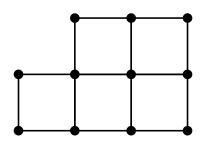
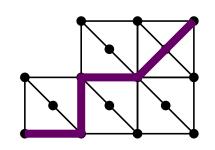
On lattice path matroid polytopes: integer points and Ehrhart polynomial

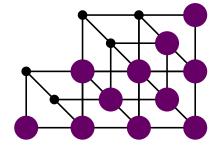
Jorge Luis Ramírez Alfonsín Institut Montpelliérain Alexander Grothendieck, Université de Montpellier

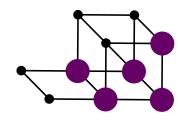
Leonardo Martínez-Sandoval Faculté des Sciences Sorbonne Université

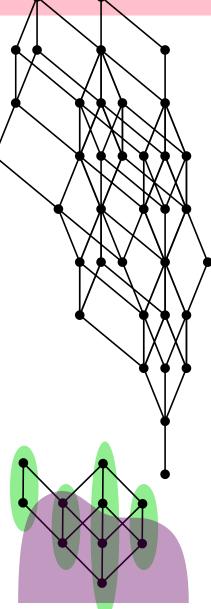
Kolja Knauer Universitat de Barcelona











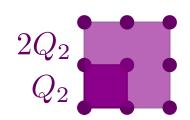
$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$

$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$

$$\begin{array}{c|c} k & 1 \\ \hline L_{Q_2}(k) & 4 \end{array}$$

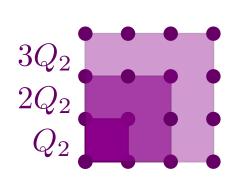


$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



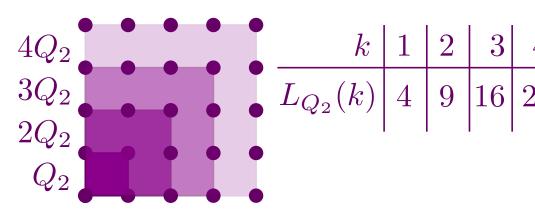
| $\underline{}$ | 1 | 2 |
|----------------|---|---|
| $L_{Q_2}(k)$   | 4 | 9 |

$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



| $\underline{}$ | 1 | 2 | 3  |
|----------------|---|---|----|
| $L_{Q_2}(k)$   | 4 | 9 | 16 |

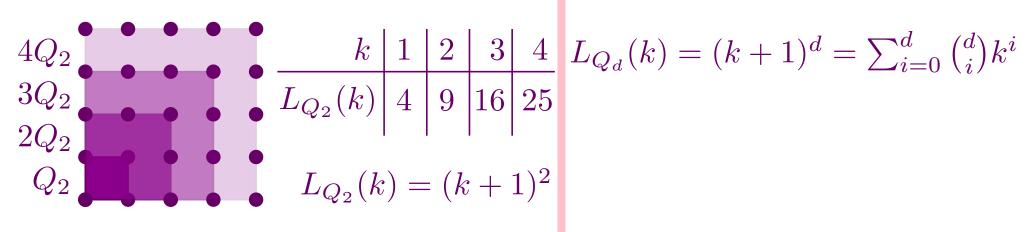
$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$

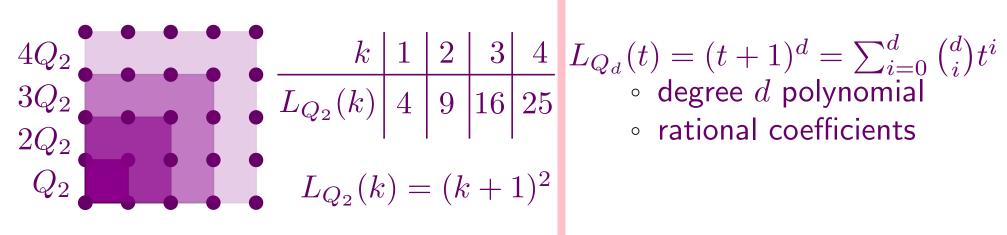


$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



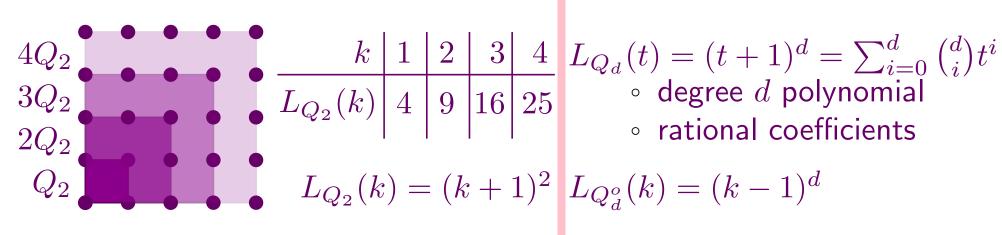
$$L_{Q_d}(k) = (k+1)^d = \sum_{i=0}^d {d \choose i} k^i$$

$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t^i$$
• degree  $d$  polynomial

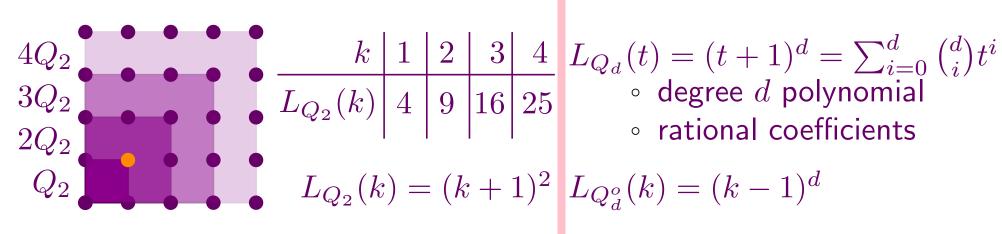
$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t^i$$

$$L_{Q_d^o}(k) = (k-1)^d$$

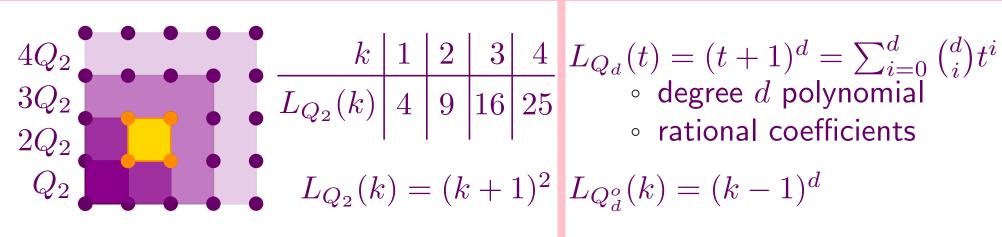
$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t^i$$

$$L_{Q_d^o}(k) = (k-1)^d$$

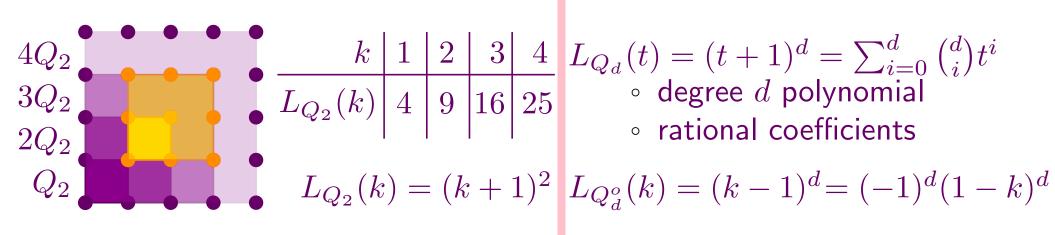
$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t^i$$

$$L_{Q_d^o}(k) = (k-1)^d$$

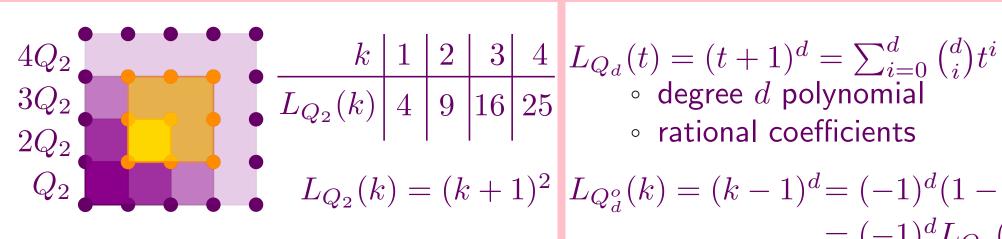
$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t$$

$$L_{Q_d^o}(k) = (k-1)^d = (-1)^d (1-k)^d$$

$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$

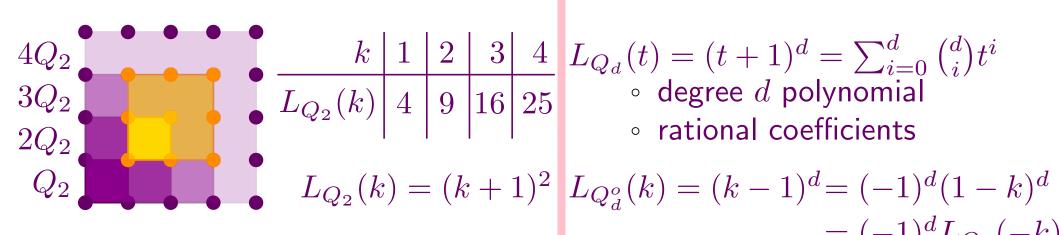


$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t^i$$

$$L_{Q_2}(k) = (k+1)^2 \qquad L_{Q_d^o}(k) = (k-1)^d = (-1)^d (1-k)^d \\ = (-1)^d L_{Q_d}(-k)$$

Let  $P \subset \mathbb{R}^{d'}$  be a d-dimensional integral convex polytope and  $k \in \mathbb{N}$ ,

$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t^i$$

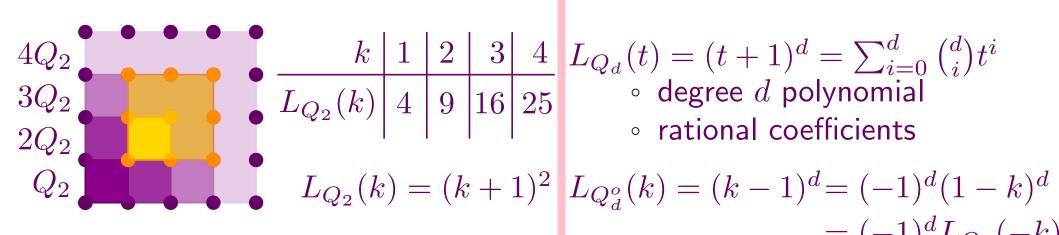
$$L_{Q_d^o}(k) = (k-1)^d = (-1)^d (1-k)^d$$
$$= (-1)^d L_{Q_d}(-k)$$

#### Thm (Ehrhart '62):

 $L_P(t)$  is a degree d polynomial with rational coefficients. Moreover,  $L_P(-k) = (-1)^d L_{P^o}(k)$  for all  $k \in \mathbb{N}$ .

