Learning in neuronal networks: Processing high-order statistics embedded in time series for classification tasks

> Matthieu Gilson Chaire of Junior Prof https://matthieugilson.eu

Institut de Neurosciences de Systèmes

- Sofia Lawrie
- Rubén Moreno-Bote

Neuronal processing in the brain: computations and communication

Neuronal processing in the brain: computations and communication

How does the brain implement functions?

• Karl Lashley (1890-1958): storage of memory in brain regions (engram)

Ramon y Cajal 1905

 Synaptic plasticity (learning) shapes the neuronal network dynamics

Valcheva et al. Front Syn Neurosci 2019

How does the brain implement functions?

• Karl Lashley (1890-1958): storage of memory in brain regions (engram)

Ramon y Cajal 1905

 Synaptic plasticity (learning) shapes the neuronal network dynamics

Valcheva et al. Front Syn Neurosci 2019

How does the brain implement functions?

• Karl Lashley (1890-1958): storage of memory in brain regions (engram)

Ramon y Cajal 1905

 Synaptic plasticity (learning) shapes the neuronal network dynamics

Valcheva et al. Front Syn Neurosci 2019

If plasticity depends on second-order (spiking) statistics, shouldn't the neuronal representations ("code") be based on them as well?

Traditional view: neuronal representations based on spike counts

Hige et al. Nature 2015

Visual system tuning curves for orientation selectivity

Averbeck et al. (2006) *Nat Rev Neurosci* Moreno-Bote et al. (2014) *Nat Neurosci*

Temporal structure matters! Rate cofluctuations and spike synchrony

Shahidi et al (2019) Nat Neurosci

Types of structured variability in temporal (neuronal) signals: which measure to apply to time series?

Stable profile

Types of structured variability in temporal (neuronal) signals: which measure to apply to time series?

Computations: biological processing versus machine learning

Outline

- Statistical learning for time series
 - mean versus covariance decoding
 - processing by neuronal reservoir
 - decoding by biological architecture
- Theory

Phonemes in speech

Phonemes in speech

Cochlear processing and spatio-temporal structure

Example time series of digits

Cochlear processing and spatio-temporal structure

Example time series of digits

Separability of spoken digits (10 classes)

mean

COV

Separability of spoken digits (10 classes)

Cross-validated classification to assess baseline separability

Outline

- Statistical learning for time series
 - mean versus covariance decoding
 - processing by neuronal reservoir
 - decoding by biological architecture
- Theory

• Structured variability conveys information

Outline

- Statistical learning for time series
 - mean versus covariance decoding
 - processing by neuronal reservoir
 - decoding by biological architecture
- Theory

- Structured variability conveys information
- How to efficiently extract statistical patterns?

Reservoir computing to process input time series

Reservoir computing to process input time series

Dimensionality expansion

Dimensionality expansion

Influence of reservoir parameters on decoding accuracy?

Parameter exploration:

- spectral radius
- nodal leak rate

Influence of reservoir parameters on decoding accuracy? Nonlinear reservoir dynamics support best decoding

Example time series for faulty engine signals

Lawrie, Moreno-Bote, Gilson ICCVBIC 2021; biorxiv (in revision)

Example dataset 2: faulty engine signals

Example time series for faulty engine signals

TSNE on means/variances for faulty engine signals

Lawrie, Moreno-Bote, Gilson *ICCVBIC* 2021; *biorxiv* (in revision)

Example dataset 2: faulty engine signals

Example time series for faulty engine signals

TSNE on means/variances for faulty engine signals

mean: ~50%

NO-RES

• cov: ~50%

• best: 96%

Example dataset 2: faulty engine signals

Example time series for faulty engine signals

TSNE on means/variances for faulty engine signals

(size N=50)

• mean: 84%

• cov: 94%

• best: 96%

Neuronal reservoir for time series processing

Neuronal reservoir for time series processing

Neuronal reservoir for time series processing

Neuronal reservoir for time series processing

Lawrie, Moreno-Bote, Gilson *ICCVBIC* 2021; *biorxiv* (in revision)

Outline

- Statistical learning for time series
 - mean versus covariance decoding
 - processing by neuronal reservoir
 - decoding by biological architecture

- Structured variability conveys information
- Recurrent connectivity +
 nonlinearity are key

Theory

Outline

- Statistical learning for time series
 - mean versus covariance decoding
 - processing by neuronal reservoir
 - decoding by biological architecture
- Theory

- Structured variability conveys information
- Recurrent connectivity + nonlinearity are key
- Extension to high-order statistics?

