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Abstract

We study the relationship between Lp-norms of persistence landscapes of random
datasets and the properties of their generating probability distributions.
We conduct numerical experiments with bivariate time series generated by probability
distributions with known properties which reveal that the increase of Lp-norms due
to rising variability can be suppressed by a growing covariance in the system.
These results help to understand the puzzling behavior of topological summaries
observed on US and European stock markets during the early phase of the global
meltdown caused by the COVID-19 pandemic,
More generally, they could aid in a topological identification of approaching regime
changes in complex systems.
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Introduction

Introduction I

Topological data analysis (TDA) combines deterministic constructs of computational
topology with statistical and machine learning methods to study the shape of data.
The analysis of persistent landscapes is a major TDA tool to describe point clouds
(Bubenik (2015)).
This approach has been successfully used in Finance as well as in many other fields
(Gidea and Katz (2018)).
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Introduction

Introduction II

We prove a functional relationship of the mean of Lp-norms to the variability of a point
cloud sampled from a broad class of probability distributions.
We conduct numerical experiments with bivariate time series spawned by probability
distributions with known properties, which reveal that the increase of the average
Lp-norms due to rising variability can be suppressed by growing covariance in the
system.
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Introduction

Introduction III

The results help to understand the puzzling behavior of the norms of persistent
landscapes observed on US and European stock markets at the inception phase of
the global meltdown caused by the COVID-19 pandemic.
Specifically, contrary to early phases of the technology crash of 2000 and the global
financial crisis of 2007-2009, we do not observe any growth of Lp-norms derived from
the daily time series of four US and four European equity indices, at the beginning of
the most recent market meltdown.
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Introduction

Introduction IV

Figure: (Color online) Time series of FTSE 100 (black line), L1-norm (purple line) and estimated
variability (blue line) of the mixture of daily log-returns of four indices.
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Introduction

Introduction V

Financial markets provide a fascinating example of a complex system. Sudden
regime changes – financial crashes – are characterized by increased variance and,
often, by growing auto-and cross-correlation between broad market indices.
Here, we use the sliding window technique to quantify the temporal changes in
variability, cross-correlation, and topological features of financial time series under
study.
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Introduction

Introduction VI

The observed cross-correlations between different equity indices were much stronger
(> 0.95) at the inception of the global 2020 crash than at the early stages of the two
previous crises.
We conclude that, despite the spike in variability, the strong exogenous shock caused
by the COVID-19 pandemic leads to synchronization between all elements of the
global financial market system, which essentially eliminates any persistence of
homological features of the underlying point clouds.
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Introduction

Introduction VII

Imagine a point cloud in R2. It will become clear that:

If points are distributed uniformly in a circle, the increasing of variability implies also the
increasing of the norm of its persistence landscape.

On the contrary, if points are distributed in an ellipse with a very small second axis, the
increase of variability does not generate changes in the norm of its persistence
landscape.
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Persistent landscapes

Topological Data Analysis (TDA)

TDA is designed to study and measure certain features of discrete multidimensional
data sets, commonly studied as point clouds, embedded in Rd , using a combination
of statistical, computational and topological tools (Bubenik (2015), Carlsson (2009),
Edelsbrunner and Harer (2009)).
Calculation of persistence homology (PH) is at the core of TDA. Informally, it is based
on the computation of persistence of k -dimensional cycles, e.g., connected
components (k = 0), loops (k = 1), cavities (k = 2) and so on, at a wide range of
scales.
Like the shape of a distant landscape is changing at different binocular resolutions,
topological features of a dataset are changing with the scale. As the scaling
parameter changes, some homologies appear while others disappear.
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Persistent landscapes

Persistence Homology I

Each homology feature is assigned a ‘birth’ and a ‘death’ value, and the difference
between these two values represents its life or persistence.
The output of this filtration procedure is captured in a concise form by a persistence
Rips diagram. Coordinates of each point on the Rips diagram represent the birth
value (x-coordinate) and the death value (y -coordinate) of a k -dimensional cycle.
As a result, an arbitrary complex multidimensional dataset is projected via a Rips
filtration onto the two-dimensional persistence diagram.
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Persistent landscapes

