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Collaborative Data Sharing (CDSK 2N
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A model is distributed across
centers and an aggregate is
obtained in each round

Federated Learning (FL)  “>25)
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A Simulation Study in Cardiovascular Disease

https://arxiv.org/abs/2107.03901

Linardos, Akis, et al. "Federated Learning for Multi-Center Imaging Diagnostics: A Study in Cardiovascular Disease." arXiv
preprint arXiv:2107.03901 (2021).


https://arxiv.org/abs/2107.03901
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Cardiac MRI Multi-center Data

Center Vendor Spatial Resolution (mm) Slice Thickness (mm?) ‘ NOR HCM Total
Vall d’Hebron Philips 1.1516-1.2362 10.0 21 25 46
Sagrada Familia  Siemens 0.9765-1.6200 8.0-10.0 33 37 70
SantPau Canon 0.7955-1.8228 10.0 14 10 24
ACDC Siemens 1.3400-1.6800 5.0-10.0 20 20 40
Total | 88 92 180
Shape Augmentations :
Basic Augmentations Intensity Augmentations

Random Elastic
Deformation

Default Random Flip Random Affine Random Noise Random Spike Random Bias Random Gamma
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Principled Evaluati AIM
A) Collaborative Cross Validation (CCV) B) Leave Center Out Cross Validation (LCO-CV)
Vall Hebron [
sagrada Familia | |
Il Train
santPau I e vaiication
o I ™

LCO-CV gives us an estimate of out-of-site generalization performance,
by testing iteratively on an unseen-center fold
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Results: 5 seeds per configuration

A) Collaborative Cross Validation (CCV) B) Leave Center Out Cross Validation (LCO-CV)
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FL-EV is an alternate aggregation technique we tried: contrast to the original FL algorithm, in this case each center gets an Equal Vote

FL outperforms CDS in many cases.

FL and FL-EV are more robust across different seeds, while CDS exhibits significant error bars.
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Now onto the real challenge: Actual Deployment.

Federated Learning
For Multi-Center Breast Cancer Classification in the Real World
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Our process: One Step at A Time VYAIM

Phase 1: Set up a federated network across collaborators. Tackle

classification.

Test technical innovations in the real world (already found to work well in FeTS
Challenge which was a simulation)

Labels: (Normal / Benign Tumor / Malignant Tumor )

Phase 2: Improve classification, tackle other use cases. Required

annotations on previously gathered data:

Bounding boxes around lesions
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We proposed Center Dropout in the first Federated Challenge at MICCAI and scored 1st on

What technical innovations?

one of the leaderboards.

Since this was a simulation, we will now have the chance to test it in a real world setting.

8 B _Rank | _Team Name | ___Institution __| lead Author
i 1 BCN-AIM University of Akis Linardos
r Barcelona
o i 2 HT-TUAS Turku Oniversity of |~ o %~
/ \ Applied Sciences
w

. \ . . .

/I 3 Shoulders Chmel_s's:gn:(\;enr;lty of Quande Liu
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Vanilla FL

e All centers train in each round.
e Local models are aggregated

Federated

Training,
/ Batch Size = 16
[ J L ] L ]
‘ Model / ‘

Aggregation

Chosen Centers
All centers train on * '

each round
.:‘ Discarded Centers
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Local models of subgroups are

aggregated in each round. Thus
the vote is not always

overwhelmed by the largest Federated

Training,
center. Batch Size = 16/P

Training does not have to wait

for the slowest member of the

\

consortium. Model

Aggregation
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' Chosen Centers

dropped out .:‘ Discarded Centers

A fixed percentage
(P) of centers is
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wE Intuitions: Speed

° In Vanilla FL, each round moves as slow as its slowest member. In CD the slowest member is different each round. We thus cut
down on communication costs. By using a proportionally batch size, the same amount of training goes on with less communication.

Vanilla FL Center Dropout (CD)

. Chosen Centers Q:Q Discarded Centers - . Simulated Time (Sec)
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Intuitions: Fairness

° In Vanilla FL, voting is the same in each round. In CD, smaller centers get the chance to have a higher vote, as they are not
consistently overwhelmed.

Vanilla FL Center Dropout (CD)

| Deceasngdatasize | Deceasngddtasize
900000 HDHNO00D O

0025 None | Nome | 061 | 031 | None | 0.1
DOINOOD
3 - >

"""" 5 ' None | 071 | None | 0.4761 | 0.424 | None |

. Chosen Centers 0:‘ Discarded Centers . . Voting Weights
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g Results: Better Performance, Faster Convergence\ AIM

Center Dropout - Convergence Scores

C. Dropout Batch Size Dice ET

None 16 0.6023 8
25% 21 0.58755
50% 32 0.62857 g o
75% 64 0.62146
C. Dropout Batch Size Hausdorff95 ET %')’04
None 16 30.40639 S
25% 21 35.62406 ) = tocamor
50% 32 25.439 o
75% 64 33.87432 : s o s @ ®  ®

Round




Plan Overview

ETL Pipeline:
Extract,
Transform, Load

Data
Harmonization

Deploy model,
test with
hospital data
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Can we leverage Topological Data Analysis in Federated Learning?

e No work on this currently

e Federated Learning allows training without ever seeing the data. In this
set-up, the only privacy-respecting data analysis of individual points would
require noise-inserting techniques. The denoising properties of Topological
Data Analysis could help us study this noisy data.

e Perhaps TDA can also help us tackle domain shift between multiple centers?



Thank you for your
attention!

More about me and my past work at:

linardos.qgithub.io



http://linardos.github.io/

Prior experience:

e \We have completed a CMR study (available on arxiv) and are in the process
of publishing at Scientific Reports
e Key findings from that study:

o The Federated Algorithm is more robust than Collaborative Data sharing, even when the exact
same data is used.

o Different Cross-Validation splits provide different results. Leave Center Out is proposed as
best alternative.



Results

e 4 configurations of Center Dropout (CD) were tested with different percentages (P)
e 50% CD outperforms all alternatives by a significant margin, including baseline.
e Possible room to wiggle in the range 40-60% for further fine tuning

C. Dropout Batch Size Dice ET Dice WT Dice TC
None 16 0.6023 0.75637 0.60354
25% 21 0.58755 0.70387 0.60216
50% 32 0.62857 0.78498 0.6417
75% 64 0.62146 0.74899 0.64332

C. Dropout Batch Size Hausdorff95 ET Hausdorff95 WT Hausdorff95 TC
None 16 30.40639 34.34818 30.59265
25% 21 35.62406 44.66591 38.50768
50% 32 25.439 24.74043 25.31731

75% 64 33.87432 38.05616 39.45167