Extension to statistical orders 1 to 3

3 classes to predict

Extension to statistical orders 1 to 3

Extension to statistical orders 1 to 3

Order-selective perceptron (OSP)

Order-selective perceptron (OSP)

Interpretable learning

3rd order only

2nd order only 1st order only Several orders are effectively used

Which order is relevant?

Comparison on real multivariate datasets

Hand movements (video), epilepsy (EEG), sensors, etc.

Comparison on real multivariate datasets (reservoir + decoding)

Comparison on real multivariate datasets (reservoir + decoding)

Comparison on real multivariate datasets (reservoir + decoding)

Outline

- Statistical learning for time series
 - mean versus covariance decoding
 - processing by neuronal reservoir
 - decoding by biological architecture
- Theory

- Structured variability conveys information
- Recurrent connectivity + nonlinearity are key
- Robust decoding with limited resources

Next steps:

- Trainable reservoir
- Deep net architecture

Conclusion on biological system

Outline

- Statistical learning for time series
 - mean versus covariance decoding
 - processing by neuronal reservoir
 - decoding by biological architecture
- Theory

Order-selective perceptron (OSP)

- Decision based on mean Z
- Training with target Z

Order-selective perceptron (OSP)

Equations for activation dynamics

$$y^{t} = \sum_{i} B_{i} x_{i}^{t}$$

$$z^{t} = \Phi(y^{t}) = \alpha_{1} y^{t} + \alpha_{2} (y^{t} - \langle y^{t} \rangle)^{2} + \alpha_{3} (y^{t} - \langle y^{t} \rangle)^{3}$$

Training the nonlinearity

$$z^{t} = \alpha_{1} y^{t} + \alpha_{2} (y^{t} - \langle y^{t} \rangle)^{2} + \alpha_{3} (y^{t} - \langle y^{t} \rangle)^{3}$$

$$Z = \alpha_1 Y^{'1'} + \alpha_2 Y^{'2'} + \alpha_3 Y^{'3'}$$

after averaging over observation window

cumulants of orders 1, 2 and 3

Training the nonlinearity

$$z^{t} = \alpha_{1} y^{t} + \alpha_{2} (y^{t} - \langle y^{t} \rangle)^{2} + \alpha_{3} (y^{t} - \langle y^{t} \rangle)^{3}$$

 $Z = \alpha_1 Y^{'1'} + \alpha_2 Y^{'2'} + \alpha_3 Y^{'3'}$ after averaging over observation window

Error
$$\epsilon = \frac{1}{2} ||Z - \overline{Z}||^2$$
 for target \overline{Z} when presenting activity X_i^t

Training the nonlinearity

$$z^{t} = \alpha_{1} y^{t} + \alpha_{2} (y^{t} - \langle y^{t} \rangle)^{2} + \alpha_{3} (y^{t} - \langle y^{t} \rangle)^{3}$$

$$Z = \alpha_1 Y^{'1'} + \alpha_2 Y^{'2'} + \alpha_3 Y^{'3'}$$

after averaging over observation window

Error
$$\epsilon = \frac{1}{2} ||Z - \overline{Z}||^2$$
 for target \overline{Z} when presenting activity X_i^t
 $\Delta \alpha_k = -\frac{\partial \epsilon}{\partial Z} \frac{\partial Z}{\partial \alpha_k} = (\overline{Z} - Z) Y'^{k'}$ using $\frac{\partial Z}{\partial \alpha_k} = Y'^{k'}$

chain rule

Training the afferent weights using back-propagation

and

 $y^t = \sum_i B_i x_i^t$

$$Z = \alpha_1 Y^{'1'} + \alpha_2 Y^{'2'} + \alpha_3 Y^{'3'}$$

so
$$\frac{\partial Z}{\partial B} = \sum_k \alpha_k \frac{\partial Y^{'k'}}{\partial B}$$

