Topological Machine Learning Seminar

Computational topology inside the REXASIPRO project

Rocío González Díaz

Depto. Matemática Aplicada I Universidad de Sevilla rogodi@us.es

Barcelona, May 20, 2022

The **REXASIPRO** project

REXASI-PRO | Reliable & eXplAinable Swarm Intelligence for People with Reduced mObility – CL4-Human-01-01 HE Project Proposal

HORIZON EUROPE | CALL HORIZON-CL4-2021-HUMAN-01-01

Verifiable robustness, energy efficiency and transparency for Trustworthy Al: Scientific excellence boosting industrial competitiveness

Type of action: RIA - Innovation Action

Proposal Budget € million: 4 (100% for all)

REXASI-PRO CAN WE TRUST IN AI?

Artificial Intelligent (AI) become omnipresent in our society: autonomous cars, flying taxi, robots, medicine discovery, etc.... **However, society is hesitant about it** (known as blade runner/terminator effect)

Al Perceived as a Black Box

Future is to develop public trust into AI solution: Transparent, Safe, Secure, Reliable & Green AI

In AI (Can) We Trust?

REXASIPRO | Demonstration

In REXASIPRO we will develop a new framework in which safety, security and explainability are entangled for the development of a Trustworthy Artificial Swarm Intelligence solution. The framework will enable the collaboration among a swarm composed by autonomous wheelchairs and flying-robots to enable a seamless door-to-door experience for people with reduced mobility.

Deutsches Forschungszentrum für Künstliche Intelligenz GmbH

REXASI-PRO | Partners

Participant No. *	Participant organisation name
1 (Coordinator)	Spindox Labs
2	Italian National Council of Research
3	Deutsches Forschungszentrum für Künstliche Intelligenz
4	Dalle Molle Institute for Artificial Intelligence
5	ROYAL HOLLOWAY AND BEDFORD NEW COLLEGE
6	V-Research
7	AITEK
8	UNIVERSIDAD DE SEVILLA
9	Hovering Solution
10	EURONET
11(Subcontracting)	Scuola di Robotica (Ethics)

Artificial intelligence and climate change

Natural language processing (NLP)

5 cars' CO2 emissions throughout their useful life

Deep neural networks (DNN)

Goals On-going work Future research lines Bibliography

Computational topology inside REXASIPRO

Goals

On-going work Future research line Bibliography

Goals

Goals

On-going work Future research line Bibliography

Goals

Goals

On-going work Future research line Bibliography

Goals

Main goal

Use computational topology to design new methods to achieve green artificial intelligence models.

Example of AI model: neural networks

Given d, k > 0, a multi-layer feed-forward neural network defined between spaces $X \subseteq \mathbb{R}^d$ and $Y \subseteq \mathbb{R}^k$ is a function $F: X \to Y$ composed of m + 1 functions:

 $F = f_{m+1} \circ f_m \circ \cdots \circ f_1$

where the integer m > 0 is the number of hidden layers and, for $i \in \{1, ..., m + 1\}$, the function $f_i: X_{i-1} \rightarrow \underline{X}_i$ is defined as

$$f_i(y) := \phi_i(\omega^{(i)}; y; \underline{b}_i)$$

where ϕ_i is the activation function, b_i the vector of the bias term, and $\omega^{(i)}$ the matrix of weights.

Goals On-going work Future research lin Bibliography

Goals

Why topology?

- Topology studies properties of spaces that are preserved against continuous deformations.
- Neural networks are compositions of continuous functions.
- The training process consists of **continuous deformations.** The network *deforms* space so that data of different classes are separable by a hyperplane.

_____ B →

• Real-world high-dimensional data sets actually lie in low-dimensional **manifolds** (manifold hypothesis).

Goals

On-going work Future research line Bibliography

Goals

Main goal

Use computational topology to design new methods to achieve green artificial intelligence models.

- **0.1.** Reduce the input dataset.
- **0.2.** Create synthetic samples that can quickly train a model.
- **0.3.** Build optimized models based on topology.
- 0.4. Simplify the model preserving its learning capacity.