Persistence Homology II

For this procedure to be applied, a finite multidimensional dataset must be encoded
in some metric space, forming a ‘point cloud’.
A standard procedure to compute the persistence homology of a point cloud relies on
the construction of a filtration of simplicial complexes.
Two main types of assemblies of complexes can be used: Cech scheme and
Vietoris-Rips scheme (Carlsson (2009)). Both are quite equivalent (Jung’s theorem).
Computations in the published paper are done using Vietoris-Rips scheme. But now
we know that since the theoretical point of view, and for our purposes, Cech scheme
is better. Despite this, two methods are very similar and Vietoris-Rips is more easy to
implement.
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Persistent landscapes

Cech scheme

Consider an increasing resolution parameter ϵ > 0. In Cech scheme, two points p
and q become connected when ϵ arrives to 1

2d(p,q). (In our case, d is Euclidean
distance).
We are interested in loops (cycles in the plane). A cycle starts when a certain
number of points pi of the cloud become connected leaving a hole in the interior, and
dies when all the points in the interior are connected with one of the generating
points of the cycle.
Note that triangles can have a short life under Cech scheme (not under the
Vietoris-Rips one). But rectangle triangles have no life in any of the schemes.
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Persistent landscapes

Persistent landscapes

A Persistence Homology based summarization instrument is the persistence
landscape. It consists of a sequence of piecewise linear functions defined in the
re-scaled birth-death coordinates of the underlying Rips diagram.
The key advantage of persistence landscapes is related to their embedding into a
Banach space. Hence, one can apply standard tools of functional analysis and
statistics, e.g., compute their means, variances and norms (Bubenik (2015)).
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Persistent landscapes

The persistence landscape function

Definition
Let D = {(bi ,di)}i∈I be a persistence diagram. For each birth-death point (bi ,di) in D, we
define a piecewise linear continuous function:

f(bi ,di )(x) =


x − bi if bi < x ≤ bi+di

2

−x + di if bi+di
2 < x < di

0 otherwise.

Then, the function Λ: N× R −→ R given by Λ(k , x) = kmax{f(bi ,di )(x)}i∈I , is called the
persistence landscape function associated to the persistence diagram D, where kmax
denotes the k -th largest value of a set.
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Persistent landscapes

Basic Properties

By definition, if k > |I|, then the value of kmax is zero, where I denotes the index set
of D.
Alternatively, a persistence landscape may also be viewed as a sequence of
functions λ1, λ2, . . . : R → R, where λk (x) = Λ(k , x) is called the k-th persistence
landscape function of D.
Each function λk (x) is piecewise linear with slope either 0, 1, or −1.
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Persistent landscapes

Figure 1

Figure: On the right, two visualizations of the persistence landscape derived from the persistence
diagram on the left. The top-right figure, shows the different k -persistence landscape functions for
k = 1,2,3. The bottom-right figure shows the persistence landscape above the barcodes. Figure
adapted from Bubenik (2015).
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Persistent landscapes

The k -th persistence landscape

For a persistence landscape Λ derived from a persistence diagram D, the k -th
persistence landscape function λk has the following properties:

a) λk (x) ≥ 0 for all x ;
b) λk (x) ≥ λk+1(x) for all x .

First statement follows directly from the definition. Indeed, for every birth-death point p in
D, we have the associated piecewise linear function fp which has image Im(fp) ⊆ [0,∞).
Thus, for every k we have that kmax{f(bi ,di )(x)}i∈I ≥ 0.

The second property follows directly from the fact that

λk = kmax{f(bi ,di )}i∈I ≥ (k + 1)max{f(bi ,di )}i∈I = λk+1.
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Persistent landscapes

Norms of persistent landscapes I

Persistence landscapes can be understood in terms of elements of a Banach space.
Recall that, for a given measure space (S,A, µ) and a function f : S → R defined µ-almost
everywhere, one defines, for 1 ≤ p < ∞, the Lp-norms

∥f∥p =
(∫

|f |p dµ
)1/p

∥f∥∞ = sup
x∈S

|f (x)| = inf {a | µ{s ∈ S : f (s) > a} = 0}

Moreover, for 1 ≤ p ≤ ∞, we have the Banach space

Lp(S) = {f : S → R | ∥f∥p < ∞},

and define Lp(S) = Lp(S)/∼, where f ∼ g if ∥f − g∥p = 0.
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Persistent landscapes

Norms of persistent landscapes II

Hence, we can define the norm of persistence landscape, as follows.