Let  $P \subset \mathbb{R}^{d'}$  be a d-dimensional integral convex polytope and  $k \in \mathbb{N}$ ,

$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t^i$$

$$L_{Q_d^o}(k) = (k-1)^d = (-1)^d (1-k)^d$$
$$= (-1)^d L_{Q_d}(-k)$$

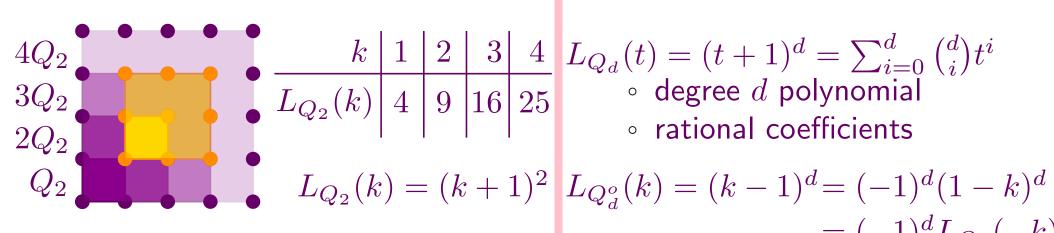
#### Thm (Ehrhart '62):

 $L_P(t)$  is a degree d polynomial with rational coefficients. Moreover,  $L_P(-k) = (-1)^d L_{P^o}(k)$  for all  $k \in \mathbb{N}$ .

the Ehrhart polynomial of P

Let  $P \subset \mathbb{R}^{d'}$  be a d-dimensional integral convex polytope and  $k \in \mathbb{N}$ ,

$$L_P(k) := |kP \cap \mathbb{Z}^{d'}|.$$



$$L_{Q_d}(t) = (t+1)^d = \sum_{i=0}^d {d \choose i} t^i$$
  $\circ$  degree  $d$  polynomial

$$L_{Q_d^o}(k) = (k-1)^d = (-1)^d (1-k)^d$$
$$= (-1)^d L_{Q_d}(-k)$$

#### Thm (Ehrhart '62):

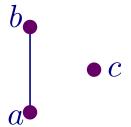
 $L_P(t)$  is a degree d polynomial with rational coefficients. Moreover,  $L_P(-k) = (-1)^d L_{P^o}(k)$  for all  $k \in \mathbb{N}$ .

the Ehrhart polynomial of P

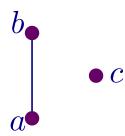
#### Thm (Stanley '91):

there are  $h_0^*, \ldots, h_d^* \geq 0$  such that  $L_P(t) = \sum_{i=0}^d h_i^* \binom{t+d-i}{d}$ .

#### $\mathsf{poset}\ X$

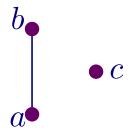


#### $\mathsf{poset}\ X$



$$I \subseteq X$$
 is an *ideal* if  $y \le x \in I \implies y \in I$ 

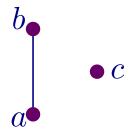
#### poset X



$$I\subseteq X \text{ is an } \textit{ideal} \text{ if}$$
 
$$y\leq x\in I \implies y\in I$$
 
$$\bullet c \qquad \mathcal{I}(X) \text{ set of ideals of } X$$

ordered by inclusion

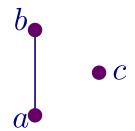
#### poset X



 $I\subseteq X \text{ is an } ideal \text{ if } \\ y\leq x\in I \implies y\in I \\ \bullet c \qquad \mathcal{I}(X) \text{ set of ideals of } X \\ \text{ordered by inclusion}$ 

 $\mathcal{I}(X)$ 

#### poset X

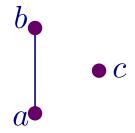


 $I\subseteq X$  is an ideal if  $y\le x\in I \implies y\in I$   $\bullet$  c  $\mathcal{I}(X)$  set of ideals of X ordered by inclusion





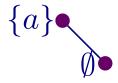
#### poset X



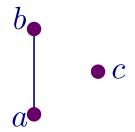
 $I \subseteq X$  is an *ideal* if  $y \le x \in I \implies y \in I$  $y \ge x \in I \implies y \in I$ • c  $\mathcal{I}(X) \text{ set of ideals of } X$ 

$$\mathcal{I}(X)$$
 set of ideals of  $X$  ordered by inclusion

$$\mathcal{I}(X)$$



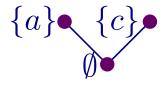
#### poset X



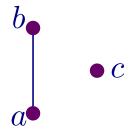
 $I \subseteq X$  is an *ideal* if  $y \le x \in I \implies y \in I$  $y \ge x \in I \implies y \in I$ • c  $\mathcal{I}(X) \text{ set of ideals of } X$ 

ordered by inclusion

$$\mathcal{I}(X)$$

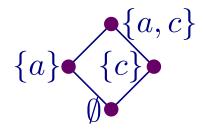


#### poset X

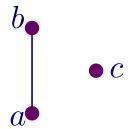


 $I\subseteq X \text{ is an } ideal \text{ if } \\ y\leq x\in I \implies y\in I$  • c  $\mathcal{I}(X) \text{ set of ideals of } X$  ordered by inclusion

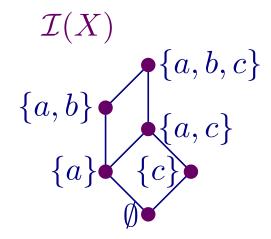
$$\mathcal{I}(X)$$



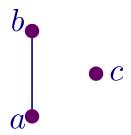
#### poset X



 $I\subseteq X \text{ is an } \textit{ideal} \text{ if}$   $y\leq x\in I \implies y\in I$   $\bullet c \qquad \mathcal{I}(X) \text{ set of ideals of } X$  ordered by inclusion

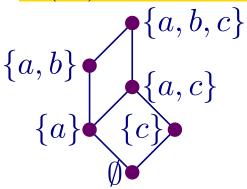


#### poset X

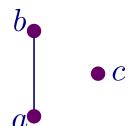


 $I\subseteq X \text{ is an } \textit{ideal} \text{ if}$   $y\leq x\in I \implies y\in I$   $\bullet c \qquad \mathcal{I}(X) \text{ set of ideals of } X$  ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice

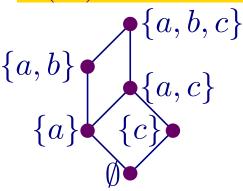


#### poset X



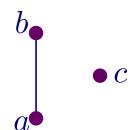
 $I\subseteq X$  is an ideal if  $y\leq x\in I \implies y\in I$ • c  $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



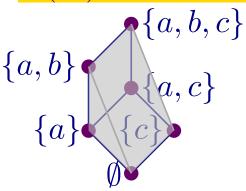
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

#### poset X



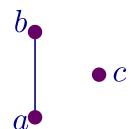
 $I\subseteq X$  is an *ideal* if  $y\le x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

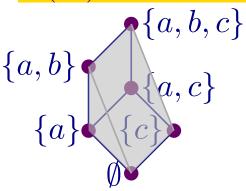
#### poset X



 $I\subseteq X$  is an *ideal* if  $y\leq x\in I \implies y\in I$ 

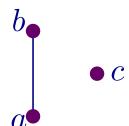
 $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ =  $\{x \in [0,1]^d \mid x_i \leq x_j \text{ if } i \geq j \text{ in } X\}$ 

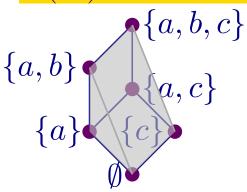
#### poset X



 $I \subseteq X$  is an *ideal* if  $y \le x \in I \implies y \in I$ 

 $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

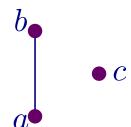
#### $\mathcal{I}(X)$ distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ =  $\{x \in [0,1]^d \mid x_i \leq x_j \text{ if } i \geq j \text{ in } X\}$ 

$$L_{P_X}(1) = |\mathcal{I}(X)|$$

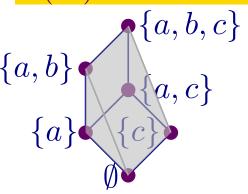
#### poset X



 $I \subseteq X$  is an *ideal* if  $y \le x \in I \implies y \in I$ 

 $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



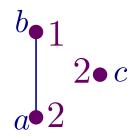
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(1) = |\mathcal{I}(X)|$$

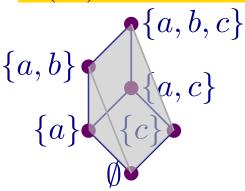
$$L_{P_X}(2) =$$

poset X



 $I\subseteq X$  is an *ideal* if  $y\le x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

 $\mathcal{I}(X)$  distributive lattice



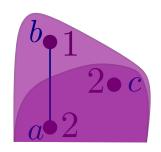
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,2]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(1) = |\mathcal{I}(X)|$$

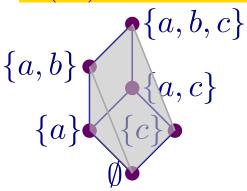
$$L_{P_X}(2) =$$

#### poset X



 $I\subseteq X$  is an ideal if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice

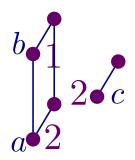


order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ =  $\{x \in [0,2]^d \mid x_i \leq x_j \text{ if } i \geq j \text{ in } X\}$ 

$$L_{P_X}(1) = |\mathcal{I}(X)|$$

$$L_{P_X}(2) =$$

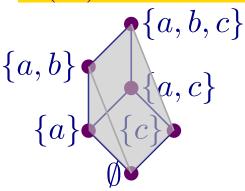
#### poset X



$$I\subseteq X$$
 is an *ideal* if  $y\leq x\in I \implies y\in I$ 

 $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



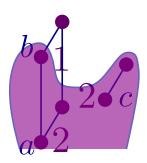
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,2]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(1) = |\mathcal{I}(X)|$$

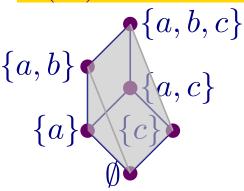
$$L_{P_X}(2) =$$

#### poset X



 $I\subseteq X$  is an ideal if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice

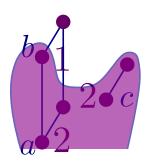


order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ =  $\{x \in [0,2]^d \mid x_i \leq x_j \text{ if } i \geq j \text{ in } X\}$ 

$$L_{P_X}(1) = |\mathcal{I}(X)|$$

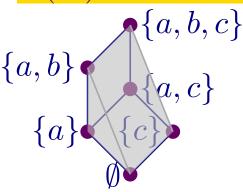
$$L_{P_X}(2) =$$

#### poset X



$$I\subseteq X$$
 is an  $ideal$  if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of  $X$  ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



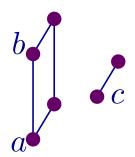
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,2]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(1) = |\mathcal{I}(X)|$$

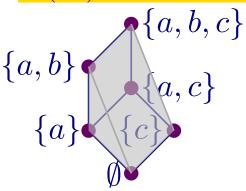
$$L_{P_X}(2) = |\mathcal{I}(X \times P_2)|$$

#### poset X



 $I\subseteq X$  is an ideal if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

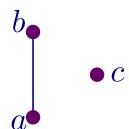
#### $\mathcal{I}(X)$ distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ =  $\{x \in [0,1]^d \mid x_i \leq x_j \text{ if } i \geq j \text{ in } X\}$ 

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$

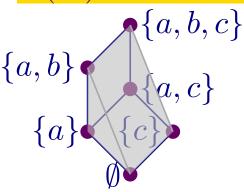
### poset X



 $I \subseteq X$  is an *ideal* if  $y \le x \in I \implies y \in I$ 

ullet c  $\mathcal{I}(X)$  set of ideals of Xordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice

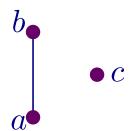


order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

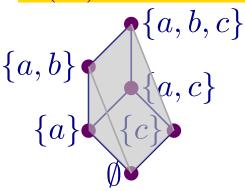
### poset X



 $I \subseteq X$  is an *ideal* if

 $y \leq x \in I \implies y \in I$  • c  $\mathcal{I}(X)$  set of ideals of Xordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice

