Endomorphism algebras of geometrically split abelian surfaces over $\mathbb Q$

Francesc Fité (MIT) Xevi Guitart (UB)

SGA Barcelona 2020

A conjecture of Coleman

- Number Field: $k \subset \mathbb{C}$ with $[k \colon \mathbb{Q}] < \infty$.
 - e.g. \mathbb{Q} , $\mathbb{Q}(\sqrt{D})$
- A abelian variety over a number field k
 - $\qquad \qquad \operatorname{End}_{\overline{\mathbb{Q}}}^0(A) = \operatorname{End}(A_{\overline{\mathbb{Q}}}) \otimes \mathbb{Q} \text{ the algebra of } \overline{\mathbb{Q}}\text{-endomorphisms}$
- For $g, d \ge 1$ define

$$\mathcal{A}_{g,d}=\{\operatorname{End}_{\overline{\mathbb{Q}}}^0(A)\colon A/k \text{ of dimension } g \text{ and } [k:\mathbb{Q}]=d\}/\simeq$$

Conjecture (Coleman)

The set $A_{g,d}$ is finite.

- In fact Coleman's conjecture is for endomorphism rings.
- Very little is known:
 - ▶ True for $A_{1,d}$ (elliptic curves)
 - We are interested in $A_{2,1}$ (abelian surfaces over \mathbb{Q})

The case of elliptic curves (over Q)

•
$$E/\mathbb{Q}$$
 elliptic curve $\leadsto \operatorname{End}_{\overline{\mathbb{Q}}}^0(E) \simeq egin{cases} \mathbb{Q} \\ M = \mathbb{Q}(\sqrt{-D}), \ D \in \mathbb{Q}_{>0} \end{cases}$

- Constructing elliptic curves over C with CM
 - ▶ \mathcal{O} = ring of integers of $\mathbb{Q}(\sqrt{-D})$ and $I \subset \mathcal{O}$ an ideal
 - ▶ $I \subset \mathbb{C}$ is a lattice and \mathbb{C}/I is an elliptic curve with End(E) $\simeq \mathcal{O}$

Theory of Complex Multiplication

- $\{E/\mathbb{C} \colon \mathrm{End}(E) \simeq \mathcal{O}\} \stackrel{\text{1:1}}{\longleftrightarrow} \{I \subset M \text{ fractional ideals}\}/I \sim \lambda I = \mathrm{Cl}(M)$
- If E has CM by $\mathcal O$ then $j(E)\in\overline{\mathbb Q}$ and $[\mathbb Q(j(E)):\mathbb Q]=\#\mathrm{Cl}(M)$
- If E/\mathbb{Q} has CM by M then $j(E) \in \mathbb{Q} \Rightarrow \#\mathrm{Cl}(M) = 1$.
- $\#\text{Cl}(\mathbb{Q}(\sqrt{-D})) = 1 \iff D = 1, 2, 3, 7, 11, 19, 43, 67, 163$
 - $\rightarrow A_{1,1} = {\mathbb{Q}} \cup {\mathbb{Q}}(\sqrt{-D}): D = 1,2,3,7,11,19,43,67,163$
- Heilbronn (1934): \exists finitely many $\mathbb{Q}(\sqrt{-D})$ with $\#\mathrm{Cl}(M) = d$
 - A_{1,d} is finite for all d
 - ▶ For $d \le 100$ the set $A_{1,d}$ is known explicitly (Watkins)