Definition
Let Λ: N× R → R be a persistence landscape function. Suppose that on N× R we use
the product of the counting measure on N and the Lebesgue measure on R. Then, for
1 ≤ p < ∞, we define

∥Λ∥p =
∞∑

k=1

∥λk∥p,

where λk (t) = Λ(k , t), and ∥λk∥p denotes the standard Lp-norm of λk .
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Persistent landscapes

Norms of persistence landscapes III

Thus, we can endow the space of persistent landscapes with the previous norm and
the set of persistence landscapes becomes a subset of the Banach space Lp(N×R).
Ana alternative would be

∥Λ∥p = (
∞∑

k=1

∥λk∥p
p)

1
p ,

From my experience, for practical purposes, to compute the L1−norm of λ1 is
enough. In general, other alternatives don’t add much more to the analysis.
The L1−norm of λ1 is the area under the highest chain of the landscape.
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Persistence landscapes of random point clouds

Lp-norms of randomized point clouds I

Our goal is to characterize the behavior of the mean of Lp-norms of persistence
landscapes derived from random point clouds sampled from a broad class of
multivariate distributions with known statistical properties.
For a given probability space (Ω,F ,P), let X denote a multivariate random variable
with distribution F and corresponding persistence landscape Λ. By this we mean
that, for ω ∈ Ω, X(ω) is a data set and Λ(ω) is the corresponding persistence
landscape. In this sense, we interpret the persistence landscape as a Banach space
valued random variable Λ(ω) : Ω → Lp(N× R).
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Persistence landscapes of random point clouds

Some statistical properties of persistence landscapes

Under some conditions on the distribution F , the behavior of the expected Lp-norm of
a persistence landscape can be described by a non linear dependency on a scaling
factor of F .
For a given persistence landscape Λ we have introduced before a p-norm defined as
the infinite sum of ∥λk∥p, where λk is the k -th persistence landscape function of Λ.
For a finite data set, there exists t such that λk = 0 for all k ≥ t and ∥λk∥p = 0 for all
p, hence

∑∞
k=1 ∥λk∥p < ∞.
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Persistence landscapes of random point clouds

Proposition 1

Proposition

Let X : Ω → Rd denote a multivariate random variable with distribution D(µ,Σ), and let
X 1, . . . ,X N be identical copies of X such that X := (X 1, . . . ,X N) describes an N-point
data set in Rd . Assume µ and Σ are finite. Then,

E(∥Λ∥p) ≤ C(N) · N · tr(Σ)
p+1
2p ,

where ∥Λ∥p denotes the p-norm of the persistence landscape Λ, and C(N) describes the
number of non zero k-persistence landscapes.
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Persistence landscapes of random point clouds

Proof I

Let {(bi ,di)}i∈I the different cycles appeared when resolution ϵ increases. Define

ϵb = min
s
{bs}, ϵd = max

l
{dl},

to be the minimum and the maximum values at which a first cycle is born and the last
cycle dies, respectively. Now, for each x ∈ (ϵb, ϵd), we consider the piecewise linear
function

f̃ (x) := f(ϵb,ϵd )(x) =

x − ϵb if x ∈ (ϵb,
ϵb+ϵd

2 ]

−x + ϵd if x ∈ ( ϵb+ϵd
2 , ϵd).
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Persistence landscapes of random point clouds

Proof II

It is enough to bound the 1-persistence landscape function λ1, and since λk ≥ λk+1 we
can bound

∑
k≥1 ∥λk∥p because the sum if finite.

It is easily deduced that dom(λ1) = dom(f̃ ) =: S ⊂ R, since λ1 = max{fpi}i∈I . Moreover,
f̃ (x) ≥ λ1(x) ≥ 0 for all x ∈ S. Thus,

∥λ1∥p
p ≤ ∥f̃∥p

p =
(ϵd − ϵb)

p+1

2p(p + 1)
.
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Persistence landscapes of random point clouds

Proof III

Now we can write the following chain of inequalities:

∥λ1∥p
p ≤ (ϵd − ϵb)

p+1

2p(p + 1)

(2)
≤ max

1≤i≤N
(dp+1(X i , µ)) = max

1≤i≤N

( d∑
j=1

(X i
j − µ)2

) p+1
2
.