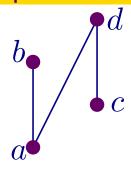


order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

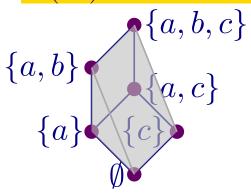
#### poset X



$$I\subseteq X$$
 is an  $ideal$  if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of  $X$ 

ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X\}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

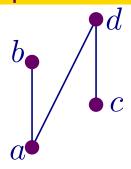
Thm (Stanley '86): E linear extension of X,

 $\omega_i = |\{E' \text{ lin.ext of } X \mid i \text{ consecutive pairs in } E' \text{ ordered different than } E\}|$ 

then 
$$L_{P_X}(t) = \sum_{i=0}^{d-1} \omega_i \binom{d+t-i}{d}$$
, i.e.,  $\omega_i = h_i^*$ .

e., 
$$\omega_i = h_i^*$$

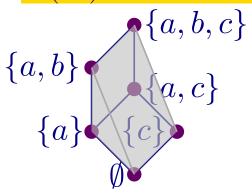
#### poset X



$$I\subseteq X$$
 is an  $ideal$  if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of  $X$ 

ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



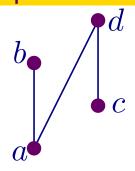
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

$$E = abcd \bullet$$

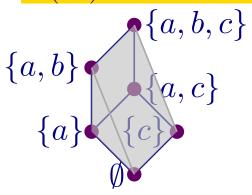
#### poset X



$$I\subseteq X \text{ is an } ideal \text{ if } \\ y\leq x\in I \implies y\in I \\ \mathcal{I}(X) \text{ set of ideals of } X$$

ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



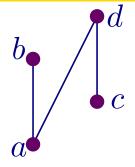
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X\}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

$$E = abcd \bullet \underbrace{\phantom{abcd}}_{acbd}$$

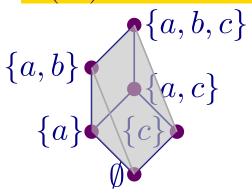
poset X



$$I\subseteq X$$
 is an *ideal* if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of  $X$ 

ordered by inclusion

 $\mathcal{I}(X)$  distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

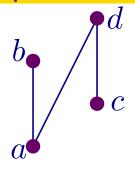
$$= \{x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X\}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

$$E = abcd - cabd$$

$$acbd - acdb$$

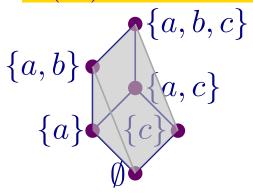
poset X



 $I \subseteq X$  is an *ideal* if  $b - \int_{-c}^{a} y \le x \in I \implies y \in I$   $\mathcal{I}(X) \text{ set of ideals of } X$ 

ordered by inclusion

 $\mathcal{I}(X)$  distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

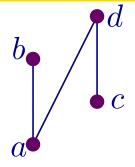
$$= \{x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X\}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

$$E = abcd \bullet cabd$$

$$acbd \bullet acdb$$

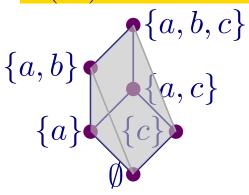
poset X



$$I\subseteq X \text{ is an } ideal \text{ if } y \leq x \in I \implies y \in I$$
 
$$\mathcal{I}(X) \text{ set of ideals of } X$$

ordered by inclusion

 $\mathcal{I}(X)$  distributive lattice

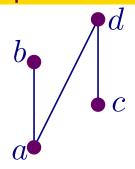


order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X\}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

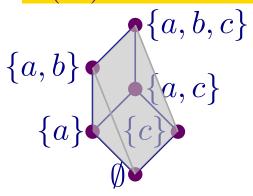
poset X



$$I\subseteq X \text{ is an } ideal \text{ if } y \leq x \in I \implies y \in I$$
 
$$\mathcal{I}(X) \text{ set of ideals of } X$$

ordered by inclusion

 $\mathcal{I}(X)$  distributive lattice



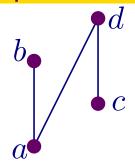
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X\}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

$$E = abcd \underbrace{\begin{array}{c} 0 \\ acbd \end{array}}_{acdb} \underbrace{\begin{array}{c} cabd \\ cadb \end{array}}_{acdb}$$

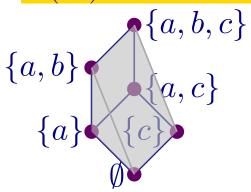
poset X



 $I \subseteq X$  is an *ideal* if  $b - c \qquad y \le x \in I \implies y \in I$   $\mathcal{I}(X) \text{ set of ideals of } X$ 

ordered by inclusion

 $\mathcal{I}(X)$  distributive lattice



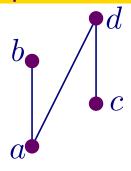
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X\}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

$$E = abcd \underbrace{\begin{array}{c} 0 \\ acbd \end{array}}_{acbd} \underbrace{\begin{array}{c} cabd \\ 2 \\ acdb \end{array}}_{acdb}$$

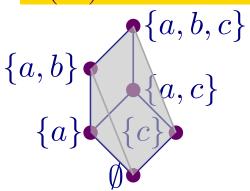
poset X



$$I\subseteq X \text{ is an } ideal \text{ if } \\ y\leq x\in I \implies y\in I \\ c \qquad \mathcal{I}(X) \text{ set of ideals of } X$$

ordered by inclusion

 $\mathcal{I}(X)$  distributive lattice



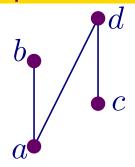
order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

$$E = abcd \underbrace{\begin{array}{c} 0 \\ acbd \end{array}}_{}^{} \underbrace{\begin{array}{c} cabd \\ 2 \\ acdb \end{array}}_{}^{} \underbrace{\begin{array}{c} cabd \\ 2 \\ acdb \end{array}}_{}^{}$$

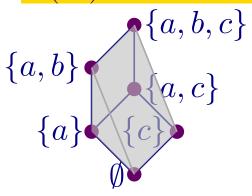
#### poset X



$$I \subseteq X \text{ is an } ideal \text{ if } y \leq x \in I \implies y \in I$$
 
$$\mathcal{I}(X) \text{ set of ideals of } X$$

ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{ x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X \}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

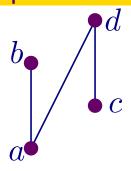
Thm (Stanley '86): E linear extension of X,

 $\omega_i = |\{E' \text{ lin.ext of } X \mid i \text{ consecutive pairs in } E' \text{ ordered different than } E\}|$ then  $L_{P_X}(t) = \sum_{i=0}^{d-1} \omega_i \binom{d+t-i}{d}$ , i.e.,  $\omega_i = h_i^*$ .

Conjecture (Neggers '78):  $\omega$  is unimodal.

(actually something stronger but false (Stembridge '06))

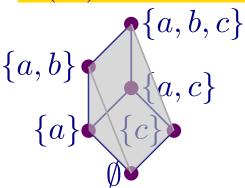
#### poset X



 $I \subseteq X$  is an *ideal* if  $b - c \qquad y \le x \in I \implies y \in I$   $\mathcal{I}(X) \text{ set of ideals of } X$ 

ordered by inclusion

#### $\mathcal{I}(X)$ distributive lattice



order polytope  $P_X = \text{conv}\{\text{characteristic vectors of } \mathcal{I}(X)\}$ 

$$= \{x \in [0,1]^d \mid x_i \le x_j \text{ if } i \ge j \text{ in } X\}$$

$$L_{P_X}(k) = |\mathcal{I}(X \times P_k)| = L_{P_{X \times P_k}}(1)$$
  $\mapsto$  order polynomial of  $X$ 

Thm (Stanley '86): E linear extension of X,

 $\omega_i = |\{E' \text{ lin.ext of } X \mid i \text{ consecutive pairs in } E' \text{ ordered different than } E\}|$ then  $L_{P_X}(t) = \sum_{i=0}^{d-1} \omega_i \binom{d+t-i}{d}$ , i.e.,  $\omega_i = h_i^*$ .

Conjecture (Neggers '78):  $\omega$  is unimodal.

(actually something stronger but false (Stembridge '06))

known for:

unions of chains (Simion '84) and graded posets (Reiner, Welker '05).

A matroid is a pair  $M=(E,\mathcal{B})$  with E finite and  $\mathcal{B}\subseteq 2^E$  such that:

- $\circ$   $\mathcal{B}$  is non-empty.
- $\circ \ \forall A, B \in \mathcal{B} \ \text{and} \ a \in A \setminus B$ ,  $\exists b \in B \setminus A : A \setminus \{a\} \cup \{b\} \in \mathcal{B}$ .

A matroid is a pair  $M=(E,\mathcal{B})$  with E finite and  $\mathcal{B}\subseteq 2^E$  such that:

- $\circ$   $\mathcal{B}$  is non-empty.
- $\circ \ \forall A, B \in \mathcal{B} \ \text{and} \ a \in A \setminus B, \ \exists b \in B \setminus A : A \setminus \{a\} \cup \{b\} \in \mathcal{B}.$

matroid (base) polytope  $P_M = \text{conv}\{\text{characteristic vectors of } \mathcal{B}\}$ 

A matroid is a pair  $M=(E,\mathcal{B})$  with E finite and  $\mathcal{B}\subseteq 2^E$  such that:

- $\circ$   $\mathcal{B}$  is non-empty.
- $\circ \ \forall A, B \in \mathcal{B} \ \text{and} \ a \in A \setminus B, \ \exists b \in B \setminus A : A \setminus \{a\} \cup \{b\} \in \mathcal{B}.$

matroid (base) polytope  $P_M = \text{conv}\{\text{characteristic vectors of } \mathcal{B}\}$ 

 $P_M \subset \mathbb{R}^{|E|}$  is (0,1)-polytope of dimension d=|E|- number components.

A matroid is a pair  $M=(E,\mathcal{B})$  with E finite and  $\mathcal{B}\subseteq 2^E$  such that:

- $\circ$   $\mathcal{B}$  is non-empty.
- $\circ \ \forall A, B \in \mathcal{B} \ \text{and} \ a \in A \setminus B$ ,  $\exists b \in B \setminus A : A \setminus \{a\} \cup \{b\} \in \mathcal{B}$ .

matroid (base) polytope  $P_M = \text{conv}\{\text{characteristic vectors of } \mathcal{B}\}$ 

 $P_M \subset \mathbb{R}^{|E|}$  is (0,1)-polytope of dimension d=|E|- number components.

Conjecture (De Loera, Haws, Köppe '09):  $h^*$  of  $L_{P_M}$  is unimodal.

A matroid is a pair  $M=(E,\mathcal{B})$  with E finite and  $\mathcal{B}\subseteq 2^E$  such that:

- $\circ$   $\mathcal{B}$  is non-empty.
- $\circ \ \forall A, B \in \mathcal{B} \ \text{and} \ a \in A \setminus B, \ \exists b \in B \setminus A : A \setminus \{a\} \cup \{b\} \in \mathcal{B}.$

matroid (base) polytope  $P_M = \text{conv}\{\text{characteristic vectors of } \mathcal{B}\}$ 

 $P_M \subset \mathbb{R}^{|E|}$  is (0,1)-polytope of dimension d=|E|- number components.

Conjecture (De Loera, Haws, Köppe '09):  $h^*$  of  $L_{P_M}$  is unimodal.