Training the afferent weights using back-propagation

$$Z = \alpha_1 Y^{'1'} + \alpha_2 Y^{'2'} + \alpha_3 Y^{'3'} \quad \text{and} \quad y^t = \sum_i B_i x_i^t$$

so $\frac{\partial Z}{\partial B} = \sum_k \alpha_k \frac{\partial Y^{'k'}}{\partial B}$
we obtain $\Delta B = -\frac{\partial \epsilon}{\partial Z} \frac{\partial Z}{\partial B} = (\overline{Z} - Z) \sum_k \alpha_k \frac{\partial Y^{'k'}}{\partial B}$

Training the afferent weights using back-propagation

$$Z = \alpha_1 Y^{'1'} + \alpha_2 Y^{'2'} + \alpha_3 Y^{'3'} \quad \text{and} \quad y^t = \sum_i B_i x_i^t$$

so $\frac{\partial Z}{\partial B} = \sum_k \alpha_k \frac{\partial Y^{'k'}}{\partial B}$
we obtain $\Delta B = -\frac{\partial \epsilon}{\partial Z} \frac{\partial Z}{\partial B} = (\overline{Z} - Z) \sum_k \alpha_k \frac{\partial Y^{'k'}}{\partial B}$

 $y_{i}^{t} = \sum_{i} B_{i} x_{i}^{t}$

Linear perceptron

Gilson*, Dahmen*, ..., Helias PLoS Comput Biol 2020

 X_i^t

Temporal average

$$Y^{'1'} = \langle y^t \rangle = B X^{'1'}$$

 $y_j^t = \sum_i B_{ji} x_i^t$

Linear perceptron

Gilson*, Dahmen*, ..., Helias PLoS Comput Biol 2020

 X_i^t

Linear perceptron

Linear perceptron

Temporal covariance

$$Y^{'2'} = \langle y^t y^t \rangle = B X^{'2'} B^T$$

$$\frac{\partial Y^{'2'}}{\partial B} = B X^{'2'} + X^{'2'} B^{T}$$

Putting everything together:

Automated selection of relevant input cumulant for classification

$$\Delta \alpha_{k} = (\overline{Z} - Z) Y^{'k'}$$
$$\Delta B = (\overline{Z} - Z) \sum_{k} \alpha_{k} [B, \dots, B] \odot X^{'k'}$$

depends on k

Weight update in linear network to tune output covariance

Target

Error (matrix norm)

after centering

Multivariate output here!!!

Weight update

Weight update in linear network to tune output covariance

Error (matrix norm)

$$\boldsymbol{\epsilon} = \| \boldsymbol{\bar{Q}^0} - \boldsymbol{Q}^0 \|^2$$

Weight update
$$\Delta B = -\frac{\partial \epsilon}{\partial Q^0} \frac{\partial Q^0}{\partial B}$$

Naturally extends to recurrent networks

Covariance mapping

$$y_{j}^{t} = \sum_{i} A_{ji} y_{i}^{t-1} + \sum_{i} B_{ji} x_{i}^{t}$$

Naturally extends to recurrent networks

$$y_{j}^{t} = \sum_{i} A_{ji} y_{i}^{t-1} + \sum_{i} B_{ji} x_{i}^{t}$$

Naturally extends to recurrent networks

Summary on theory

- Training nonlinearity and afferent input weights to tune output mean
- Training afferent and recurrent weights in linear network to tune output covariances (also extends to higher orders)
- Now: tune output covariances when including nonlinearity in network

Capacity of covariance perceptron

- How many binary patterns can be categorized into 2 groups?
- Feedforward linear perceptron

Capacity of covariance perceptron

- How many binary patterns can be categorized into 2 groups?
- Feedforward linear perceptron

Capacity of covariance perceptron

- How many binary patterns can be categorized into 2 groups?
- Feedforward linear perceptron

covariances

means

Ν 1 - $Q^0 = B P^0 B^T$ 10 -2 -1 X Y = B X

Replica method