Inequality (2) comes directly from the fact that

(ϵd − ϵb) ≤ 2 · max
1≤i≤N

(d(X i , µ)) = 2r .

In other words, the distance between two points of X inside the disc
D(µ, r) = {x ∈ Rd | d(x , µ) ≤ r} will never surpass 2r .
Taking expected values,

E[∥λ1∥p] ≤ E
[
max

1≤i≤N

( d∑
j=1

(X i
j − µ)2

) p+1
2p

]
≤ E

[ N∑
i=1

( d∑
j=1

(X i
j − µ)2

) p+1
2p

]
.
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Persistence landscapes of random point clouds

Proof IV

From here, setting α := 2p/(p + 1) one can prove directly the inequality

E
[ N∑

i=1

( d∑
j=1

(X i
j − µ)2

) 1
α
]
≤ N · tr(Σ)

1
α .

Indeed, if p = 1 then α = 1 and it follows directly. If p > 1, then α > 1 and we can set
β > 1, such that 1

α + 1
β = 1. By the Hölder inequality we have that,

E
[ N∑

i=1

( d∑
j=1

(X i
j − µ)2

) 1
α
]
≤ N ·

(
E
[ d∑

j=1

(X i
j − µ)2

]) 1
α
(
E[1β]

) 1
β
.
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Persistence landscapes of random point clouds

Proof V

The number of loops described by an N point data set L1(N), can be roughly bounded by
the sum

L1(N) ≤
i=N∑
i=4

(
N
i

)
,

where we consider the total number of loops to be bounded by grouping each different
cluster of i = 4,5, . . . ,N points that can determine a loop; in the Vietoris-Rips scheme the
minimum size of these clusters is 4, in Cech scheme is 3. This allows us to guarantee that∑

k≥1 ∥λk∥ has a finite number of non zero terms C(N). So we can write the following:

E(∥Λ∥p) = E
( C(N)∑

i=1

∥λi∥p
)
=

C(N)∑
i=1

E(∥λi∥p)
(1)
≤ C(N) · E(∥λ1∥p) ≤ C(N) · N · tr(Σ)

p+1
2p .

Inequality (1) is due to the property λk ≥ λk+1 mentioned before.
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Persistence landscapes of random point clouds

Proposition II

This describes the change of Lp-norms in response to scaling a point cloud by a certain
factor h.

Proposition

Let X denote a finite point cloud in Rd with associated persistence landscape ΛX , and
H : Rd → Rd be a homotecy such that H(X ) = h · X. Then,

∥ΛH(X)∥p = h
p+1

p · ∥ΛX∥p,

where ∥ΛH(X)∥p denotes the p-norm of the persistence landscape associated to the
scaled point cloud H(X ).
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Persistence landscapes of random point clouds

Proof I

Consider D, D′
to be the corresponding persistence diagrams for X ,H(X ), respectively.

Then, every Pi ∈ D becomes hPi ∈ D′
.

Indeed, for any k -simplex σ = [p0, . . . ,pk ] in the Vietoris-Rips complex attached to X at
parameter α, it has to be so that d(pi ,pj) ≤ α for all i , j . So, when we apply H we have
that σ = [p0, . . . ,pk ] becomes σ

′
= [hp0, . . . ,hpk ] and if σ is formed at α, then σ

′
is formed

at h · α.

Thus, |D| = |D′ | and every point in D is scaled by h in D′
.

Josep Vives (UB) Persistence landscapes and correlation May 6, 2022 33 / 65



Persistence landscapes of random point clouds

Proof II

Furthermore, for every fPi (mentioned in Section 2.2) associated to the persistence
landscape of X , we have that fPi 7→ fhPi and so, ΛX becomes hΛX .

Recall that we denote ΛX (k , x) = λk (x) to be the k -th persistence landscape function of
ΛX , so we can write ΛH(X)(k , x) = hΛX (k , x) = λ

′

k (x).

Moreover, we have the associated domains in R2, Ωk = {(x , y) | x ∈ dom(λk ), y ≤ λk (x)}
and for H(X ), the new scaled domain is Ω

′

k = {(x , y) | x ∈ dom(λ
′

k ), y ≤ λ
′

k (x)}.
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Persistence landscapes of random point clouds

Proof III

Then,

∥ΛH(X)∥
p
p =

∑
k≥1

(∫
Ω

′
k

1 · d(x , y)
)
= hp+1 ·

∑
k≥1

(∫
Ωk

1 · d(s, t)
)
= hp+1 · ∥ΛX∥p

p.