**known for**:  $U_{2,n}$  (De Loera et. al. '09) and  $U_{n,2n}$  (De Negri, Hibi '97).

A matroid is a pair  $M=(E,\mathcal{B})$  with E finite and  $\mathcal{B}\subseteq 2^E$  such that:

- $\circ$   $\mathcal{B}$  is non-empty.
- $\circ \ \forall A, B \in \mathcal{B} \ \text{and} \ a \in A \setminus B, \ \exists b \in B \setminus A : A \setminus \{a\} \cup \{b\} \in \mathcal{B}.$

matroid (base) polytope  $P_M = \text{conv}\{\text{characteristic vectors of } \mathcal{B}\}$ 

 $P_M \subset \mathbb{R}^{|E|}$  is (0,1)-polytope of dimension d=|E|- number components.

Conjecture (De Loera, Haws, Köppe '09):  $h^*$  of  $L_{P_M}$  is unimodal.

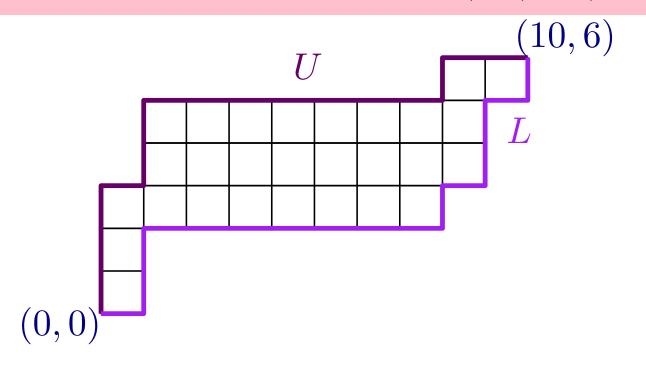
**known for**:  $U_{2,n}$  (De Loera et. al. '09) and  $U_{n,2n}$  (De Negri, Hibi '97).

We will now study  $P_M$  for lattice path matroids and in the end find some new families confirming the above conjecture.

Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

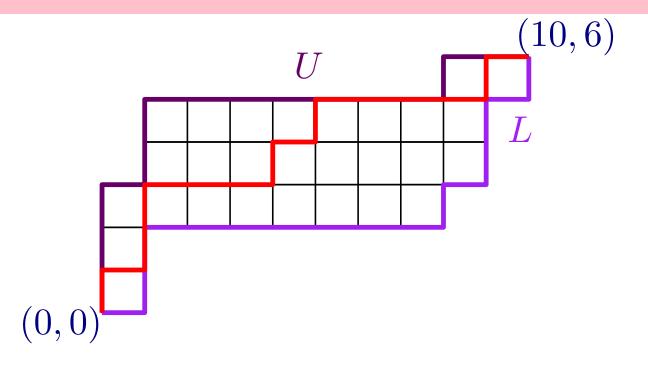
$$E = [r + m]$$



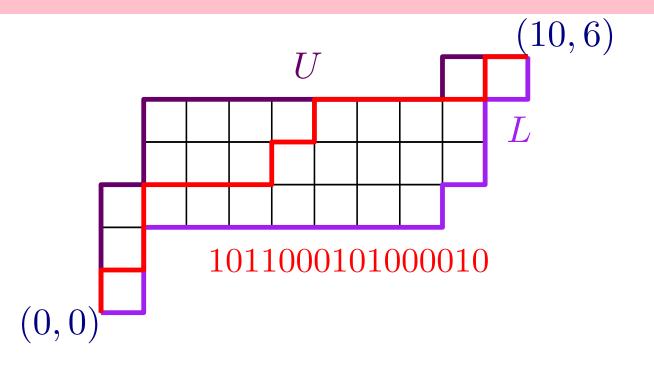
Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

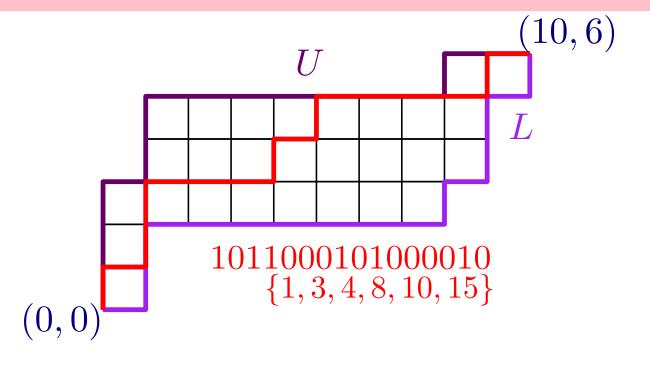
$$E = [r + m]$$



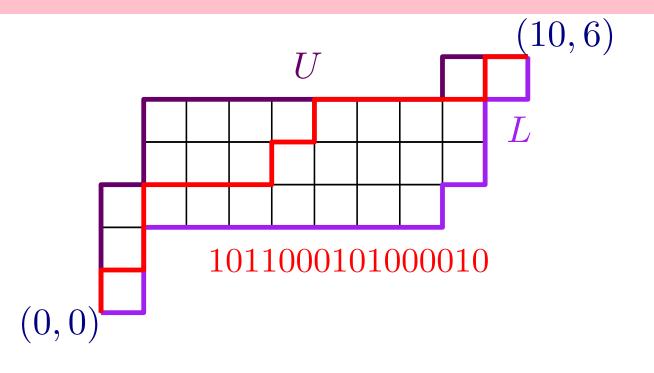
Lattice path matroid M[U,L]: diagram from (0,0) to (m,r) between L and U E=[r+m]



Lattice path matroid M[U,L]: diagram from (0,0) to (m,r) between L and U E=[r+m]



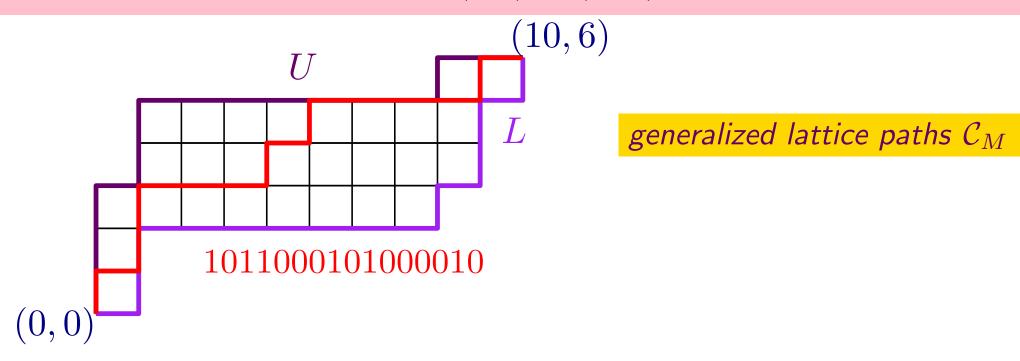
Lattice path matroid M[U,L]: diagram from (0,0) to (m,r) between L and U E=[r+m]



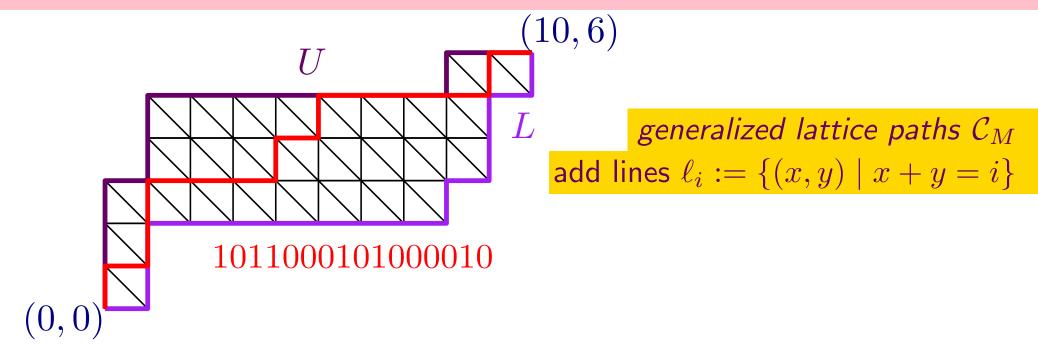
Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

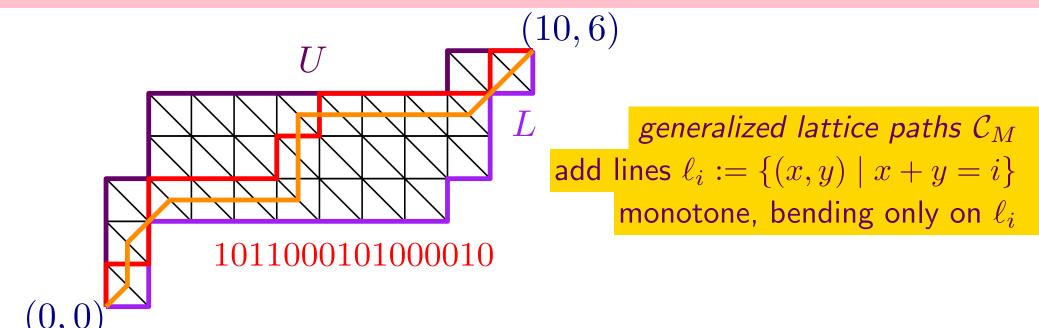
$$E = [r + m]$$



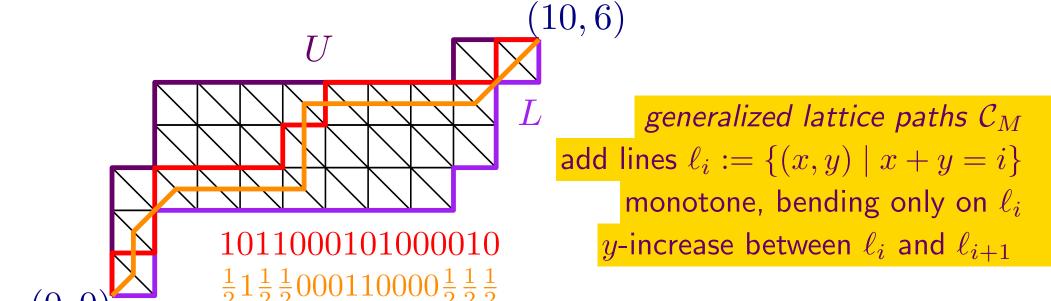
Lattice path matroid M[U,L]: diagram from (0,0) to (m,r) between L and U E=[r+m]



Lattice path matroid M[U,L]: diagram from (0,0) to (m,r) between L and U E=[r+m]



Lattice path matroid M[U,L]: diagram from (0,0) to (m,r) between L and U E=[r+m]

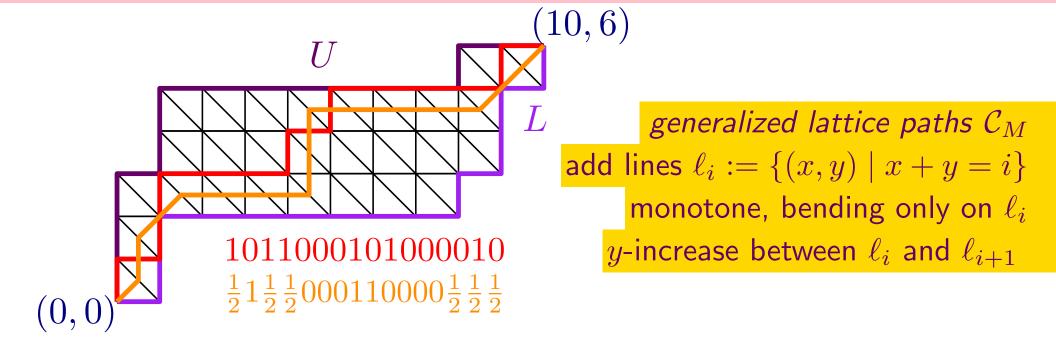


Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

$$E = [r + m]$$

 $\mathcal{B}$  =monotone lattice paths from (0,0) to (m,r).



