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Cardiac imaging



Cardiac magnetic resonance scan

(1) Four Chamber (2) Two Chamber
Apical cap Apical Cap

Source: Shalbaf et al. (2013) (doi: 10.1007/s10278-012-9543-x).




What does it actually look like?




UK Biobank

Cohort of general population in several cities the UK.

More than 40,000 imaging studies (cine MRI, short and long axes).
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(Generative Adversarial
Networks (GANSs)
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What are GANs?

e Models that implicitly learn the data distribution by playing the min-max game
with an adversary.

e The target distribution is usually very complex and cannot be approximated
using a set of known parametric distributions.

e The fitting process (training) is known to be tricky and unstable.



What are GANs?

e Recent reviews are
proposing a GAN
taxonomy in terms of
architecture and losses.

* Omnia wcE

r Network architecture -/

 "LAPGAN, 2015 (Laplacian pyramid coding)
I _m) 2016 (Transposed convolution in generat
or]
| 3BEGAN, 2017 (Autoencoder as discriminator)
_._:;:Gm. 2017 (Progressive manner during traini _ 0 architecture search)
~©+BigGAN, 2019 (Deeper net and larger batch size)
L e SAGAN, 2018 (Self-attention module) ~ ==
“YLG, 2020 (A local sparse attention layer )
,CGAN, 2014 (Label info into discriminator and ge [ *AC-GAN, 2017 (Auxiliary classifier)
nerator) - 3InfoGAN, 2016 (Classifier for labels)

Architecture - Latent space " sicaN, 2016 (Encoder for learning inverse mappi

[Proposed GANs Taxonomy

ng)
- 3SGAN, 2016 (Multi-headed layer in discriminator)
~ CycleGAN, 2017; DiscoGAN, 2017; DualGAN, 2017 — Image style transfer
- SRGAN, 2016 — Image super-resolution
[ StyleGAN, 2019 — Scale-specific face generation

'.App'icaﬁon focused —+ Face Completion GAN, 2017 — Face completion

1 AlphaGAN, 2018 — Image matting
| Moco-GAN , 2018 — DVD-GAN, 2019 — Video generation
L SinGAN, 2013 — Image manipulation learned by one image

©+RGAN, 2018 (Integral probability metric)

IPM based T~ 2WGAN, 2017 (Wasserstein distance)

~ “Geometric GAN, 2017 (Hinge loss) — Sphere GAN, 2019 (Riemannian manifolds)

'Loss Types' ~ “FCGAN, 2014 JS divergence) — »LSGAN, 2016 (Pearson ~—§-GAN, 2016 (f-
[ Nom-1PM based -~ "UGAN., 2016 (Second order gradient loss)
_.I.S»GAN.ZOU(D&EQ:\MWMM&
'nd fake samples)
Loss [®° WGAN-GP, 2017 (Gradient penalty on WGAN )
- WGAN-CT, 2018 (Soft consistency on WGAN)
| WGAN-LP, 2017 (Lipschitz penalty on WGAN, less
r .|| sensitive)
Regularization -

= JMRGAN, 2016 (Penalize missing modes)

" @®SN-GAN, 2018 (Spectral normalization)
|_ SS-GAN, 2019 (Self-supervision avoid discriminat
or forgetting)

Source: Wang, She and Ward (2019) (arxiv: 1906.01529).




Basic GAN

Conditional GAN
CycleGAN

Three architectures
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Source: Wang, She and Ward (2019) (arxiv: 1906.01529).

mén mgx ]Exwprlog[D(X)] + Eznp,log [1 - D(G(z))]

KL(p1||p2) = Exep, logz—;

JS(P,,Py) = KL(P,||Pn) + KL(P,||Py.)
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Conditional GAN

X

Real/Fake

Source: Wang, She and Ward (2019) (arxiv: 1906.01529).
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min max IEpr,,IOg[D(XW)] + Eznp,log [1 - D(G(zly))]




CycleGAN
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e Wasserstein GAN

Regularization via the loss
function




Wasserstein-GAN
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inf B _
venl(rﬁlb,.,lpg) sy~ |z~ |

via the Kantorovich-Rubinstein duality
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Modeling aging
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Face aging

e Zhang et al. (2017) used an autoencoder to build a “manifold of faces” that can
be navigated.

e They only used cross-sectional data.
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Brain aging

Xia et al. (2019)
modeled the aging
of the brain under
different disease
statuses.

Age and disease
status were used as
covariates.
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Brain aging
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Heart aging - Method
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Heart aging - Results

e Predicted age absolute error of generated images (lower is better):

35
Il Zero order
30 I CCO
EEm CCO.1
Il CC10

N
o
==

N
o

Absolute Error
[}
w

=
o

w

o

-30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30
Age gap between real and synthetic image




——
Q

=\ BCN

Heart aging - Results ﬁlﬂ& AlM
e [Fréchet Inception Score (FID) of generated images (lower is better):
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Heart aging - Literature

Structural evolution of the aging heart

e Age is positively correlated with
increased left atrial diameter (LAD).

e LAD increase is greater for higher body
mass index (BMI).

e The left ventricle (LV) suffers an
increase in wall thickness and a
diminuition of L'V end-diastolic
dimensions.

e Increased fat deposition at pericardium.
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Source: Keller and Howlett (2016)




Heart aging - Results
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e Trajectory of aged and rejuvenated hearts compared to cross-sectional data

(dashed lines):

LV size (mm~2)
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Nominal encoding
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Heart aging - Results

Some questions to investigate further are:

e How do other covariates affect the modeling? For example, BMI or smoking

status.
e What happens at other timepoints?

e Are the changes really related to age?



Where can Topology be applied?

e (an we characterize or tell some properties from the high-dimensional manifold
implicitly learn by the model?

e (Can we better disentangle the latent space (the features at the bottleneck) by
enforcing some topological properties?