We note that this relation results from a simple change of variables,

x = h · s → dx = h · ds
y = h · t → dy = hp · dt .
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Persistence landscapes of random point clouds

Theorem I

Theorem

Let (Ω,F ,P) be a probability space and X : Ω → Rd denote a multivariate random
variable with distribution D(µ,Σ), and let X 1, . . . ,X N be identical copies of X such that
X := (X 1, . . . ,X N) describes a random N-point data set in Rd . Assume µ, Σ are finite and
for a certain scaling factor h, hD(µ, σ2) ∼ D(hµ,h2Σ). Then,

E(∥Λh2Σ(ω)∥p) = h
p+1

p · E(∥ΛΣ(ω)∥p),

where Λh2Σ, ΛΣ denote the persistence landscapes for random point clouds with
corresponding variance-covariance matrix h2Σ and Σ, respectively.
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Persistence landscapes of random point clouds

Proof I

Let H denote a homotecy such that H : Rd → Rd , so X 7→ h · X. From the assumptions
made, we can safely deduce that for every point X i ∈ X we have
H(X i) = h · X i ∼ D(µ,h2Σ).

We use indistinguishably ΛX(ω) = ΛΣ(ω) and Λh·X(ω) = Λh2Σ(ω).

Let X1, . . . ,Xn denote independent identically distributed copies of X, and let Λ1
X, . . . ,Λ

n
X

be the corresponding persistence landscapes. Proposition 2 implies that

1
n

n∑
i=1

∥Λi
h2Σ(ω)∥p = h

p+1
p

1
n

n∑
i=1

∥Λi
Σ(ω)∥p, (1)

since for every landscape Λi
Σ we have the corresponding scaled persistence landscape

Λi
h2Σ

.

Josep Vives (UB) Persistence landscapes and correlation May 6, 2022 37 / 65



Persistence landscapes of random point clouds

Proof II

From Proposition 1 we have that the expected values E(∥Λi
Σ∥p), E(∥Λi

h2Σ
∥p) are finite.

Hence, we can apply the Strong Law of Large Numbers, and we obtain

1
n

n∑
i=1

∥Λi
h2Σ(ω)∥p −→ E(∥Λh2Σ∥p) a.s.

h
p+1

p
1
n

n∑
i=1

∥Λi
Σ(ω)∥p −→ h

p+1
p · E(∥ΛΣ∥p) a.s.

So, taking limits in (1), we obtain

E(∥Λh2Σ∥p) = h
p+1

p · E(∥ΛΣ∥p).
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Persistence landscapes of random point clouds

Theorem II

Theorem

Let (X ,Y ) be a 2D-random vector sampled from a generic bi-variate distribution D(µ,Σ)
with finite mean-vector µ = (µx , µy ) and finite variance-covariance matrix Σ:

Σ =

(
σ2

x ρσxσy
ρσyσx σ2

y

)
.

Here, ρ ∈ (−1,1) is the correlation coefficient. Assume σx ≥ σy . Let θ1 and θ2 be the
eigenvalues of the matrix Σ. Since Σ is symmetric and positive semi-definite, we have
θ1 ≥ θ2 ≥ 0. For a fixed number of points N, consider the associated point cloud X and
the corresponding persistence landscape Λ. Then, we have

E[|Λ∥1] ≤ L1(N)2 · N · θ2.
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Persistence landscapes of random point clouds

Proof I

Without loss of generality, using Principal Component Analysis, we can write X as a
centered point cloud such that the points (Xi ,Yi), for i = 1, . . . ,N, are sampled from a
bivariate generic distribution D(0,Θ) where

Θ =

(
θ1 0
0 θ2

)
.

The new covariance structure allows to interpret the X and Y axis as the axis of
maximum and minimum variability, respectively. Now, we have that both variables are
uncorrelated with the variance-covariance structure Θ, while the underlying topology of X
remains unchanged.