Goals

On-going work Future research line Bibliography

Goals

Main goal

Use computational topology to design new methods to achieve green artificial intelligence models.

- **0.1.** Reduce the input dataset.
- **0.2.** Create synthetic samples that can quickly train a model.
- **0.3.** Build optimized models based on topology.
- 0.4. Simplify the model preserving its learning capacity.

Goals

On-going work Future research line Bibliography

Goals

Main goal

Use computational topology to design new methods to achieve green artificial intelligence models.

- **0.1.** Reduce the input dataset.
- 0.2. Create synthetic samples that can quickly train a model.
- **0.3.** Build optimized models based on topology.
- 0.4. Simplify the model preserving its learning capacity.

Goals

On-going work Future research line Bibliography

Goals

Main goal

Use computational topology to design new methods to achieve green artificial intelligence models.

- **0.1.** Reduce the input dataset.
- **0.2.** Create synthetic samples that can quickly train a model.
- 0.3. Build optimized models based on topology.
- 0.4. Simplify the model preserving its learning capacity.

Goals

On-going work Future research line Bibliography

Goals

Main goal

Use computational topology to design new methods to achieve green artificial intelligence models.

- **0.1.** Reduce the input dataset.
- 0.2. Create synthetic samples that can quickly train a model.
- **0.3.** Build optimized models based on topology.
- 0.4. Simplify the model preserving its learning capacity.

Goals

On-going work Future research line Bibliography

Goals

Main goal

Use computational topology to design new methods to achieve **egreen artificial intelligence models.**

- **0.1.** Reduce the input dataset.
- 0.2. Create synthetic samples that can quickly train a model.
- **0.3.** Build optimized models based on topology.
- 0.4. Simplify the model preserving its learning capacity.

On-going work Future research lines Bibliography

O.1. Reducing the input dataset

On-going work Future research line Bibliography

O.1. Reducing the input dataset

On-going work Future research line Bibliography

O.1. Reducing the input dataset

Representative datasets

On-going work Future research lines Bibliography

O.1. Reducing the input dataset

Representative datasets

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo. 2022)

Let $\tilde{\mathscr{D}} = \{(x, c_x) : x \in X \subset \mathbb{R}^n\}$ be a λ -balanced ε -representative dataset of the binary dataset \mathscr{D} . Let \mathscr{N}_{ω} be a perceptron with weights $\omega \in \mathbb{R}^{n+1}$. Then, $|\mathbb{E}(\omega, \mathscr{D}) - \mathbb{E}(\omega, \widetilde{\mathscr{D}})| \leq \frac{43||\omega||_*}{54}\varepsilon = \delta$, where $\mathbb{E}(\omega, \mathscr{D}) = \frac{1}{|X|}\sum_{i}(c_x - \mathscr{N}_w(x))$.

On-going work Future research lines Bibliography

O.1. Reducing the input dataset

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo. 2022)

Let $\tilde{\mathscr{D}} \subset \mathbb{R}^n$ be a λ -balanced ε -representative dataset of the binary dataset \mathscr{D} . Then, $\frac{1}{2}d_B(B(\mathscr{D}), B(\tilde{\mathscr{D}})) \leq \varepsilon$.

Persistent homology

On-going work Future research lines Bibliography

O.1. Reducing the input dataset

${\sf Persistent\ homology\ } \Rightarrow {\sf persistent\ entropy}$

Definition (with H Chintakunta, MJ Jimenez, H Krim. 2015)

 $H(B) = \sum \frac{\ell_i}{L} \cdot \log(\frac{\ell_i}{L})$ where L is the sum of the lengths ℓ_i of the bars.

* $0 < H(B) \le log(n)$ being *n* the amount of bars. * H(B) = log(n) when all bars have the same length.

Theorem (with N Atienza, M Soriano-Trigueros. 2020)

Under mild assumptions, $|H(B(\mathscr{D})) - H(B(\widetilde{\mathscr{D}}))| \le k(n, L) \cdot \varepsilon$.

On-going work Future research lines Bibliography

O.1. Reducing the input dataset

Persistent homology \Rightarrow persistent entropy

Definition (with H Chintakunta, MJ Jimenez, H Krim. 2015)

 $H(B) = \sum \frac{\ell_i}{L} \cdot \log \left(\frac{\ell_i}{L}\right)$ where L is the sum of the lengths ℓ_i of the bars.

