)^{e_i}$, $a_i \in \mathbb{C}$.
- \circ Find a *good* sufficient condition for a Birkhoff interpolation problem to be regular over \mathbb{C} .
- Does Corollary 1 hold over C? and Corollary 2?
- \circ Devise algorithms computing c(f) for a given polynomial f.
- What about multivariate polynomials?

Proposition 1

For any family $F = \{(x - a_i)^{e_i} \mid 1 \le i \le s\}$ with $a_i \in \mathbb{R}$. If $e_i \ge 2s - 4$, then F is linearly independent.

Proposition 1

For any family $F = \{(x - a_i)^{e_i} \mid 1 \le i \le s\}$ with $a_i \in \mathbb{R}$. If $e_i \ge 2s - 4$, then F is linearly independent.

Proposition 2

For any family $F = \{(x - a_i)^{e_i} | 1 \le i \le s\}$ with $a_i \in \mathbb{C}$. If $e_i \ge s^2$, then F is linearly independent.

Proposition 1

For any family $F = \{(x - a_i)^{e_i} \mid 1 \le i \le s\}$ with $a_i \in \mathbb{R}$. If $e_i \ge 2s - 4$, then F is linearly independent.

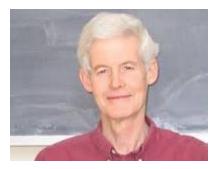
Proposition 2

For any family $F = \{(x - a_i)^{e_i} | 1 \le i \le s\}$ with $a_i \in \mathbb{C}$. If $e_i \ge s^2$, then F is linearly independent.

Conjecture. There are constants a and b such that Proposition 2 can be proved for $e_i \geq as + b$

In 1971, Stephen Cook introduces: 'Is P = NP?'

P y NP are complexity clases of decision problems



In 1971, Stephen Cook introduces: 'Is P = NP?'

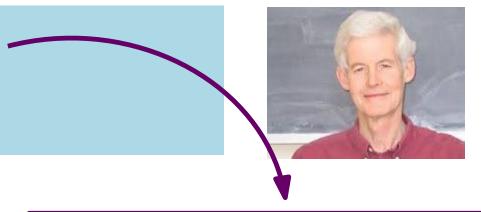
P y NP are complexity clases of decision problems

 $\mathsf{P} \quad \hookrightarrow \quad \mathsf{easy} \; \mathsf{to} \; \mathsf{solve}$

In 1971, Stephen Cook introduces: 'Is P = NP?'

P y NP are complexity clases of decision problems

 $\mathsf{P} \quad \hookrightarrow \quad \mathsf{easy to solve}$

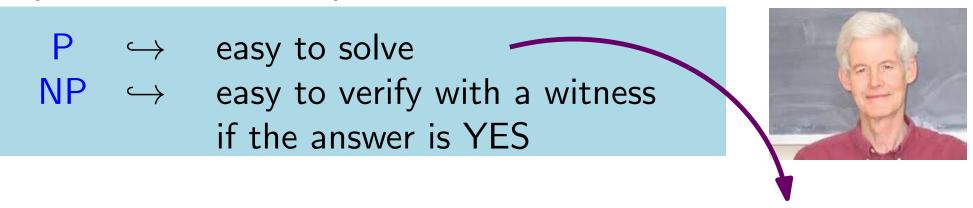


Input: $v = (v_1, \dots, v_n) \in \mathbb{Z}^n$

Problem: Is v ordered?

In 1971, Stephen Cook introduces: 'Is P = NP?'

P y NP are complexity clases of decision problems



Input: $v = (v_1, \dots, v_n) \in \mathbb{Z}^n$

Problem: Is v ordered?

In 1971, Stephen Cook introduces: 'Is P = NP?'

P y NP are complexity clases of decision problems

 $P \hookrightarrow easy to solve$ $NP \hookrightarrow easy to verify with a witness$ if the answer is YES

Input: $v = (v_1, \dots, v_n) \in \mathbb{Z}^n$

Problem: Is v ordered?

Input: $A = \{a_1, \ldots, a_n\} \subset \mathbb{Z}$

Problem: Is there a $B \subseteq A$ so that $\sum_{b \in B} b = 0$?

In 1971, Stephen Cook introduces: 'Is P = NP?'

P y NP are complexity clases of decision problems

Input: $v = (v_1, \dots, v_n) \in \mathbb{Z}^n$

Problem: Is v ordered?

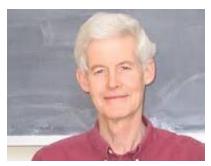
Input: $A = \{a_1, \ldots, a_n\} \subset \mathbb{Z}$

Problem: Is there a $B \subseteq A$ so that $\sum_{b \in B} b = 0$?

Clearly $P \subseteq NP$

In 1971, Stephen Cook introduces: 'Is P = NP?'

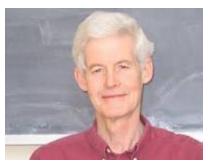
P y NP are complexity clases of decision problems



- One of the millenium problems of Clay Math Institute
- General thought: P ⊆ NP
- Second general thought: we are far from a proof

In 1971, Stephen Cook introduces: 'Is P = NP?'

P y NP are complexity clases of decision problems



- One of the millenium problems of Clay Math Institute
- General thought: P ⊆ NP
- Second general thought: we are far from a proof
 - 45 before 2050
 - 17 before 2100
 - 12 after 2100
 - 5 never
 - 21 don't know

- ∘ 61 believe P ≠ NP
- ∘ 9 believe P = NP
- 8 believe it is not decidable
- 22 don't know

Survey by W.I. Gasarch

In 1979, Leslie Valiant presents the problem: Is VP = VNP?