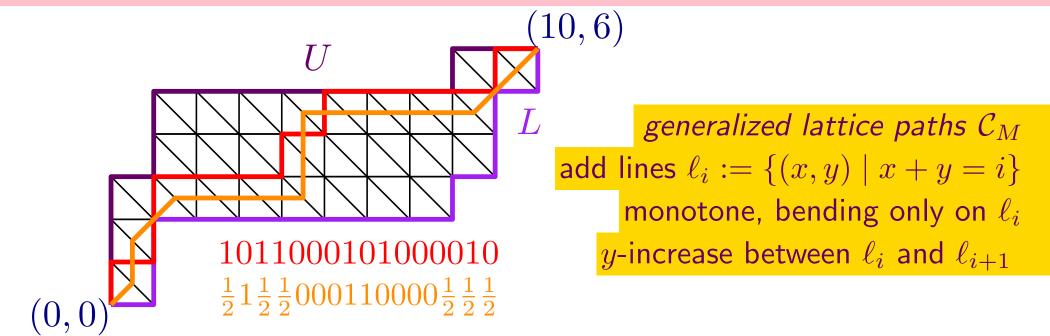
Thm (KMR): Let M = M[U, L] a lattice path matroid, then  $P_M = \mathcal{C}_M = \{p \in [0, 1]^{r+m} \mid \sum_{j=1}^{i} L_j \leq \sum_{j=1}^{i} p_j \leq \sum_{j=1}^{i} U_j; \ \forall i \in [r+m]\}.$ 

Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

$$E = [r + m]$$

 $\mathcal{B}$  =monotone lattice paths from (0,0) to (m,r).



**Thm (KMR)**: Let M = M[U, L] a lattice path matroid, then

$$P_M = \mathcal{C}_M = \{ p \in [0, 1]^{r+m} \mid \sum_{j=1}^i L_j \le \sum_{j=1}^i p_j \le \sum_{j=1}^i U_j; \ \forall i \in [r+m] \}.$$

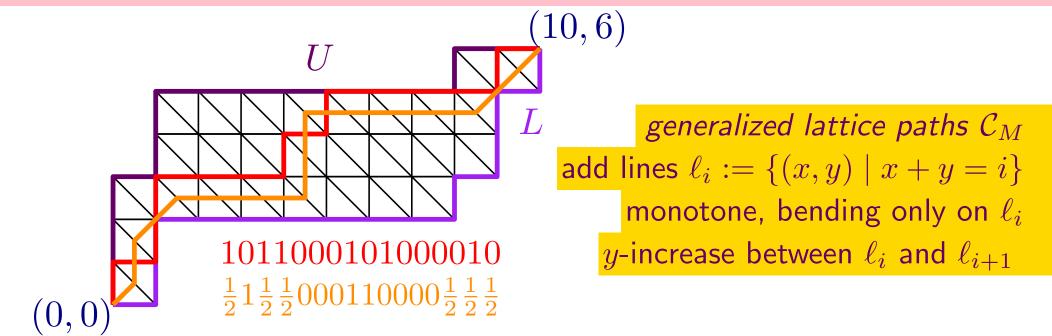
y-increase between  $\ell_i$  and  $\ell_{i+1}$  in [0,1]

Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

$$E = [r + m]$$

 $\mathcal{B}$  =monotone lattice paths from (0,0) to (m,r).



**Thm (KMR)**: Let M = M[U, L] a lattice path matroid, then

$$P_M = \mathcal{C}_M = \{ p \in [0, 1]^{r+m} \mid \sum_{j=1}^i L_j \le \sum_{j=1}^i p_j \le \sum_{j=1}^i U_j; \ \forall i \in [r+m] \}.$$

y-increase between  $\ell_i$  and  $\ell_{i+1}$  in [0,1]

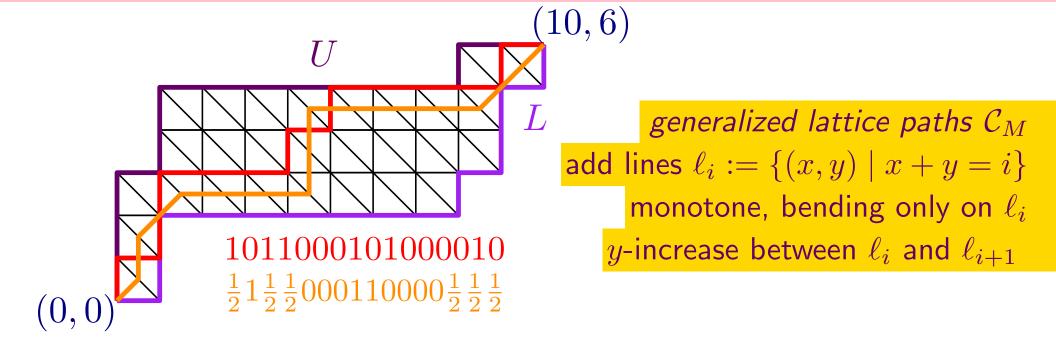
stay between L and U

Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

$$E = [r + m]$$

 $\mathcal{B}$  =monotone lattice paths from (0,0) to (m,r).



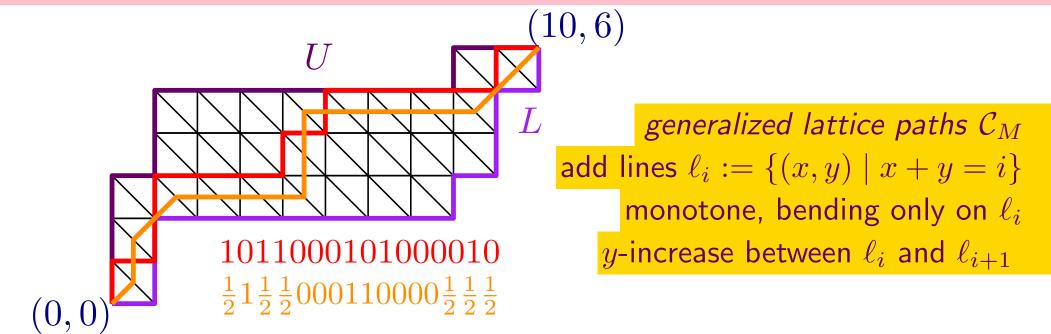
Thm (KMR): Let M = M[U, L] a lattice path matroid, then  $P_M = \mathcal{C}_M \stackrel{\checkmark}{=} \{ p \in [0, 1]^{r+m} \mid \sum_{j=1}^i L_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i U_j; \ \forall i \in [r+m] \}.$ 

Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

$$E = [r + m]$$

 $\mathcal{B}$  =monotone lattice paths from (0,0) to (m,r).



Thm (KMR): Let 
$$M = M[U, L]$$
 a lattice path matroid, then  $P_M = \mathcal{C}_M \stackrel{\checkmark}{=} \{ p \in [0, 1]^{r+m} \mid \sum_{j=1}^i L_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i U_j; \ \forall i \in [r+m] \}.$ 

 $P_M = \text{conv}\{\text{characteristic vectors of } \mathcal{B}\} \subseteq \text{conv}(\mathcal{C}_M) = \mathcal{C}_M.$ 

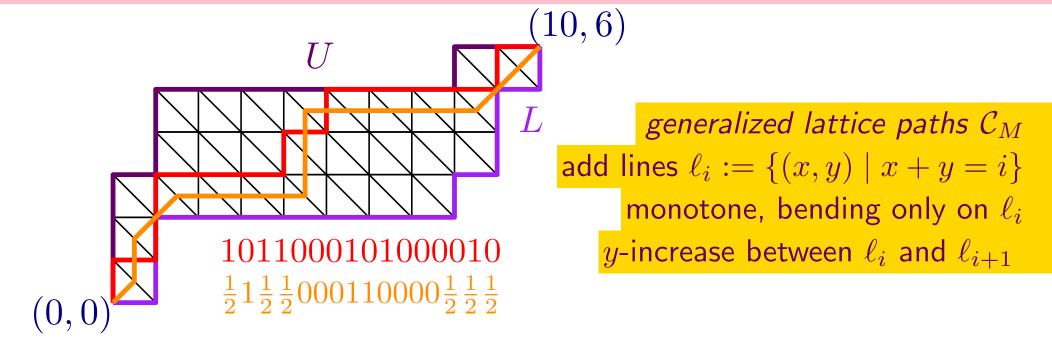
# Lattice path matroid polytopes

Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

$$E = [r + m]$$

 $\mathcal{B}$  =monotone lattice paths from (0,0) to (m,r).



Thm (KMR): Let M = M[U, L] a lattice path matroid, then  $P_M = \mathcal{C}_M \stackrel{\checkmark}{=} \{ p \in [0, 1]^{r+m} \mid \sum_{j=1}^i L_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i U_j; \ \forall i \in [r+m] \}.$ 

 $P_M \supseteq \mathcal{C}_M$ : easy induction.

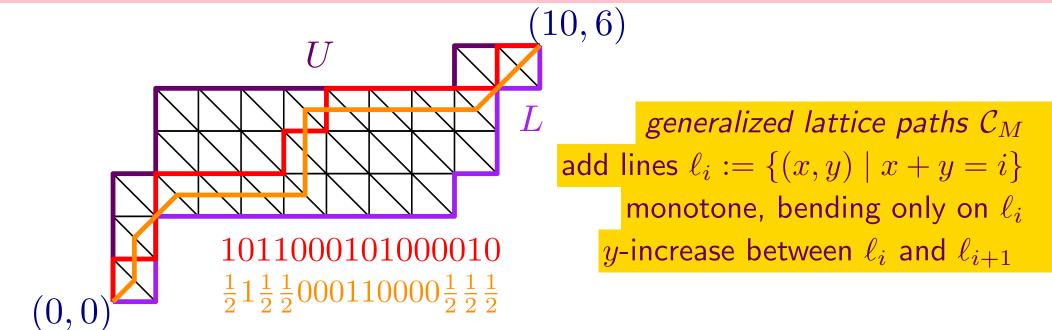
# Lattice path matroid polytopes

Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

$$E = [r + m]$$

 $\mathcal{B}$  =monotone lattice paths from (0,0) to (m,r).



Thm (KMR): Let M = M[U, L] a lattice path matroid, then  $P_M \stackrel{\checkmark}{=} \mathcal{C}_M \stackrel{\checkmark}{=} \{p \in [0, 1]^{r+m} \mid \sum_{j=1}^i L_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i U_j; \ \forall i \in [r+m]\}.$ 

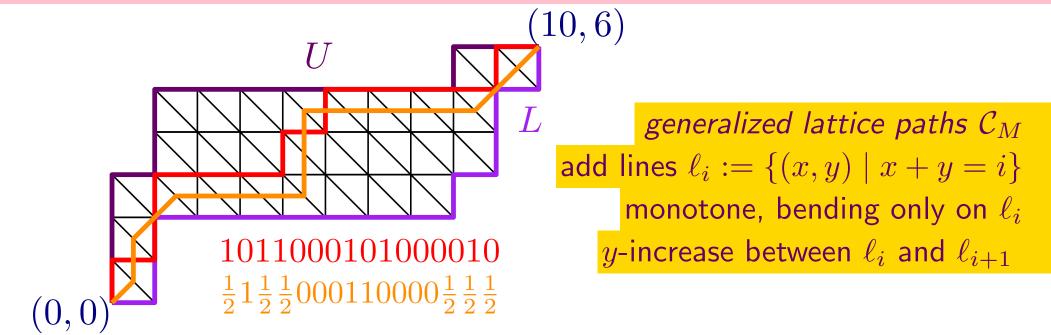
# Lattice path matroid polytopes

Lattice path matroid M[U, L]:

diagram from (0,0) to (m,r) between L and U

$$E = [r + m]$$

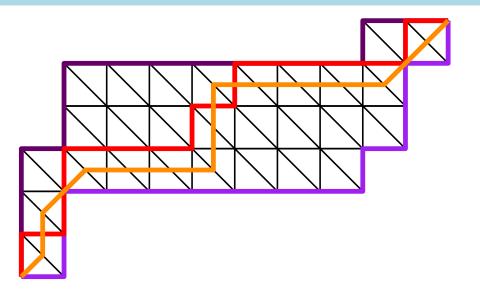
 $\mathcal{B}$  =monotone lattice paths from (0,0) to (m,r).