* $0 < H(B) \le log(n)$ being *n* the amount of bars. * H(B) = log(n) when all bars have the same length.

Theorem (with N Atienza, M Soriano-Trigueros. 2020)

Under mild assumptions, $|H(B(\mathscr{D})) - H(B(\widetilde{\mathscr{D}}))| \le k(n, L) \cdot \varepsilon$.

On-going work Future research lines Bibliography

0.2. Creating synthetic samples

On-going work Future research line Bibliography

O.2. Creating synthetic samples

On-going work Future research line Bibliography

O.2. Creating synthetic samples

Dataset Distillation Tongzhou Wang¹² Jun-Yan Zhu² Antonio Torralba² Alexei A. Efros³

¹Facebook AI Research ²MIT CSAIL ³UC Berkeley

On-going work Future research line Bibliography

O.2. Creating synthetic samples

Dataset Distillation Tongzhou Wang¹² Jun-Yan Zhu² Antonio Torralba² Alexei A. Efros³

⁴Facebook AI Research ²MIT CSAIL ³UC Berkeley

Partial Matchings

On-going work Future research lines Bibliography

O.2. Creating synthetic samples

Partial matchings

 $\mathscr{M}_{f}: B(U) \times B(V) \to \mathbb{Z}$ is defined by

$$\mathscr{M}_f((a,b),(c,d)) = \dim \left(\lim_{\substack{t \in (a,b) \cap (c,d)}} X_{(a,b)(c,d)t} \right)$$

Theorem (with M Soriano-Trigueros, A. Torras. Submitted)

 \mathcal{M}_{f} is well-defined, linear and can be computed using matrix row reductions.

$$M^{f}_{(a,b)(c,d)t} := \begin{pmatrix} A^{-}_{(a,b)t} & A^{-}_{(a,b)t} \setminus A^{-}_{(a,b)t} \\ B^{-}_{(c,d)t} & \text{Ignored rows} \\ B^{+}_{(c,d)t} \setminus B^{-}_{(c,d)t} & \text{Block 1 Block 2} \\ B_{t} \setminus B^{+}_{(c,d)} & * & * \end{pmatrix}$$

On-going work Future research lines Bibliography

O.2. Creating synthetic samples

Partial matchings

 $\mathscr{M}_{f}: B(U) \times B(V) \to \mathbb{Z}$ is defined by

$$\mathscr{M}_{f}((a,b),(c,d)) = \dim \left(\varinjlim_{t \in (a,b) \cap (c,d)} X_{(a,b)(c,d)t} \right)$$

Theorem (with M Soriano-Trigueros, A. Torras. Submitted)

 \mathcal{M}_{f} is well-defined, linear and can be computed using matrix row reductions.

$$M_{(a,b)(c,d)t}^{f} := \begin{pmatrix} | & A_{(a,b)t}^{-} & A_{(a,b)t}^{+} \setminus A_{(a,b)t}^{-} \\ \hline & B_{(c,d)t}^{-} & \text{Ignored rows} \\ B_{(c,d)t}^{+} \setminus B_{(c,d)t}^{-} & \text{Block 1} & \text{Block 2} \\ B_{t} \setminus B_{(c,d)}^{+} & * & * \end{pmatrix}$$

On-going work Future research line Bibliography

O.2. Creating synthetic samples

Partial matchings

On-going work Future research lines Bibliography

0.3. Building optimized models

On-going work Future research line Bibliography

O.3. Building optimized models

On-going work Future research lines Bibliography

O.3. Building optimized models

Simplicial map neural network (SMNN).

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo. 2020)

Given a continuous function $g : X \to Y$ and $\varepsilon > 0$, a SMNN \mathcal{N} such that $||g - \mathcal{N}|| \le \varepsilon$ can be explicitly defined.

On-going work Future research lines Bibliography

O.3. Building optimized models

Simplicial map neural network (SMNN).

