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Motivation

Graph Representation Learning

No universal definition, but for our purposes:

Given a graph G = (V, FE), possibly with node-valued signals
X € R™"*? learn:

f:V — R™ (node embedding)

or

f: X(G,RY — X(G,R™) (graph signal processing)



Motiva

tion

Graph Representation Learning

X (G, RY) as a Hilbert space of functions on G = (V, E):

g

L] X (G, Rd)




Motivation

Graph Representation Learning

X (G, RY) as a Hilbert space of functions on G = (V, E):

Geometric Deep Learning
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Motivation

Graph Representation Learning

Node embedding
Laplacian Eigenmaps
Node2Vec
DeepWalk
Knowledge Graph Embedding

Applications

Graph visualization, product discovery
(clustering), document classification
(node classification), Knowledge graph
completion (link prediction)

Signal Processing

Spectral Clustering

Filtering / Shifting / Wave

Graph Neural Networks

Applications

Molecule classification (graph

ets

classification), document classification

(node classification), Solubility

prediction (graph regression)



Motivation

DeepWalk

Use the distributional hypothesis to embed nodes using Skip-gram
with Negative Sampling (SGNS).

Intuitively, nodes sharing many common neighbors should be
nearby in embedding space.

This embedding process performs an implicit matrix factorization
(Levy and Goldberg, 2014).

Which matrix are we factorizing?

DeepWalk (%%} n
Us
U1

Perozzi, Bryan, Rami Al-Rfou, and St
of the 20th ACM SIGKDD internation




Motivation

DeepWalk

SGNS implicitly factors matrix M "W?V with entries given the point-
wise mutual information between word w; and its context c;:

P(w;, c;)
Miwwzlog( L > — logb
! P(w;)P(c;)

e (L) e

Where D is the corpus of word-contexts (sentences) with a given
window size and b is the negative sampling ratio.

How does this translate to graphs?

soldberg, Yoav. “Neural word embedding as implicit matrix



Motivation

DeepWalk

Let G = (V, E, A) be non-bipartite, connected, and undirected.

Then P(v) = ?é) is the unique stationary distribution of a ran-

dom walk on GG, where v(G) is the volume.

Let D(T') contain the node pairs crossed within a T-sized window
of an L-step random walk.

Further subdivide D(T") by r-step directed reachability:



Motivation

DeepWalk ./ _ LTJ<D7> D)
D = {(u,v) | (u,) € D(T), 0= v}, = v+, ]
D+ = {(uvv) ’ (uvv) S D(T)7u = Uj4r, U = Uj}

Let #(u,v)- count the number of times the pair (u,v) is seen in
D— and #(u,v)« the number of times (u,v) appears in Dx-.

Denote the transition matrix of this random walk by P = D~ A.

Then as walk length L — oo:

#(u,v)7 P dy
D+ | v(G)

(Pr)u,v and ? (PT)U,U



Motivation

DeepWalk

Similarly, the joint distribution of observations of pair (u,v) in
the walks approaches:

T

#(u,v) p 1 dy, . dy .
D) ’2TZ(V<G> (B uw + oy P )>

r=1

Combining this joint with the marginals, we see:

D u,v)|D| p v(G) [ 1 d . 1 .
M= i((U)#‘(v)’ > Q(T) ( D (P uw+ - (P )W>

= log (V(Y?) (Z PHD™!



Motivation

DeepWalk
v(G)

T
MPW(T) = log - (> P")D™!
r=1

This looks like it should converge to something familiar...
What happens if we take window size T' — oo?

Chanpuriya and Musco (2020) showed that this will indeed
converge to a form determined by the (inverse) graph Laplacian:

lim MPW(T) =v(G)D~Y3(L" —I)D /%2 +1

T'— 00
where

L=1-D'?AD™"/?

Chanpuriya, Sudhanshu, and Cameron Musco. "Infinitewalk: Deep network embeddings as Laplacian embeddings with a
nonlinearity." Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2020.



Motivation

DeepWalk

Summary:

Asymptotic behavior of this “deep” node embedding method is
driven by the graph Laplacian, mimicking spectral embedding.

Motivating Questions:

What if the initial distribution on nodes is (d > 1)-dimensional,
resulting in vectors a,?

What if the passage between nodes (u,v) is mediated by some
contextual transformation F,_,, from x, to x,?



Motivation

Graph Convolutional Neural Networks

The Graph Convolutional Neural Network (GCN) is a popular
graph neural network architecture.