The case of abelian surfaces over Q

- $\bullet \ \mathcal{A}_{2,1}=\{\mathrm{End}_{\overline{\mathbb{Q}}}^{\underline{0}}(\textit{A})\colon \textit{A}/\mathbb{Q}, \ \dim(\textit{A})=2\}/\simeq$
- A/ℚ an abelian surface
 - geometrically simple if $A_{\overline{\square}}$ is simple
 - geometrically split if $A_{\overline{\mathbb{Q}}} \stackrel{\sim}{\sim} E_1 \times E_2$
- $\operatorname{End}_{\overline{\mathbb{Q}}}^0(A) \simeq egin{cases} \mathbb{Q}, \mathbb{Q}(\sqrt{D}), \text{ CM field }, B/\mathbb{Q} \text{ def. quat. alg.} \\ \mathbb{Q} \times \mathbb{Q}, \mathbb{Q} \times \mathbb{Q}(\sqrt{-D}), \operatorname{M}_2(\mathbb{Q}), \operatorname{M}_2(\mathbb{Q}(\sqrt{-D})) \end{cases}$
- The case where A is geometrically simple is open:
 - There are 19 possibilities for the CM field (Murabayashi-Umegaki)
 - Nothing is known for the real quadratic field or quaternion algebra
- $\bullet \ \mathcal{A}^{\text{split}}_{2,1} = \{ \text{End}_{\overline{\mathbb{Q}}}^0(\textit{A}) \colon \textit{A}/\mathbb{Q}, \ \text{dim}(\textit{A}) = 2, \ \textit{A} \ \text{geom. split} \}$
- Theorem (Shafarevic): $A_{2,1}^{\text{split}}$ is finite
 - Our goal is to determine $A_{2,1}^{\text{split}}$ explicitly

Main Theorem

Theorem (Fité-G., 2018)

The set $\mathcal{A}_{2,1}^{\text{split}}$ of $\overline{\mathbb{Q}}$ -endomorphism algebras of geometrically split abelian surfaces over \mathbb{Q} is made of:

- ② $\mathbb{Q} \times M_1$, $M_1 \times M_2$, with M_i quadratic imag. fields of $\#Cl(M_i) = 1$;
- $\ \ \, \mathbf{M}_2(\textit{M})$ with M quadratic imaginary field, $\mathrm{Cl}(\textit{M})\simeq \mathrm{C}_1,\mathrm{C}_2,\mathrm{C}_2\times\mathrm{C}_2$ and M distinct from

$$\mathbb{Q}(\sqrt{-195}), \mathbb{Q}(\sqrt{-312}), \mathbb{Q}(\sqrt{-340}), \mathbb{Q}(\sqrt{-555}), \mathbb{Q}(\sqrt{-715}), \mathbb{Q}(\sqrt{-760})$$

In particular, the set $A_{2,1}^{\text{split}}$ has cardinality 92.

- If $A_{\overline{\mathbb{Q}}} \sim E_1 \times E_2$ or $A_{\overline{\mathbb{Q}}} \sim E_1^2$ with E_i non-CM
- ② If $A_{\overline{\mathbb{O}}} \sim E_1 \times E_2$ and E_i can have CM
 - ▶ Here [FKRS] showed that each E_i can be defined over \mathbb{Q}
- **3** Here $A_{\overline{\mathbb{Q}}} \sim E^2$ with E with CM by M: here is where the work is

Squares of CM elliptic curves

Central question

If A/\mathbb{Q} with $A_{\overline{\mathbb{Q}}} \sim E^2$ and E has CM by M, what are the possible M's?

Theorem (Fité-G., 2015)

Necessarily $Cl(M) \simeq C_1, C_2, \text{ or } C_2 \times C_2$

- Idea of the proof: adapt Ribet's theory of Q-curves
 - ▶ K/\mathbb{Q} minimal such that $\operatorname{End}(A_{\overline{\mathbb{Q}}}) = \operatorname{End}(A_K) \rightsquigarrow E/K$ and $A_K \sim E^2$
 - $\sigma \in \operatorname{Gal}(K/\mathbb{Q}) \leadsto ({}^{\sigma}E)^2 \sim {}^{\sigma}A_K = A_K \sim E^2$
 - ★ There is an isogeny μ_{σ} : ${}^{\sigma}E \longrightarrow E$
 - ▶ Cohomology class $c_E \in H^2(Gal(K/\mathbb{Q}), M^{\times})$
 - $\star c_{E}(\sigma,\tau) = \mu_{\sigma} \circ {}^{\sigma}\mu_{\tau} \circ \mu_{\sigma\tau}^{-1}$

Weil descent (up to isogeny)

For $L \subset K$, there exists C/L with $E \sim C_K \iff c_{E|Gal(K/L)} = 1$.