Thm (KMR): Let M = M[U, L] a lattice path matroid, then  $P_M \stackrel{\checkmark}{=} \mathcal{C}_M \stackrel{\checkmark}{=} \{p \in [0, 1]^{r+m} \mid \sum_{j=1}^i L_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i U_j; \ \forall i \in [r+m]\}.$ 

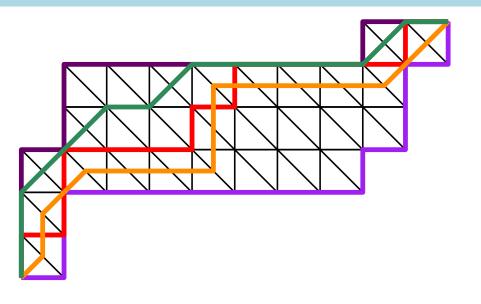
**Cor**:  $kP_M \cap \mathbb{Z}^d = \{\text{gen. lattice paths } y\text{-increase in } \frac{i}{k}, \ 0 \leq i \leq k\} =: \mathcal{C}_M^k$ .

Thm (KMR): Let M=M[U,L] a lattice path matroid, then  $P_M=\mathcal{C}_M=\{p\in[0,1]^{r+m}\mid \sum_{j=1}^i L_j\leq \sum_{j=1}^i p_j\leq \sum_{j=1}^i U_j;\;\forall i\in[r+m]\}.$  and  $kP_M\cap\mathbb{Z}^d=\{\text{gen. lattice paths }y\text{-increase in }\frac{i}{k},\;0\leq i\leq k\}=:\mathcal{C}_M^k.$ 



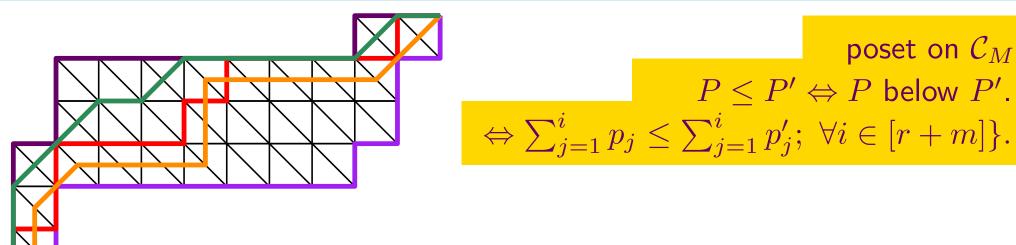
poset on  $\mathcal{C}_M$ 

Thm (KMR): Let M=M[U,L] a lattice path matroid, then  $P_M=\mathcal{C}_M=\{p\in[0,1]^{r+m}\mid \sum_{j=1}^i L_j\leq \sum_{j=1}^i p_j\leq \sum_{j=1}^i U_j;\;\forall i\in[r+m]\}.$  and  $kP_M\cap\mathbb{Z}^d=\{\text{gen. lattice paths }y\text{-increase in }\frac{i}{k},\;0\leq i\leq k\}=:\mathcal{C}_M^k.$ 



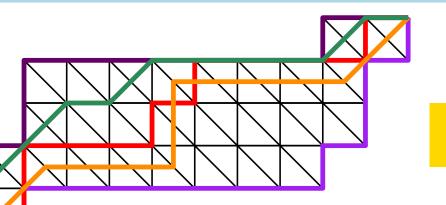
poset on  $\mathcal{C}_M$   $P < P' \Leftrightarrow P \text{ below } P'.$ 

**Thm (KMR)**: Let M = M[U, L] a lattice path matroid, then  $P_M = \mathcal{C}_M = \{ p \in [0, 1]^{r+m} \mid \sum_{j=1}^i L_j \leq \sum_{j=1}^i p_j \leq \sum_{j=1}^i U_j; \ \forall i \in [r+m] \}.$ and  $kP_M \cap \mathbb{Z}^d = \{\text{gen. lattice paths } y\text{-increase in } \frac{i}{k}, \ 0 \leq i \leq k\} =: \mathcal{C}_M^k$ .



poset on  $\mathcal{C}_M$ 

Thm (KMR): Let M=M[U,L] a lattice path matroid, then  $P_M=\mathcal{C}_M=\{p\in[0,1]^{r+m}\mid \sum_{j=1}^i L_j\leq \sum_{j=1}^i p_j\leq \sum_{j=1}^i U_j;\; \forall i\in[r+m]\}.$  and  $kP_M\cap\mathbb{Z}^d=\{\text{gen. lattice paths }y\text{-increase in }\frac{i}{k},\; 0\leq i\leq k\}=:\mathcal{C}_M^k.$ 



poset on  $\mathcal{C}_M$   $P \leq P' \Leftrightarrow P \text{ below } P'.$   $\Leftrightarrow \sum_{j=1}^i p_j \leq \sum_{j=1}^i p_j'; \ \forall i \in [r+m]\}.$ 

# Thm (KMR):

 $\pi: P_M \to Q_M \subseteq \mathbb{R}^{d-1}$  with  $\pi(p)_i := \sum_{j=1}^i p_j; \ \forall i \in [r+m-1]$  gives a polytope  $Q_M$ , with  $|kP_M \cap \mathbb{Z}^d| = |kQ_M \cap \mathbb{Z}^{d-1}|$ . Moreover,  $Q_M$  ordered componentwise is distributive lattice, corresponding to the order on  $\mathcal{C}_M$ .

Thm (KMR): Let M=M[U,L] a lattice path matroid, then  $P_M=\mathcal{C}_M=\{p\in[0,1]^{r+m}\mid \sum_{j=1}^i L_j\leq \sum_{j=1}^i p_j\leq \sum_{j=1}^i U_j;\;\forall i\in[r+m]\}.$  and  $kP_M\cap\mathbb{Z}^d=\{\text{gen. lattice paths }y\text{-increase in }\frac{i}{k}\text{, }0\leq i\leq k\}=:\mathcal{C}_M^k.$ 



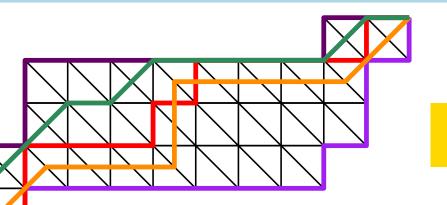
poset on  $\mathcal{C}_M$   $P \leq P' \Leftrightarrow P \text{ below } P'.$   $\Leftrightarrow \sum_{j=1}^i p_j \leq \sum_{j=1}^i p_j'; \ \forall i \in [r+m]\}.$ 

# Thm (KMR):

 $\pi: P_M \to Q_M \subseteq \mathbb{R}^{d-1}$  with  $\pi(p)_i := \sum_{j=1}^i p_j; \ \forall i \in [r+m-1]$  gives a polytope  $Q_M$ , with  $|kP_M \cap \mathbb{Z}^d| = |kQ_M \cap \mathbb{Z}^{d-1}|$ . Moreover,  $Q_M$  ordered componentwise is distributive lattice, corresponding to the order on  $\mathcal{C}_M$ .

show that closed under componentwise minimum and maximum

Thm (KMR): Let M=M[U,L] a lattice path matroid, then  $P_M=\mathcal{C}_M=\{p\in[0,1]^{r+m}\mid \sum_{j=1}^i L_j\leq \sum_{j=1}^i p_j\leq \sum_{j=1}^i U_j;\; \forall i\in[r+m]\}.$  and  $kP_M\cap\mathbb{Z}^d=\{\text{gen. lattice paths }y\text{-increase in }\frac{i}{k}\text{, }0\leq i\leq k\}=:\mathcal{C}_M^k.$ 



poset on  $\mathcal{C}_M$   $P \leq P' \Leftrightarrow P \text{ below } P'.$   $\Leftrightarrow \sum_{j=1}^i p_j \leq \sum_{j=1}^i p_j'; \ \forall i \in [r+m]\}.$ 

### Thm (KMR):

 $\pi: P_M o Q_M \subseteq \mathbb{R}^{d-1}$  with  $\pi(p)_i := \sum_{j=1}^i p_j; \ \forall i \in [r+m-1]$  gives a polytope  $Q_M$ , with  $|kP_M \cap \mathbb{Z}^d| = |kQ_M \cap \mathbb{Z}^{d-1}|$ . Moreover,  $Q_M$  ordered componentwise is distributive lattice, corresponding to the order on  $\mathcal{C}_M$ . And  $kQ_M \cap \mathbb{Z}^{d-1} \cong \mathcal{C}_M^k$ , too.

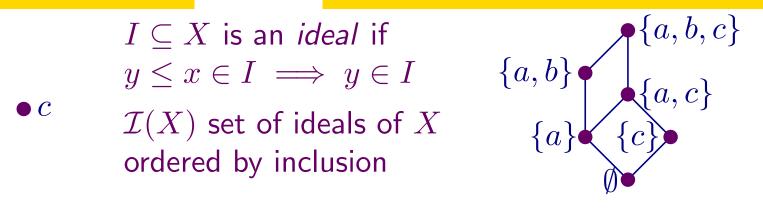
then this also closed under componentwise minimum and maximum



poset X

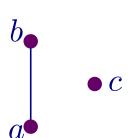
### $\mathcal{I}(X)$ distributive lattice



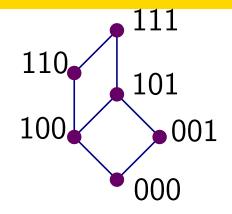


poset X

#### $\mathcal{I}(X)$ distributive lattice

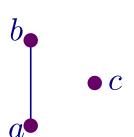


 $I\subseteq X$  is an *ideal* if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

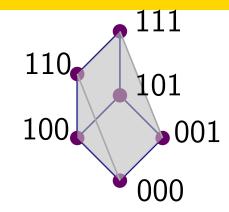


poset X

### $\mathcal{I}(X)$ distributive lattice

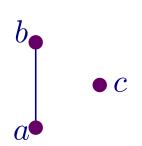


 $I\subseteq X$  is an *ideal* if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion



#### chain-partitioned poset X

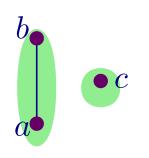
embedded  $\mathcal{I}(X)$  distributive lattice



$$I\subseteq X \text{ is an } \textit{ideal} \text{ if}$$
 
$$y\leq x\in I \implies y\in I$$
 
$$\mathcal{I}(X) \text{ set of ideals of } X$$
 ordered by inclusion

#### chain-partitioned poset X

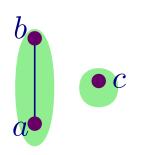
embedded  $\mathcal{I}(X)$  distributive lattice



$$I\subseteq X \text{ is an } ideal \text{ if}$$
 
$$y\leq x\in I \implies y\in I$$
 
$$\mathcal{I}(X) \text{ set of ideals of } X$$
 ordered by inclusion

#### chain-partitioned poset X

embedded  $\mathcal{I}(X)$  distributive lattice

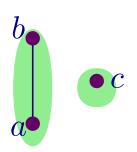


$$I\subseteq X$$
 is an *ideal* if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of  $X$  ordered by inclusion

$$\emptyset \stackrel{\bullet}{=} 00$$

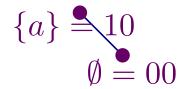
#### chain-partitioned poset X

embedded  $\mathcal{I}(X)$  distributive lattice



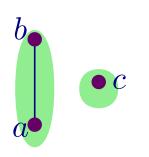
$$I\subseteq X$$
 is an *ideal* if  $y\leq x\in I \implies y\in I$ 