Used primarily for node classification /regression.

Assumes data comes in the form of a graph G = (V, E, A), with
node signals X € R"*%  and n = |V].

A GOCN layer seeks to transform XU sy XU g0 that X®
contains node representations which better inform a task (classi-

fication, regression, etc.)

Summarily, a GON layer is a function f&“N : X(G,R%4-1) — X(G,R%)



Motivation

GCN
fEN(X; A, W) =0 (D7V2ADT2 X W)

- ((I _ i;)Xw)

I — L is a diffusion operator, akin to “heat diffusion” on G.

~

Repeated application &' = (I — L)a'~! minimizes the Dirichlet

Energy e(x, A):



Motivation

1
GCN e(x, A) = 5 > aij(x; — z5)°

2,]

If we fix W = I, stacking - - -0 f&“No f&CN layers minimizes e(x, A).

Thus a “deep” GCN of this type 0

o
©

will learn smooth node features:

a degree-weighted local averaging 5,0'8
dictated by the graph topology. g

§ Z:_
These features will also ks 0'4
have a homophily bias. .

Same issues when W learnable.

model
—— MixHop
GAT
Chebyshev
Features (2-Layer MLP)
Vanilla GCN

I I 1 1 I
Homophily
Abu-El-Haija, Sami, et al. "Mixhop: Higher-order grar
sparsified neighborhood mixing." international confere




Motivation

Graph Laplacian
A g¢radient operator differencing values between adjacent nodes.

Many definitions: .
L=I-D12AD1/?

coboundary

L — D — A — BT operator

1
Lx = 5 Zau,v(xu — ZEU)Z

U,V

Smoothness attainable only through edge-wise scaling of node
values: lack of expressibility and control.

Similarly, edge “typing” is implementable only through choice of
edge weight.
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Cellular Sheaves

Sheaves on Graphs

A cellular sheaf F on a graph G = (V, E) consists of the following
data:

e a vector space F(v) for each vertex v € V,
} Stalks
e a vector space F(e) for each edge e € F,

e a linear map F, g, : F(v) — F(e) for each incident vertex-

edge pair v e of G.\
Restriction Maps



Cellular Sheaves

Sheaves on Graphs

A cellular sheaf F on a graph G = (V, E) consists of the following
data:

e a vector space F(v) for each vertex v € V,
e a vector space F(e) for each edge e € F,

e a linear map F, g, : F(v) = F(e) for each incident vertex-
edge pair v <e of GG.

F(e)

+




Cellular Sheaves

Sheaves on Graphs

Define the F-valued space of signals on vertices and edges, re-

spectively, by: CYUG,F) = 69 F(v) Space of 0-cochains

CHG;F) = 69 F(e)  Space of 1-cochains

For F vector-valued, we may view x € CY(G; F) as a concatena-
tion of vectors.

Choose sections Associated nodes

_— ~— Fuae Fuge
) 7 Ed

c C°G; F) n

X ‘ e




Cellular Sheaves

Sheaves on Graphs

Define the coboundary map 8 : C°(G;F) — CYG;F) which

computes value along edge e = (u,v):

(0x)e = FygeXo — FugeXu

‘Ffvﬁe ‘F’U,<]€

XX ~

“un




Cellular Sheaves

Sheaves on Graphs

Given coboundary o, we define the sheaf Laplacian L x as:

Lr=6"'68
(L) :(fmefvﬂe fv%’”@tﬂ@)
o0 Tu<lef’v<]€ Fu<le‘¢u<]€

(L.FX)U: Z Ffu<le vdeXy — Tuglexu)

u,vde

XTL]:X: Z HTUS]BXU—TugleXu‘P:E(va)

u,vde



Cellular Sheaves

Graph Laplacian (Redux)

We can recover L in this sheaf-theoretic language.

Set F(v) = R for all vertices v € V' and choose restriction maps
such that .’FIQ Fude = Gy for all edges e = (u,v).

F(v) F(u)

+ Choose sections / signals




Cellular Sheaves

Homological

Algebra

Instantiation

t
I
I
I
I
I
I
I
1

\

Cellular Sheaves

Generalization

Spectral Graph
Theory




Cellular Sheaves

Cellular Sheaves

Sheaves are categorical objects, and were central in the
development of algebraic geometry in the mid- 20" century.

