

Conditional GANs for cardiac aging synthesis using cross-sectional data

Víctor M. Campello

Topological Machine Learning UB seminar

Outline

- 1. Cardiac magnetic resonance imaging
- 2. Generative Adversarial Networks
 - What are GANs?
 - Three architectures
 - $\circ \quad {\rm One \ regularization \ method}$
- 3. Modeling aging with cross-sectional data
 - $\circ \quad \ \ \, Face \ \ aging$
 - Brain aging
 - Heart aging

Cardiac imaging

Cardiac magnetic resonance scan

Source: Shalbaf et al. (2013) (doi: 10.1007/s10278-012-9543-x).

What does it actually look like?

UK Biobank

Cohort of general population in several cities the UK. More than 40,000 imaging studies (cine MRI, short and long axes).

Generative Adversarial Networks (GANs)

What are GANs?

- Models that implicitly learn the data distribution by playing the min-max game with an adversary.
- The target distribution is usually very complex and cannot be approximated using a set of known parametric distributions.
- The fitting process (training) is known to be tricky and unstable.

What are GANs?

 Recent reviews are proposing a GAN taxonomy in terms of architecture and losses.

Source: Wang, She and Ward (2019) (arxiv: 1906.01529).

GANs

Three architectures

- Basic GAN
- Conditional GAN
- CycleGAN

Basic GAN

Source: Wang, She and Ward (2019) (arxiv: 1906.01529).

$$\min_{G} \max_{D} \mathbb{E}_{\mathbf{x} \sim p_r} \log[D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p_z} \log\left[1 - D(G(\mathbf{z}))\right]$$

$$JS(\mathbb{P}_r, \mathbb{P}_g) = KL(\mathbb{P}_r || \mathbb{P}_m) + KL(\mathbb{P}_g || \mathbb{P}_m) \qquad KL(p_1 || p_2) = \mathbb{E}_{\mathbf{x} \sim p_1} \log \frac{p_1}{p_2}$$

Conditional GAN

Source: Wang, She and Ward (2019) (arxiv: 1906.01529).

$$\min_{G} \max_{D} \mathbb{E}_{\mathbf{x} \sim p_r} \log[D(\mathbf{x}|\mathbf{y})] + \mathbb{E}_{\mathbf{z} \sim p_z} \log\left[1 - D(G(\mathbf{z}|\mathbf{y}))\right]$$

CycleGAN

Source: Zhang et al. (2017) (arxiv: 1703.10593).

GANs

Regularization via the loss function

• Wasserstein GAN

Wasserstein-GAN

$$W(\mathbb{P}_r, \mathbb{P}_g) = \inf_{\gamma \in \Pi(\mathbb{P}_r, \mathbb{P}_g)} \mathbb{E}_{(x,y) \sim \gamma} \left[\|x - y\| \right]$$

via the Kantorovich-Rubinstein duality

$$W(\mathbb{P}_r, \mathbb{P}_{\theta}) = \sup_{\|f\|_L \le 1} \mathbb{E}_{x \sim \mathbb{P}_r}[f(x)] - \mathbb{E}_{x \sim \mathbb{P}_{\theta}}[f(x)]$$

Modeling aging

- Zhang et al. (2017) used an autoencoder to build a "manifold of faces" that can be navigated.
- They only used cross-sectional data.

Face aging

Brain aging

- Xia et al. (2019) modeled the aging of the brain under different disease statuses.
- Age and disease status were used as covariates.

Heart aging - Method

Heart aging - Method

$$L = \min_{G} \max_{D} \left(\lambda_1 \mathcal{L}_{\text{WGAN-GP}} + \lambda_2 \mathcal{L}_{id} + \lambda_3 \mathcal{L}_{rec} + \lambda_4 \mathcal{L}_{cc} \right)$$

$$\mathcal{L}_{\text{wGAN-GP}} = \underset{\mathbf{\tilde{x}} \sim P_{gen.}}{\mathbb{E}} [D(\tilde{\mathbf{x}}, \mathbf{a}_{t})] - \underset{\mathbf{x} \sim P_{real}}{\mathbb{E}} [D(\mathbf{x}, \mathbf{a}_{t})] + \lambda_{GP} \underset{\mathbf{\tilde{x}} \sim P_{\mathbf{\tilde{x}}}}{\mathbb{E}} [(||\nabla_{\mathbf{\tilde{x}}}^{2}D(\hat{\mathbf{x}}, \mathbf{a}_{t})|| - 1)^{2}],$$

$$\mathcal{L}_{id} = \underset{\mathbf{x} \sim P_{real}}{\mathbb{E}} [||\mathbf{x} - G(\mathbf{x}, a)||_{1}]$$

$$\mathcal{L}_{rec} = \underset{\mathbf{x} \sim P_{real}}{\mathbb{E}} [||\mathbf{x} - G(\mathbf{x}, 0)||_{1}]$$

$$\mathcal{L}_{cc} = \underset{\mathbf{x} \sim P_{real}}{\mathbb{E}} [||\mathbf{x} - G(G(\mathbf{x}, \mathbf{a}_{d}), -\mathbf{a}_{d})||_{1}]$$

• Predicted age absolute error of generated images (lower is better):

• Fréchet Inception Score (FID) of generated images (lower is better):

Heart aging - Literature

Structural evolution of the aging heart

- Age is positively correlated with increased left atrial diameter (LAD).
- LAD increase is greater for higher body mass index (BMI).
- The left ventricle (LV) suffers an increase in wall thickness and a diminuition of LV end-diastolic dimensions.
- Increased fat deposition at pericardium.

Source: Keller and Howlett (2016)

• Trajectory of aged and rejuvenated hearts compared to cross-sectional data (dashed lines):

Some questions to investigate further are:

- How do other covariates affect the modeling? For example, BMI or smoking status.
- What happens at other timepoints?
- Are the changes really related to age?

Where can Topology be applied?

- Can we characterize or tell some properties from the high-dimensional manifold implicitly learn by the model?
- Can we better disentangle the latent space (the features at the bottleneck) by enforcing some topological properties?