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo. 2020)

Given a continuous function $g: X \to Y$ and $\varepsilon > 0$, a SMNN \mathcal{N} such that $||g - \mathcal{N}|| \le \varepsilon$ can be explicitly defined.

On-going work Future research line Bibliography

O.3. Building optimized models

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo, J Heras. 2021) \mathcal{N}_{φ} correctly classifies \mathcal{D} .

On-going work Future research line Bibliography

O.3. Building optimized models

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo, J Heras. 2021)

 \mathcal{N}_{φ} correctly classifies \mathcal{D} .

On-going work Future research line Bibliography

O.4. Simplifying the model

On-going work Future research line Bibliography

O.4. Simplifying the model

On-going work Future research line Bibliography

O.4. Simplifying the model

Optimized SMNN

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo, J Heras. 2022) Both \mathcal{N}_{φ} and $\mathcal{N}_{\bar{\varphi}}$ correctly classifies \mathcal{D} .

On-going work Future research line Bibliography

O.4. Simplifying the model

Optimized SMNN

Theorem (with E Paluzo-Hidalgo, MA Gutiérrez-Naranjo, J Heras. 2022) Both \mathcal{N}_{φ} and $\mathcal{N}_{\overline{\varphi}}$ correctly classifies \mathcal{D} .

On-going work Future research line Bibliography

O.4. Simplifying the model

Optimized SMNN

	Dataset Size	2-Simplices
Original	1801	3596
Reduced	604	305

On-going work Future research lines Bibliography

On-going work Future research lines Bibliography

On-going work Future research lines Bibliography

- Formally prove that representative sets maintain accuracy in deep neural networks and more general AI models.
- Construct morphism-induced partial matches between more general persistence modules.
- Use the SMNNs as a tool for the explainability, reliability and transparency of an artificial intelligence model (trustworthy AI).
- Create more efficient and robust variants of SMNNs.

On-going work Future research lines Bibliography

- Formally prove that representative sets maintain accuracy in deep neural networks and more general AI models.
- Construct morphism-induced partial matches between more general persistence modules.
- Use the SMNNs as a tool for the explainability, reliability and transparency of an artificial intelligence model (trustworthy AI).
- Create more efficient and robust variants of SMNNs.

On-going work Future research lines Bibliography

- Formally prove that representative sets maintain accuracy in deep neural networks and more general AI models.
- Construct morphism-induced partial matches between more general persistence modules.
- Use the SMNNs as a tool for the explainability, reliability and transparency of an artificial intelligence model (trustworthy AI).
- Create more efficient and robust variants of SMNNs.

On-going work Future research lines Bibliography

- Formally prove that representative sets maintain accuracy in deep neural networks and more general AI models.
- Construct morphism-induced partial matches between more general persistence modules.
- Use the SMNNs as a tool for the explainability, reliability and transparency of an artificial intelligence model (trustworthy AI).
- Create more efficient and robust variants of SMNNs.

On-going work Future research lines Bibliography

- Formally prove that representative sets maintain accuracy in deep neural networks and more general AI models.
- Construct morphism-induced partial matches between more general persistence modules.
- Use the SMNNs as a tool for the explainability, reliability and transparency of an artificial intelligence model (trustworthy AI).
- Create more efficient and robust variants of SMNNs.

Goals On-going work Future research lines Bibliography

Bibliography

Goals On-going work Future research lines Bibliography

Bibliography

Goals On-going work Future research lines Bibliography

Bibliography

- Topology-based representative datasets to reduce neural network training resources. Neural Computing and Applications, 1-17 (2022)
- On the stability of persistent entropy and new summary functions for topological data analysis. Pattern Recognition 107, 107509 (2020)
- Persistence Partial Matchings Induced by Morphisms between Persistence Modules. ArXiv. org, arXiv: 2107.04519. Submitted.
- Two-hidden-layer feed-forward networks are universal approximators: A constructive approach. Neural Networks 131, 29-3 (2020)
- Simplicial-Map Neural Networks Robust to Adversarial Examples. Mathematics 9 (2), 169 (2021)
- Optimizing the Simplicial-Map Neural Network Architecture. Journal of Imaging 7 (9), 173 (2021)

Moltes gràcies per la vostra atenció !