• A/\mathbb{Q} with $A_K \sim E^2$, and E has CM by M.

Theorem (Fité-G., 2015)

Necessarily $Cl(M) \simeq C_1, C_2, \text{ or } C_2 \times C_2$

- Known that $Gal(K/M) \simeq C_1, C_r, D_r$ with $r \in \{2, 3, 4, 6\}$.
- $\bullet \ \ A_K \sim E^2 \Rightarrow c_{E|\mathrm{Gal}(K/M)} \in H^2(\mathrm{Gal}(K/M), M^\times)[2] \simeq$

$$H^2(\operatorname{Gal}(K/M), \{\pm 1\}) \times \operatorname{Hom}(\operatorname{Gal}(K/M), P/P^2), \text{ where } P = M^{\times}/\{\pm 1\}$$

- $\exists N \subset K$ such that $Gal(N/M) \simeq C_1, C_2, C_2 \times C_2$ and $c_{EGal(K/N)} = 1$
- Weil descent: E can be defined over N so $M(j(E)) \subset N$
- CM theory: M(j(E)) = Hilbert class field of M
- $Cl(M) \simeq Gal(M(j(E))/M) = C_1, C_2, C_2 \times C_2.$

Now the question is

of these possible M's, which ones do really occur?

• Give a construction of A's for some M's and rule out the other M's

Constructing abelian surfaces: restriction of scalars

Weil's restriction of scalars

L/k a finite field extension and X/L a variety; $\mathcal{X} = \operatorname{Res}_{L/k}X$ is a variety over k representing the functor of k-schemes $S \mapsto X(S \times_k L)$.

- In particular, $\mathcal{X}(k) \simeq X(L)$
- If X/L is an abelian variety:
 - → X is an abelian variety over k of dimension [L : k] dim X
 - ▶ Y/k abelian variety \rightsquigarrow Hom $(Y, X) \simeq$ Hom (Y_L, X)
 - $\mathcal{X}_L = \prod_{\sigma \in \operatorname{Gal}(L/k)} \sigma X$

Constructing abelian surfaces: the basic cases

Goal

Given M with $\mathrm{Cl}(M)\simeq \mathrm{C}_1,\mathrm{C}_2$, construct A/\mathbb{Q} abelian surface with $A_{\overline{\mathbb{Q}}}\sim E^2$ and E with CM by M.

- If Cl(M) = 1
 - ▶ take E/\mathbb{Q} with CM by M and $A = E \times E$.
- If $Cl(M) = C_2$
 - ▶ If *E* has CM by \mathcal{O}_M then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 2$, so we can take $E/\mathbb{Q}(j(E))$
 - ▶ $A = \operatorname{Res}_{\mathbb{O}(j_F)/\mathbb{O}} E$ has dimension 2 and $A_{\overline{\mathbb{O}}} \sim E \times {}^{\sigma} E$
 - ▶ If E has CM, then ${}^{\sigma}E_{\overline{\mathbb{O}}} \sim E_{\overline{\mathbb{O}}}$ and therefore $A_{\overline{\mathbb{O}}} \sim E^2$
- If $Cl(M) = C_2 \times C_2$ then $[\mathbb{Q}(j_E) : \mathbb{Q}] = 4$ and $Res_{\mathbb{Q}(j_E)/\mathbb{Q}}E$ has dim 4
 - ▶ Idea: choose *E* so that $\operatorname{Res}_{\mathbb{Q}(i_E)/\mathbb{Q}} \sim A^2$
 - ▶ We will take E to be a Gross ℚ-curve