Furthermore, we can encapsulate X into a rectangle of basis 2maxi |Xi | and height
2maxi |Yi | with maxi |Yi | ≤ maxi |Xi |.
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Persistence landscapes of random point clouds

Proof II

The main idea is the following. Consider a rectangle of four points in the vertices. Let α
the basis and β the height, where α > β. The loop of this four points starts at α and dies
at

√
α2 + β2. Then, the life of the 1D homology of this set of points is given by

ϵd − ϵb ≤
√

α2 + β2 − α ≤ β.

Finally it is clear that for any set of points of the point cloud β ≤ 2maxi |Yi |.

The idea can be generalized to any subset of points of the point cloud.

Josep Vives (UB) Persistence landscapes and correlation May 6, 2022 41 / 65



Persistence landscapes of random point clouds

Proof III

Recall now that for each point (bi ,di) in the persistence diagram, we have an associated
triangle in the first persistence landscape function with the area given by (di − bi)

2/4.
Hence, we can bound ∥λ1∥1 of X as follows:

∥λ1∥1 ≤ L1(N) ·max
i

(di − bi)
2

4
≤ L1(N) ·max

i
|Yi |2 ≤ L1(N) · ΣN

i=1|Yi |2.

From our proof of Proposition 1 we have that

∥Λ∥1 ≤ L1(N) · ∥λ1∥1,

so taking expectations in the inequality above proves the result.
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Persistence landscapes of random point clouds

Remark I

Note that from Theorem 2 it is easy to see that as ρ → ±1, the expected value
E[|Λ∥1] → 0. Indeed, the eigenvalues of Σ are:

θ1 =
σ2

x + σ2
y

2
+

√(σ2
x + σ2

y

2
)2 − (1 − ρ2)σ2

xσ
2
y ,

θ2 =
σ2

x + σ2
y

2
−

√(σ2
x + σ2

y

2
)2 − (1 − ρ2)σ2

xσ
2
y .

Thus, if ρ = 0, the eigenvalues are σ2
x , σ

2
y , and if ρ = ±1, we obtain σ2

x + σ2
y and 0.

Josep Vives (UB) Persistence landscapes and correlation May 6, 2022 43 / 65



Persistence landscapes of random point clouds

Remark II

The boundary on E [∥Λ∥1] that follows from Theorem 2 is rough. Nonetheless, its
dependency on θ2 points to suppression of PH in systems with strong covariance.
If we have a point cloud X from an embedding of an d−dimensional random vector in
Rd , we have an analogous covariance matrix which is a diagonal matrix composed
by θ1 ≥ · · · ≥ θd ≥ 0 eigenvalues. Similarly to the 2-dimensional case, the
persistence of loops is controlled by θ2 and the results of Theorem 2 is still valid.
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Persistence landscapes of random point clouds

Remark III

Theorem 2 can be extended to h-dimensional cycles for any h ≥ 0. For any h ≥ 0, the
persistence of the h-cycles is controlled by the (h + 1)-th eigenvalue, provided
0 ≤ h ≤ m − 1. That is, connected components are bounded by L0(N)2Nθ1, loops are
bounded by L1(N)2Nθ2, cavities are bounded by L2(N)2Nθ3 and so on. Here,

Lr (N) =
i=N∑

i=2h+1

(
N
i

)
≤ 2N .

This formula is for Vietoris-Rips scheme. In the Cech case, the sum starts a little before.
In any case, the bound 2N is universal.
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Numerical experiments

Uncorrelated bivariate Normal and Gamma distributions I

To illustrate the dependency described in Theorem 1, we use Monte Carlo simulations.
We construct a random point cloud in the 2D metric space by sampling 50 points from the
bi-variate Normal and bi-variate Gamma distributions. Each distribution has a correlation
matrix

Σi = σ2
i Id (i = 1,2),

so that points have i.i.d coordinates.

These distributions have bounded first and second moments and different symmetry,
which allows us to illustrate the growth of the mean of Lp-norms with rising variability of
underlying distributions, described by Theorem 1.
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Numerical experiments

Uncorrelated bivariate Normal and Gamma distributions II

For each realization of the generated data set we associate the corresponding Rips
filtration, compute the persistence diagram, and the corresponding Lp-norm. We
collect the values of Lp-norms obtained at each realization and calculate their
mean-values at the end of the first simulation.
We run these simulations 10 times, sequentially increasing the variance of each
distribution. For the uncorrelated bivariate Normal distribution, we increase σ1 = σ2
from 1 to 10. For the uncorrelated bi-variate Gamma distribution we chose the shape
parameter k1 = k2 = 2, and increase σ1 = σ2 from