 $\mathcal{I}(X) \text{ set of ideals of } X$  ordered by inclusion

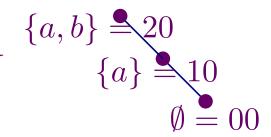


#### chain-partitioned poset X

embedded  $\mathcal{I}(X)$  distributive lattice

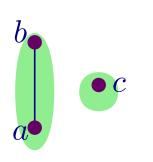


 $I \subseteq X$  is an *ideal* if  $y \le x \in I \implies y \in I$  $y \le x \in I \implies y \in I \qquad \{a,b\} = 20$   $\mathcal{I}(X) \text{ set of ideals of } X \qquad \{a\} = 10$ ordered by inclusion

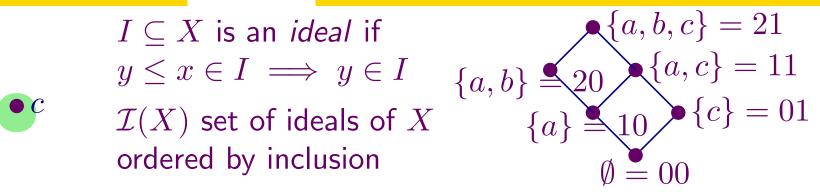


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

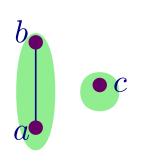


ordered by inclusion

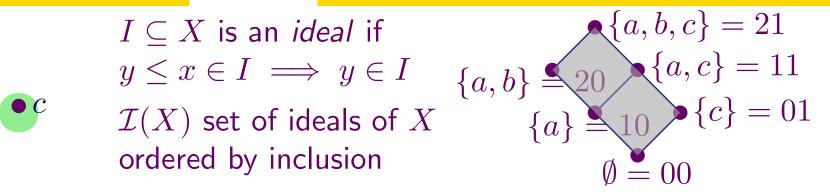


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

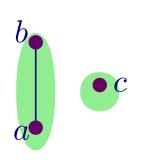


ordered by inclusion

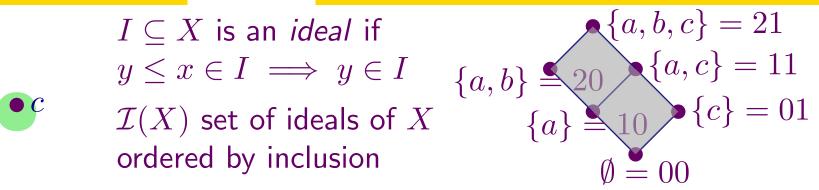


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice



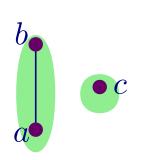
ordered by inclusion

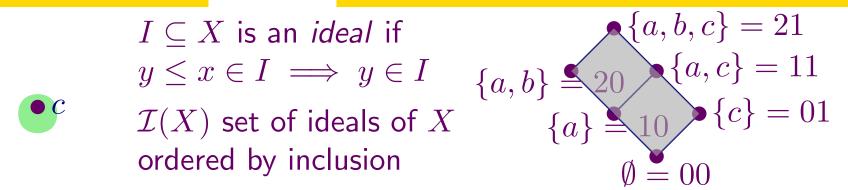


no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice



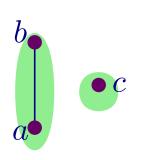


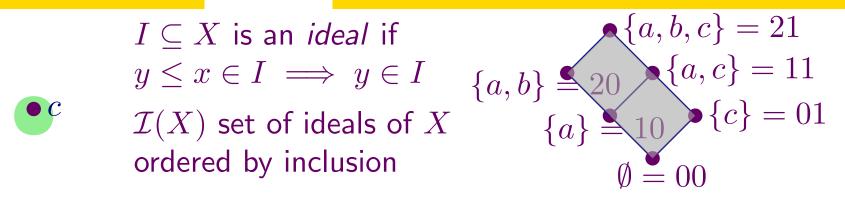
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

#### chain-partitioned poset X

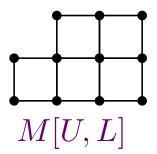
#### embedded $\mathcal{I}(X)$ distributive lattice





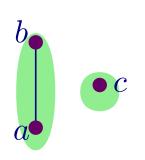
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

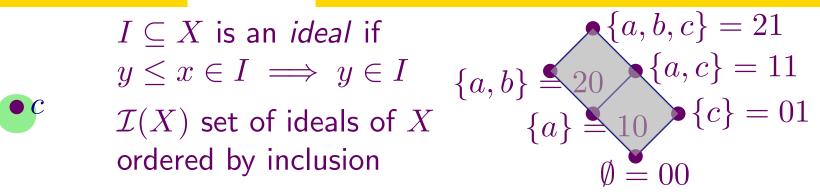
# Thm (KMR):



#### chain-partitioned poset X

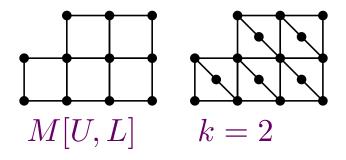
#### embedded $\mathcal{I}(X)$ distributive lattice





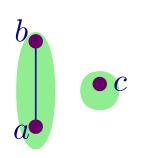
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

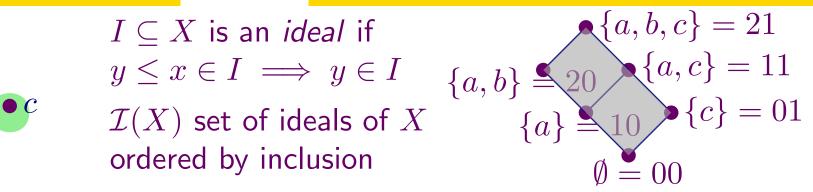


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

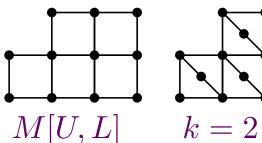


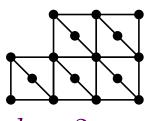
ordered by inclusion

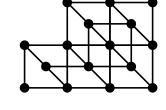


no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

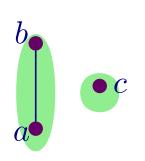




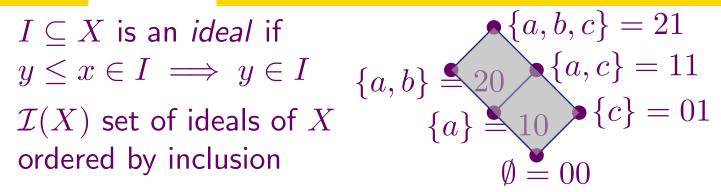


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

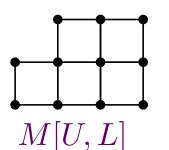


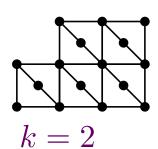
 $y \ge \omega \subset \mathcal{I}$   $\mathcal{I}(X) \text{ set of ideals of } X$ 

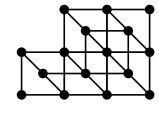


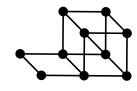
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):



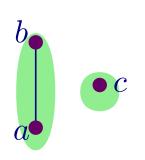




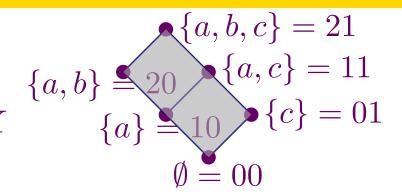


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

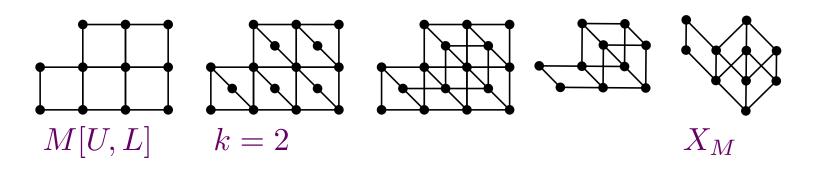


 $I\subseteq X$  is an ideal if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion



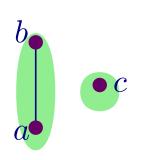
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

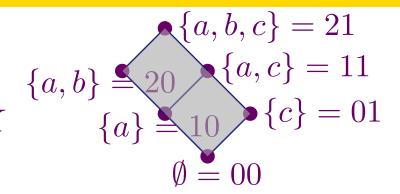


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

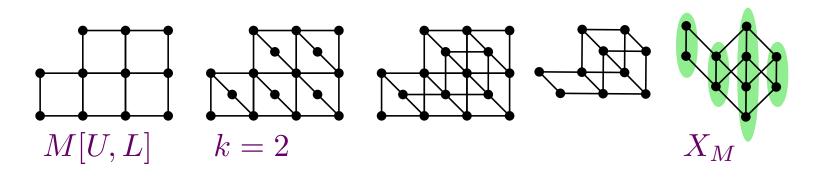


 $I\subseteq X$  is an ideal if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion



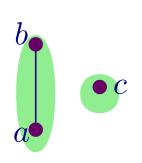
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

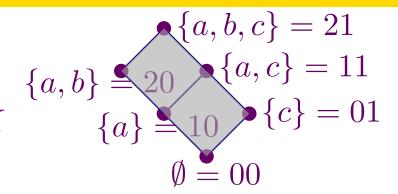


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

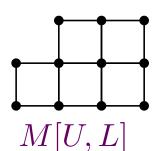


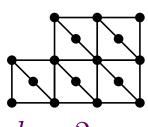
 $I \subseteq X$  is an *ideal* if  $y \le x \in I \implies y \in I$  $\mathcal{I}(X)$  set of ideals of Xordered by inclusion



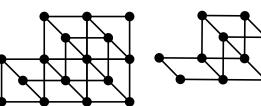
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

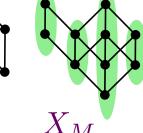
# Thm (KMR):

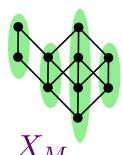






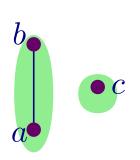




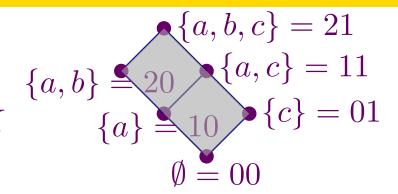


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

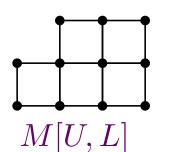


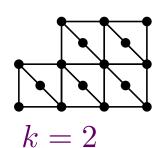
 $I\subseteq X$  is an *ideal* if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

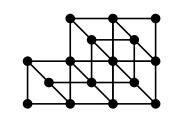


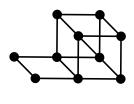
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

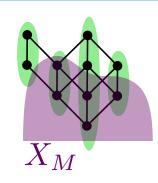
# Thm (KMR):





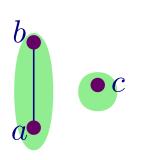




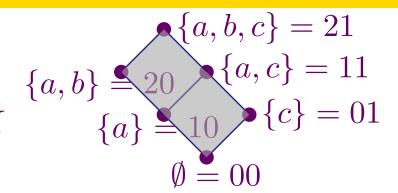


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

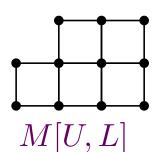


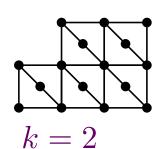
 $I \subseteq X$  is an *ideal* if  $y \le x \in I \implies y \in I$  $\mathcal{I}(X)$  set of ideals of Xordered by inclusion