Elements of VP and VNP: families of polynomials

```
\begin{array}{ccc} \mathsf{VP} & \hookrightarrow & \mathsf{easy} \ \mathsf{to} \ \mathsf{compute} \\ \mathsf{VNP} & \hookrightarrow & \mathsf{explicit} \end{array}
```


In 1979, Leslie Valiant presents the problem: Is VP = VNP?

Elements of VP and VNP: families of polynomials

$$f_n = \sum_{i=1}^n x_i^n$$
, for all $n \in \mathbb{Z}^+$

In 1979, Leslie Valiant presents the problem: Is VP = VNP?

Elements of VP and VNP: families of polynomials

 $\begin{array}{ccc} \mathsf{VP} & \hookrightarrow & \mathsf{easy} \ \mathsf{to} \ \mathsf{compute} \\ \mathsf{VNP} & \hookrightarrow & \mathsf{explicit} \end{array}$

$$f_n = \sum_{i=1}^n x_i^n$$
, for all $n \in \mathbb{Z}^+$

$$\operatorname{Det}_{n} := \det \begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ x_{2,1} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{bmatrix} = \sum_{\sigma \in S_{n}} (-1)^{\operatorname{sign}(\omega)} x_{1\sigma(1)} \cdots x_{n\sigma(n)}$$

In 1979, Leslie Valiant presents the problem: Is VP = VNP?

Elements of VP and VNP: families of polynomials

 $\begin{array}{ccc} \mathsf{VP} & \hookrightarrow & \mathsf{easy} \ \mathsf{to} \ \mathsf{compute} \\ \mathsf{VNP} & \hookrightarrow & \mathsf{explicit} \end{array}$

$$f_n = \sum_{i=1}^n x_i^n$$
, for all $n \in \mathbb{Z}^+$

$$\operatorname{Det}_{n} := \det \begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ x_{2,1} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{bmatrix} = \sum_{\sigma \in S_{n}} (-1)^{\operatorname{sign}(\omega)} x_{1\sigma(1)} \cdots x_{n\sigma(n)}$$

$$\operatorname{Perm}_{n} = \sum_{\sigma \in S_{n}} x_{1\sigma(1)} \cdots x_{n\sigma(n)}$$

In 1979, Leslie Valiant presents the problem: Is VP = VNP?

Elements of VP and VNP: families of polynomials

 $\begin{array}{ccc} \mathsf{VP} & \hookrightarrow & \mathsf{easy} \ \mathsf{to} \ \mathsf{compute} \\ \mathsf{VNP} & \hookrightarrow & \mathsf{explicit} \end{array}$

$$f_n = \sum_{i=1}^n x_i^n$$
, for all $n \in \mathbb{Z}^+$

$$\operatorname{Det}_{n} := \det \begin{bmatrix} x_{1,1} & \cdots & x_{1,n} \\ x_{2,1} & \cdots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n,1} & \cdots & x_{n,n} \end{bmatrix} = \sum_{\sigma \in S_{n}} (-1)^{\operatorname{sign}(\omega)} x_{1\sigma(1)} \cdots x_{n\sigma(n)}$$

$$\operatorname{Perm}_{n} = \sum_{\sigma \in S_{n}} x_{1\sigma(1)} \cdots x_{n\sigma(n)}$$

Clearly, $VP \subseteq VNP$

In 1979, Leslie Valiant presents the problem: Is VP = VNP?

Elements of VP and VNP: families of polynomials

```
\begin{array}{ccc} \mathsf{VP} & \hookrightarrow & \mathsf{easy} \ \mathsf{to} \ \mathsf{compute} \\ \mathsf{VNP} & \hookrightarrow & \mathsf{explicit} \end{array}
```


- Widely thought that: VP ⊆ VNP
- Kayal (2009) introduces the method of shifted partial derivatives. This method (and its improvements) are very close to solve the problem.

In 1979, Leslie Valiant presents the problem: Is VP = VNP?

Elements of VP and VNP: families of polynomials

```
\begin{array}{ccc} \mathsf{VP} & \hookrightarrow & \mathsf{easy} \ \mathsf{to} \ \mathsf{compute} \\ \mathsf{VNP} & \hookrightarrow & \mathsf{explicit} \end{array}
```


- Widely thought that: VP ⊆ VNP
- Kayal (2009) introduces the method of shifted partial derivatives. This method (and its improvements) are very close to solve the problem.

Bad news:

Landsberg et al. (2016) show that the *shifted partial derivatives* method is not enough to separate VP from VNP.

Good news:

Results by [Agrawal & Vinay (2008), Tavenas (2014)] show that a **generic vs. explicit** result for any of the following model of computation of polynomials imply that $VP \subseteq VNP$.

- 1. $f = \sum_{i=1}^{k} f_i^{e_i} \in \mathbb{C}[x]$ where f_i have at most t monomials and $e_i \in \mathbb{N}$
- 2. $f = \sum_{i=1}^{k} a_i f_i^{e_i} \in \mathbb{F}[x_1, \dots, x_n]$ where $a_i \in k$ and f_i have at most t monomials
- 3. $f = \sum_{i=1}^{s} \prod_{j=1}^{m} L_{i,j} \in \mathbb{F}[x_1, \dots, x_n]$ where $L_{i,j}$ are linear forms.

Si P = NP el mundo sería muy diferente de como creemos que es. La creatividad no tendría un valor especial: no habría diferencia entre alguien que sepa apreciar a Mozart y el propio genio, todo el que pudiera entender una demostración sería Gauss...

Scott Aaronson

¡Muchas gracias!