Their usage in applied math is a much more recent development
(Curry 2014, Hansen 2019). J, |

Sheaves associate “data” to the open sets of a Q- = » \ |
topological space.

A limit-preserving contravariant functor from the
category of open sets of a topological space.

| >
Cellular sheaves associate “data” to the cells | B )
of a cell complex. =< ‘ -

A limit-preserving functor from the Alexandrov topology
on the incidence poset.

Curry, Justin Michael. Sheave

Hansen, Jakob, and Robert Ghrist. "Toward a spectral theory of cellular shee



Cellular Sheaves

Cellular Sheaves

A regular cell complex (€2, Pq) is a space ) partitioned into a set
of cells {€2; },cp, satisfying the following conditions:

e For each w € (2, each neighborhood of w intersects finitely
many 2,.

o For all 0,7 € Pq, if O, NQ, # 0 then Q, C Q.. If this is
the case, we say o is a face of 7 and declare the pair to be
incident, denoted o <7 when o is a face of .

e For each (), there is a homeomorphism from the closed d,-
dimensional ball to the closure {2, which additionally maps
the interior of the ball onto the open set (2,.



Cellular Sheaves

Cellular Sheaves

O__

dimension

abc

acd

ab

acC

ad

bc

cd




Cellular Sheaves

Cellular Sheaves

A cellular sheat valued in category C on regular cell complex
(€2, Pq) is a covariant functor F : Py — C:

e for each o € Pg, there is an associated object F(o) in C.
o if o I 7, there is a morphism F, ¢, : F(o) = F(7) in C.

e the morphism F, g, satisfies Fr g 0 Fogar = Fogu
for c 7w in Py.



Cellular Sheaves

Cellular Sheaves

bc

acC

ab

*\HLEII

F : P — Vect \




Sheaf Representation Learning

Sheaf Representation Learning

What does this categorical perspective buy us?

Any results pertaining to sheaves on graphs or cellular sheaves have a direct
categorical interpretation.

Highlights the mathematical /categorical assumptions being made in graph
representation learning.

Clarifies how one might repurpose these ideas for other types of data or scenarios,
and provides a route for proving which results will translate.

Homological operations (sheaf cohomology) are immediate.




Sheaf Representation Learning

Sheat Cohomology

Denote the space of F-valued k-cochains on {2 as the vector space
CFF) = & Flo)
dim o=k

The coboundary operator extends to 5% : C*(Q; F) — C*T1(Q; F)
in the usual way, producing the complex

2

co(Q, F) s v F) L o2, F)

The cohomology of this complex, denoted H*(; F) is the sheaf
cohomology of {) with coefficients in F.



Sheaf Representation Learning

Sheat Cohomology

HY(Q; F) is isomorphic to the space of global sections of F.

A 0-cochain z € CY(Q; F) is in HY(Q; F) if 6%z = 0. Therefore,
HY(Q; F) consists of all z € C°(Q; F) such that

‘Fo'i d7¥o; = o <]7-$0'j for all T, dimT =1
If F is Vect-valued over (G, this becomes easy to compute:
HY(G; F) =kerd Cc C°(G; F)

and E(x,F) =x'Lzrx =0 implies x € H(G; F)



Sheaf Representation Learning

Big Picture

Assume you are given a base space {2 with relational / open set
structure defining a cell complex Fq.

Assume signals are associated to this base space which interact lo-
cally according to the incidence structure of this cell complex.

Choose a Set-like category C within which you would like to represent
these signals/interactions.

If C = Vect, we can implement global diffusion processes via linear
algebra, via projection onto the kernel of the boundary operator.

Extensions to other data categories and higher cohomology approx-
imations are exciting avenues for future work which bridge theory
and application.



ApplicationX



Applications

Sheaf Neural Networks

Can we learn functions of sheaf-valued signals to, for example,
classify O-cells (vertices) of a cell complex (graph)?

FSON L CO(G F) — CO(G; F)

For simplicity, consider F = F’. Let X € R™ >4 he the collection
of d k-dimensional 0-cochains. Then f>¢N is given by:

SN(X) = o ((Ink T B)Xw)
where o is an element-wise activation, I, is a (nk X nk) identity

matrix, I,, is an (n X n) identity matrix, Lz is the (normalized)
sheaf Laplacian, and B € R¥** and W € R%*? are learnable.