√
2 to 10

√
2. Next Figure shows

the predicted behavior of the mean of Lp-norms (p = 1,2,3) for a relatively low
number of iterations (1000).
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Numerical experiments

Uncorrelated bivariate Normal and Gamma distributions III

Figure: (Color online) Plots of Monte Carlo simulations, 1000 realizations, of the dependency of
Lp-norms on the variance of uncorrelated bi-variate Normal and Gamma distributed data sets.
Dots depict the mean-values of p-norms computed for each value of the variance. Colored lines
shows the corresponding dependency functions predicted by Theorem 1.Josep Vives (UB) Persistence landscapes and correlation May 6, 2022 48 / 65



Numerical experiments

Uncorrelated bivariate Normal and Gamma distributions IV

Thus, one could expect to find an increase in values of L1-norms whenever the variability
in the underlying system is growing. However, this expectation is not always supported by
observations. To qualitatively explain this anomaly, we conduct numeric experiments with
point clouds sampled from the bivariate Normal distribution, which reveal that increase of
L1-norms due to rising variability can be suppressed by growing cross-correlation in the
system.
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Numerical experiments

Correlated bivariate Normal distribution I

Theorem 1 assumes there is no correlation in the underlying point cloud. In this
section we perform Monte Carlo simulations of the behavior of L1-norms of
persistence topological landscapes derived from 2D point clouds, which are sampled
from the correlated bivariate Normal distribution.
The choice of this model is motivated by simplicity of its correlation structure.
Specifically, we wish to test how a growing correlation coefficient ρ of two white
noises influences values of L1-norms.
We use the mvrnorm function from the R-package MASS to sample 50 random data
points from the bivariate Normal distribution N (µ,Σ), where µ and Σ as given in
Theorem 2.
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Numerical experiments

Correlated bivariate Normal distribution II

Thereby, we construct a random point cloud in the 2D metric space. We repeat this
procedure multiple times. For each realization of the generated data set we associate
the corresponding Rips filtration, compute the persistence diagram, and the L1-norm
of persistence landscape. We collect the values of L1-norms obtained at each
realization and calculate their mean-values at the end of the first simulation.
We run these simulations 10 times, first with σx = σy = 1 and correlation factor ρ
sequentially increased from 9.9% to 99.0%. In this case we find that the average
values of the L1-norm converge with the number of repetitions towards a smoothly
decreasing function of the correlation coefficient.
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Numerical experiments

Correlated bivariate Normal distribution III

In the second experiment, we keep σx = 1 and increase σy linearly from 0.3 to 3 in
10 steps, while simultaneously increasing ρ from 9.9% to 99.0%.
Finally, we run the experiment with σx = σy , both increasing linearly from 0.3 to 3 in
10 steps, simultaneously with ρ increasing from 9.9% to 99.0%.
For simplicity, in all experiments we set µ = 0. Next Figure demonstrates the
outcome of these experiments.

Josep Vives (UB) Persistence landscapes and correlation May 6, 2022 52 / 65



Numerical experiments

Correlated bivariate Normal distribution IV

Figure: Dependency of the mean of L1-norm, obtained with 10,000 repetitions, on the square of
the correlation strength. The line marked with triangles represents the case with standard
deviations σx = σy = 1. The line marked with filled squares represents the case with σx = 1 and
σy growing linearly and simultaneously with ρ2 in 10 steps from 0.3 to 3. The line marked with
filled circles is derived in the case with both σx and σy linearly growing in 10 steps from 0.3 to 3.
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Empirical results

Empirical results

To be applied, TDA requires an embedding of the data set into some Euclidean,
metric space. Any portfolio-like mixture of financial time series naturally defines the
dimensionality of such a space, whereas the size of the sliding window determines
the size of a point cloud.
Here, we use a relatively short window (50 trading days) to explore the evolution of
daily log-returns of four US and four European equity indices.
Consequently, we derive the transient topological summaries of two ordered in time
sets of 4D point clouds, with 50 data points each, one for US and one for Europe.
Specifically, we compute the time evolution of Lp-norms of persistence landscapes
derived via Rips filtration from these point clouds. For details of the time-resolved
TDA methodology see Gidea and Katz (2018).
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Empirical results