Case $C_2 \times C_2$: Gross's \mathbb{Q} -curves

• $M = \mathbb{Q}(\sqrt{-D})$ has $Cl(M) \simeq C_2 \times C_2$ for $D \in \{84, 120, 132, 168, 195, 228, 280, 312, 340, 372, 408, 435, 483, 520, 532, 555, 595, 627, 708, 715, 760, 795, 1012, 1435\}$

- H = Hilbert class field of M.
- A Gross Q-curve is
 - ▶ E/H elliptic curve with CM by M s.t. ${}^{\sigma}E \sim E \ \forall \sigma \in Gal(H/\mathbb{Q})$

Theorem (Shimura-Nakamura)

If $\operatorname{Disc}(M) \neq -4 \times (\text{primes} \equiv 1 \pmod{4})$: $\exists \text{ Gross } \mathbb{Q}\text{-curve } E/H$

- The only exception is D = 340
- If $\mathcal{E} = \operatorname{Res}_{\mathbb{Q}(j_E)/\mathbb{Q}} E$ then $\operatorname{End}^0(\mathcal{E}) \simeq \mathbb{Q}^{c_E}[\operatorname{Gal}(\mathbb{Q}(j_E)/\mathbb{Q})]$
- For $D \neq 340$, Nakamura showed that:
 - For each D, Gross \mathbb{Q} -curves D give rise to 8 cohomology classes
 - lacktriangle Gave a method for computing all these cohomology classes c_E
- If $\operatorname{End}^0(\mathcal{E}) \simeq \operatorname{M}_2(\mathbb{Q}) \rightsquigarrow \mathcal{E} \sim A^2$ and we're done!

Computing the endomorphism algebra of ${\mathcal E}$

- For each $D \neq 340$, we computed $\operatorname{End}(\mathcal{E})$ for each of the eight representatives of \mathbb{Q} -curves with CM by $\mathbb{Q}(\sqrt{-D})$.
 - $\begin{array}{l} \bullet \quad \text{For } D \in \{84,120,132,168,228,280,372,408,435,483,\\ 520,532,595,627,708,795,1012,1435\}\\ \text{at least one of the } \mathbb{Q}\text{-curves has } \operatorname{End}^0(\mathcal{E}) \simeq \operatorname{M}_2(\mathbb{Q}). \end{array}$
 - ② For $D \in \{195, 312, 555, 715, 760\}$ all \mathbb{Q} -curves have $\operatorname{End}^0(\mathcal{E}) \simeq \begin{cases} \text{number field} \\ \text{division quaternion algebra} \end{cases}$ $\Rightarrow \mathcal{E}$ is simple over \mathbb{Q} of dimension 4
- Need to show that for the fields M in 2, A does not exist

Ruling out abelian surfaces: the simplest case

- $M = \mathbb{Q}(\sqrt{-D})$ s.t. for any Gross \mathbb{Q} -curve E/H we know that $\operatorname{Res}_{H/\mathbb{Q}}E$ does not have any factor of dimension 2.
- Suppose that $\exists A/\mathbb{Q}$ with $A_{\overline{\mathbb{Q}}} \sim E_0^2$ and E_0 has CM by M.
- \bullet K = minimal field where this decomposition takes place.
- If $Gal(K/M) \simeq C_2 \times C_2$
 - ▶ $H \subset K$ and $Gal(H/M) \simeq Cl(M) \simeq C_2 \times C_2 \Rightarrow K = H$
- Then E_0 is a Gross \mathbb{Q} -curve, but this is a contradiction!
 - ▶ $\operatorname{Hom}(A_H, E_0) \neq 0 \Rightarrow \operatorname{Hom}(A, \operatorname{Res}_{H/\mathbb{Q}} E_0) \neq 0$.
 - ▶ But the simple factors of $Res_{H/\mathbb{O}} E_0$ are of dimension 4.
- If $Gal(H/K) \simeq C_r, D_r$ with $r \in \{3, 4, 6\}$
 - One needs to sharpen the argument...

Endomorphism algebras of geometrically split abelian surfaces over $\mathbb Q$

Francesc Fité (MIT) Xevi Guitart (UB)

SGA Barcelona 2020