Applications

Sheaf Neural Networks

a
c
= =
< . ® a %2&
()
éxo*‘?’ > @ \%
& %&@ T )
Sl XM o (L - L)L o BIXOW)
S
g ¥ x L layers H
© i = .
a



Applications

Sheaf Neural Networks

Repeated application of I,,, — L “smoothes” each co-chain chan-
nel x with respect to the sheaf structure F so that x — HY(G; F).

Stacking f°“N layers biases towards minimizing F(x, F) = x ' Lrx
along each cochain channel.

In other words, we are learning >N : C°(G; F) — CY(G; F) by
locally augmenting message passing on a sheaf.



Applications

Sheaf Neural Networks
GCN

SCN

FOON . x(G,R%-1) 5 X(G,RY)
FOON(X) = o ((I _ f}G)XW)

X(t+1)=—-LeX(t)

FSON L 009G F) — CO(G; F)
FSON(X) = ¢ ((Ink LA, ® B)XW)

X(t+1)=—-LzX(t)

E(x,F)=x'Lzx
= Z H:FvéeDv_l/ZXv _j:UQeDzjl/ZXuHQ

u,vde



Applications

Sheaf Neural Networks

Synthetic dataset of signed graphs illustrates the limitations of GCNs

o2, =010 o2, =030 o2, = 0.50 o2, =070 of,. = 0.90

S 081 - . - -
o
06+ - 1 : l : £
° 0.4 4 T J T T J T T T T J T T
& 0.8 - . . . .
o
I 06 : - - -
° 0.4 T JI T e T JI T e T
o O
o & 0.8 b . - 7
g3
1< 06 - - - :
° E 0.4 T JI T ™ T T T JI T
N 0.8 . . - .
o
I 06 - ﬁ - z - % - K
b 0'4 = T T J| T J T T 3 T T 3 T T
& 08- : | 1 .
o
X ﬁ - ﬁi 55 :;: ] ‘:Z : ] IK . ¢
© | !

0‘_1 B T T = T T T T = T T T T

0 500 0 500 0 500 0 500 0 500
Epoch
—k— S heafN N_ 16 p—— GC N_ 16 —— S heafN N_32 —— G C N_32 Hansen, Jakob, and Thomas Gebhart. "Sheaf neural networks." NeurIPS

2020 Workshop on Topological Data Analysis and Beyond (2020).



Applications

Sheaf Neural Networks

Recent work (Bodnar et al., 2022) provides further proof of the
limitations of GCNs and how SCNs can overcome these problems.

A hypothesis class of sheaves with k-dimensional stalks H* has
linear separation power over a family of graph G if for any G =
(V, E) € G there is a sheaf (F,G) € H* that can linearly separate
the classes of G in the limit of X (¢ + 1) = —LrX(t) for non-
degenerate initial conditions.

Summary: By varying the subspace from which we choose the
restriction maps, the separation power of the corresponding sheaf
diffusion can be changed.

Bodnar, Cristian, et al. '"Neural sheaf diffusion: A topological perspective on heterophily and



Applications

Sheaf Neural Networks

Let G be a connected graph with C > 3 classes. Then H' cannot
linearly separate the classes of G for any initial conditions X (0) €

RnXd

This implies the diffusion underlying standard GCNs is ill-suited
to solve this classification task at large depths.

Bodnar, Cristian, et al. "Neural sheaf diffusion: A topolog
oversmoothing in gnns." Advances in Neural Information




Applications

Sheaf Neural Networks

Let HE ., = {(F,G) : Fyqe € O(k)} be the hypothesis class
constructed from O(k) bundles (orthogonal restriction maps).

Let G be the class of connected graphs with C' < 2k classes. Then
for all k € {2,4},H” ., has linear separation power over G.

Depending on how these restriction maps are chosen, one has
more “space” within which to separate classes.

Bodnar, Cristian, et al. "Neural sheaf diffusion: A topolc
oversmoothing in gnns." Advances in Neural Informatio




Summary

 Many graph representation learning problems are implicitly
driven by the diffusion behavior of signals on a graph, encoded by
the Laplacian.

e This is a powerful and intuitive idea, but it has limitations.
* Signals are assumed 1-dimensional.
* Incident interactions are simple scaling.
* Unable to describe heterogeneous interactions.
* Bias towards homophilous representations.

e Cellular sheaves provide a natural framework for the
generalization of many graph representation learning processes.

e Categorical and cohomological underpinnings of sheaves provide a
wealth of modeling choices while retaining consistency
requirements.
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