We use Yahoo Finance API to obtain time series of four broad US equity indices –
DJI, S&P 500, NASDAQ, and Russell 2000 – as well as four European indices –
FTSE 100 (UK), DAX 30 (Germany), CAC 40 (France), IBEX 35 (Spain) - between
January 1, 1998 and April 24, 2020. We drop 3.9% of the corresponding data points
to synchronize trading dates on different European markets.
We study the stationary time series formed by the daily log-returns of these indices,
ln(pi,t+1/pi,t), where i identifies the index and t determines the trading day, and
group them into two portfolio-like mixtures - one with four US indices, another with
four European indices.
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Empirical results

We use a sliding window of 50 trading days with the sliding step set to one day to
derive the temporal changes in covariance and cross-correlation matrices,
respectively.
We use the same sliding window technique to obtain two ordered in time sets of 4D
point clouds, each consisting of 50 points describing the temporal changes of daily
log-returns of US and European indices; we denote them by X i

n, where i = 1,2
determines the geographical portfolio and n is the size of the sliding window.
In our analysis we consider the persistence of 1D loops exclusively. This is due to
lengthy computations of Vietoris-Rips complexes for higher dimensions.
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Empirical results

The algorithm computes the corresponding Rips filtration R(X i
n, ϵ), ϵ > 0, the

persistence diagram D1(X i
n), the persistent landscape Λ(X i

n), and the relevant
functional L1-norm ∥Λ(X i

n)∥1 per point cloud.
In all computations, we use the R package TDA and C++ library ‘GUDHI’ (Fasy et al.
(2015); GUDHI software: http://gudhi.gforge.inria.fr/).
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Empirical results

Figure: (Color online) Combined time series of S&P 500 (black line), L1-norm (purple line) and
estimated variability (blue line) of the mixture of daily log-returns of four indices; see text for details.
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Empirical results

Figure: (Color online) Time series of FTSE 100 (black line), L1-norm (purple line) and estimated
variability (blue line) of the mixture of daily log-returns of four indices; see text for details.
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Empirical results

The striking differences in time series of L1-norms at the early stages of the
Technology Crash of 2000, the Global Financial Crash of 2008-2009, and the latest
one, are clearly visible on these figures.
First, notice that spikes in variability during two prior systemic market meltdowns
were always accompanied by jumps in L1-norms. Remarkably, this behavior is not
observed at the beginning of COVID-19 crisis.
Another noticeable observation is related to exceptionally strong cross-correlations
between indices, which are above 95% for all of them, throughout the early stage of
the pandemic crisis.
This finding reflects the fundamentally different character of the current global
financial crisis, which is triggered by a strong exogenous shock - COVID-19
pandemic.
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Concluding remarks

Conclusions I

It is widely recognized that market instability and growing variability at early and later
stages of the Technology Crash of 2000 and the Global Financial Crisis of 2008 -
2009 were due to endogenous economic forces.
These regime-changes are reflected by spikes in values of functional norms of
persistence landscapes derived from the corresponding point clouds, formed by the
4D mixtures of daily log-returns of major US and European indices.
Informally, stationarity of daily log-returns allows to use the ergodic argument and
qualitatively explain this behavior as the real-world manifestation of the theorem
which established proportionality of the mean of L1-norms of persistence landscapes
to the variance of the underlying probability distribution.
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Concluding remarks

Conclusions II

Noticeably, we do not find the similar pattern at the very beginning of the latest
market meltdown. Despite the growing variability in the global financial system, there
are no spikes in the time series of L1-norms.
As we have shown here, qualitatively, this puzzling behavior can be explained by the
unusually strong covariance observed in the global financial system. The latter is
related to the exogenous shock, caused by the COVID-19 pandemic, which
synchronized the time series forming the point clouds. A simultaneous drop of global
equity markets translates into an isometry, nullifying persistence homology of a noisy
financial system.
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Concluding remarks

Conclusions III

To summarize, the study of the statistical properties of norms of persistence
landscapes of points clouds generated by a broad class of random distributions
improve the empirical analysis of financial time series (for example, daily log-returns),
and helps to distinguish between endogenous and exogenous economic shocks.
In particular we have seen that these topological features are very sensitive to an
interplay between variability and covariance in a system.
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Concluding remarks
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Concluding remarks

The End

Thank you for the attention

Gràcies
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