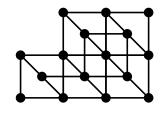


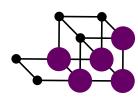
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

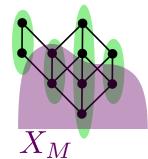
# Thm (KMR):

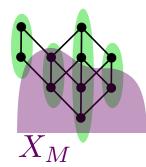






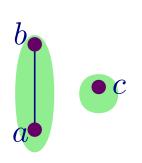




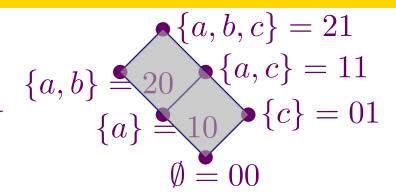


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

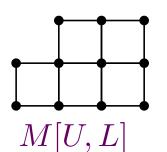


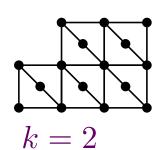
 $I\subseteq X$  is an *ideal* if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

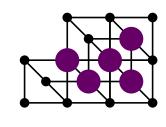


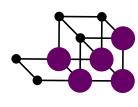
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

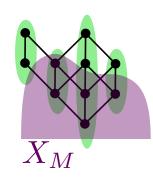
# Thm (KMR):





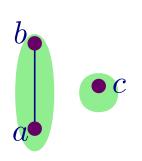




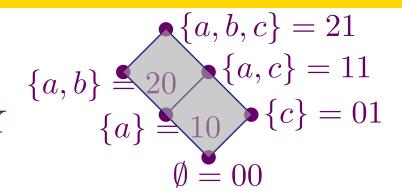


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

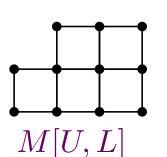


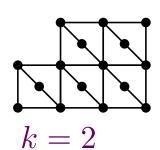
 $I\subseteq X$  is an *ideal* if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

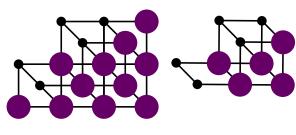


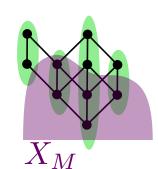
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):



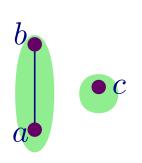




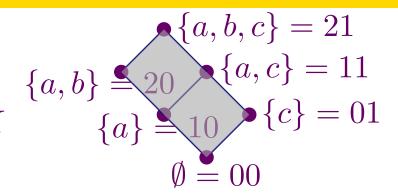


#### chain-partitioned poset X

#### embedded $\mathcal{I}(X)$ distributive lattice

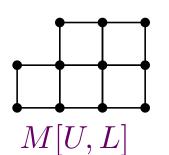


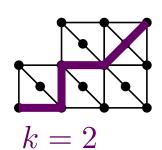
 $I\subseteq X$  is an *ideal* if  $y\leq x\in I \implies y\in I$   $\mathcal{I}(X)$  set of ideals of X ordered by inclusion

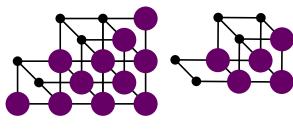


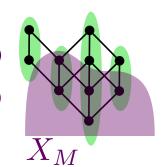
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):



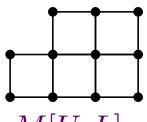




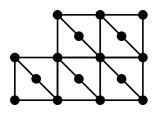


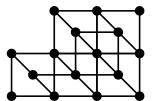
no chain-partition  $\cong$  singleton chain-partition  $\cong$  (0,1)-embedding

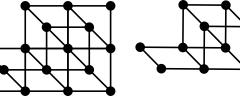
### Thm (KMR):

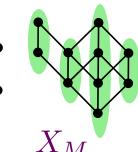


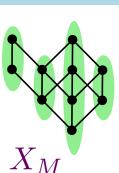
M[U,L] k=2







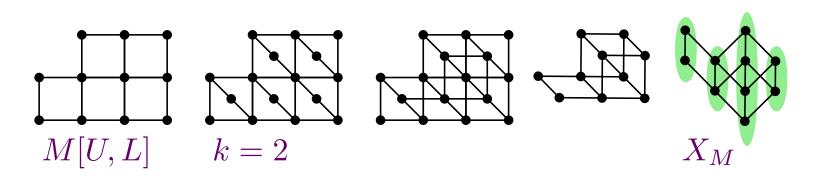




no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:

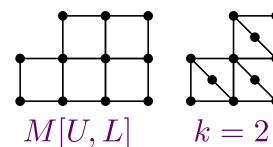


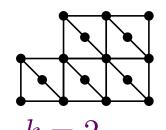
In particular,  $Q_M$  is an order polytope if M has no interior points

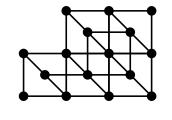
no chain-partition  $\cong$  singleton chain-partition  $\cong$  (0,1)-embedding

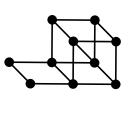
# Thm (KMR):

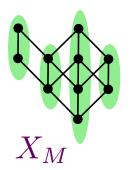
the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:









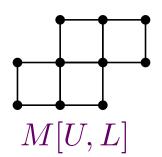


In particular,  $Q_M$  is an order polytope if M has no interior points

no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:

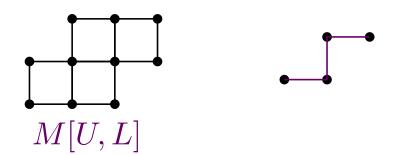


In particular,  $Q_M$  is an order polytope if M has no interior points

no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:

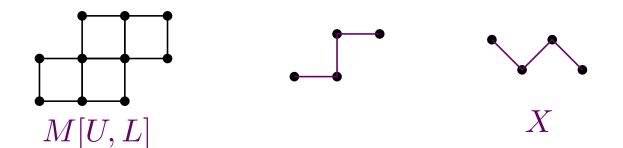


In particular,  $\mathcal{Q}_M$  is an order polytope if M has no interior points

no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

### Thm (KMR):

the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:

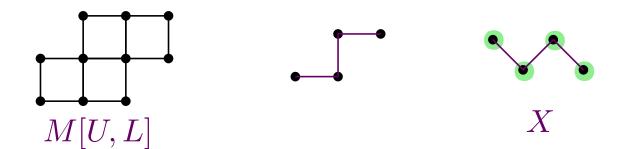


In particular,  $Q_M$  is an order polytope if M has no interior points

no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

### Thm (KMR):

the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:

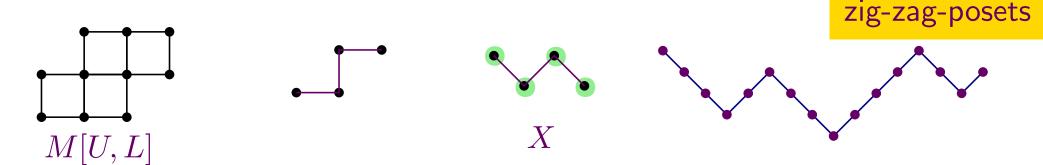


In particular,  $Q_M$  is an order polytope if M has no interior points

no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:

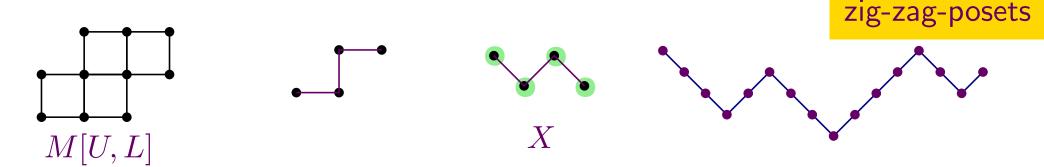


In particular,  $Q_M$  is an order polytope if M has no interior points

no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:



In particular,  $Q_M$  is an order polytope if M has no interior points

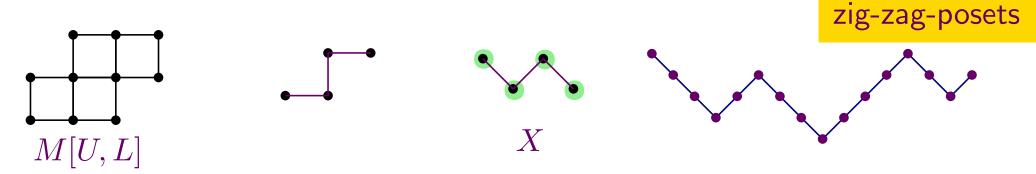
M is a snake

If M snake, then  $h^*$  of  $L_{P_M}$  equals  $\omega$  of zig-zag poset

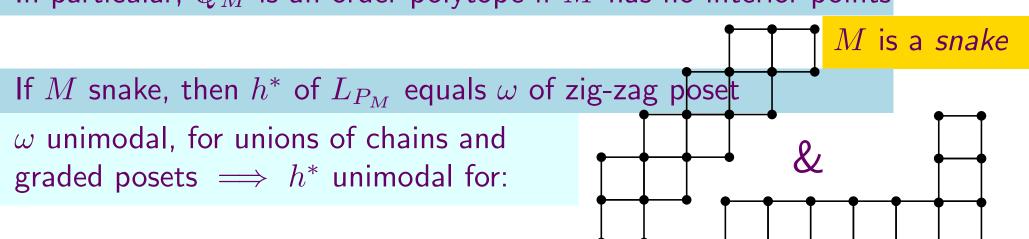
no chain-partition  $\cong$  singleton chain-partition  $\cong (0,1)$ -embedding

# Thm (KMR):

the embedded distributive lattice  $kQ_M \cap \mathbb{Z}^{d-1}$  corresponds to a chain-partitioned poset in the following way:



In particular,  $Q_M$  is an order polytope if M has no interior points



### What we did:

- $\circ$   $P_M$  as generalized lattice paths (formula for  $L_{P_M}$  for some snakes),
- $\circ$  Ehrhart-equivalent distributive polytope  $Q_M$ ,
- $\circ$  unimodality of  $h^*$  for some snakes

### What we did:

- $\circ$   $P_M$  as generalized lattice paths (formula for  $L_{P_M}$  for some snakes),
- $\circ$  Ehrhart-equivalent distributive polytope  $Q_M$ ,
- $\circ$  unimodality of  $h^*$  for some snakes

### What we would like to do next:

- $\circ$  unimodality of  $h^*$  for more lattice path matroids
- $\circ$  generalize the order polynomial and  $\omega$  to chain-partitioned posets,
- determine which matroid polytopes are order polytopes,
- another conjecture of de Loera et. al:
  - coefficients of  $L_{P_M}$  are non-negative true for uniform matroids [Ferroni: arXiv Monday] false for order polytopes...find counterexample?

# What we did:

- $\circ$   $P_M$  as generalized lattice paths (formula for  $L_{P_M}$  for some snakes),
- $\circ$  Ehrhart-equivalent distributive polytope  $Q_M$ ,
- $\circ$  unimodality of  $h^*$  for some snakes

### What we would like to do next:

- $\circ$  unimodality of  $h^*$  for more lattice path matroids
- $\circ$  generalize the order polynomial and  $\omega$  to chain-partitioned posets,
- determine which matroid polytopes are order polytopes,
- another conjecture of de Loera et. al:
  - coefficients of  $L_{P_M}$  are non-negative true for uniform matroids [Ferroni: arXiv Monday] false for order polytopes...find counterexample?

