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Depto. Matemática Aplicada I
Universidad de Sevilla

rogodi@us.es

Barcelona, May 20, 2022



The REXASIPRO project
Computational topology inside REXASIPRO

The REXASIPRO project



The REXASIPRO project
Computational topology inside REXASIPRO

The REXASIPRO project



The REXASIPRO project
Computational topology inside REXASIPRO

The REXASIPRO project



The REXASIPRO project
Computational topology inside REXASIPRO

The REXASIPRO project



The REXASIPRO project
Computational topology inside REXASIPRO

The REXASIPRO project



The REXASIPRO project
Computational topology inside REXASIPRO

The REXASIPRO project



The REXASIPRO project
Computational topology inside REXASIPRO

Artificial intelligence and climate change

Natural language processing (NLP)

≃ 5 cars’ CO2 emissions
throughout their useful life

Deep neural networks (DNN)

⇒
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Main goal

Use computational topology to design new
methods to achieve green artificial
intelligence models.

Example of AI model: neural networks
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Why topology?

Topology studies properties of spaces that are preserved against
continuous deformations.

Neural networks are compositions of continuous functions.

The training process consists of continuous deformations. The network
deforms space so that data of different classes are separable by a
hyperplane.

Real-world high-dimensional data sets actually lie in low-dimensional
manifolds (manifold hypothesis).
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Use computational topology to design new
methods to achieve green artificial
intelligence models.

Specific Goals

O.1. Reduce the input dataset.

O.2. Create synthetic samples that can quickly train a model.

O.3. Build optimized models based on topology.

O.4. Simplify the model preserving its learning capacity.
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Representative datasets

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo. 2022)

Let D̃ = {(x , cx) : x ∈ X ⊂ Rn} be a λ-balanced ε-representative dataset of
the binary dataset D . Let Nω be a perceptron with weights ω ∈ Rn+1. Then,
|E(ω,D)− E(ω, D̃)| ≤ 43||ω||∗

54
ε = δ, where E(ω,D) = 1

|X |
∑

(cx − Nw (x)).
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O.1. Reducing the input dataset

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo. 2022)

Let D̃ ⊂ Rn be a λ-balanced ε-representative dataset of the binary dataset D .
Then, 1

2
dB
(
B(D),B(D̃)) ≤ ε.

Persistent homology

dB
(
B(D),B(D̃))
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O.1. Reducing the input dataset

Persistent homology ⇒persistent entropy

Definition (with H Chintakunta, MJ Jimenez, H Krim. 2015)

H(B) =
∑ ℓi

L
· log

(
ℓi
L

)
where L is the sum of the lengths ℓi of the bars.

* 0 < H(B) ≤ log(n) being n the amount of bars.
* H(B) = log(n) when all bars have the same length.

Theorem (with N Atienza, M Soriano-Trigueros. 2020)

Under mild assumptions, |H(B(D))− H(B(D̃))| ≤ k(n, L) · ε.
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Partial Matchings

f : U ⇒ V Mf : B(U) → B(V )
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O.2. Creating synthetic samples

Partial matchings

Mf : B(U)× B(V ) → Z is defined by

Mf ((a, b), (c, d)) = dim

(
lim−→

t∈(a,b)∩(c,d)

X(a,b)(c,d)t

)

Theorem (with M Soriano-Trigueros, A. Torras. Submitted)

Mf is well-defined, linear and can be computed using matrix row reductions.

M f
(a,b)(c,d)t :=


A−

(a,b)t A+
(a,b)t \ A

−
(a,b)t

B−
(c,d)t Ignored rows

B+
(c,d)t \ B

−
(c,d)t Block 1 Block 2

Bt \ B+
(c,d) ∗ ∗
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O.3. Building optimized models

Simplicial map neural network (SMNN).

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo. 2020)

Given a continuous function g : X → Y and ε > 0, a SMNN N such that
||g − N || ≤ ε can be explicitly defined.
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O.3. Building optimized models

φ : |K | → |L|

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo, J Heras. 2021)

Nφ correctly classifies D .
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O.4. Simplifying the model

Optimized SMNN

D Nφ Nφ̃

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo, J Heras. 2022)

Both Nφ and Nφ̃ correctly classifies D .
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O.4. Simplifying the model

Optimized SMNN

Dataset Size 2-Simplices
Original 1801 3596
Reduced 604 305
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Future research lines

Formally prove that representative sets maintain accuracy in deep neural
networks and more general AI models.

Construct morphism-induced partial matches between more general
persistence modules.

Use the SMNNs as a tool for the explainability, reliability and
transparency of an artificial intelligence model (trustworthy AI).

Create more efficient and robust variants of SMNNs.
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Moltes gràcies per la vostra
atenció !
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