Cálculo efectivo de sistemas espectrales y su relación con la homología persistente multiparamétrica

Ana Romero
Universidad de La Rioja

Trabajo conjunto con A. Guidolin, J. Divasón y F. Vaccarino
Universitat de Barcelona, 28 de junio de 2023

Introduction

Introduction

- We are interested in computing topological invariants of spaces.

Introduction

- We are interested in computing topological invariants of spaces.
- We work with the computer algebra system Kenzo, devoted to the computation of homology and homotopy groups of complicated spaces, which can be of infinite type.

Introduction

- We are interested in computing topological invariants of spaces.
- We work with the computer algebra system Kenzo, devoted to the computation of homology and homotopy groups of complicated spaces, which can be of infinite type.
- We use a previous work where we developed a set of algorithms and programs for computing spectral sequences.

Chain complexes，homology

Chain complexes, homology

Consider the chain complex

$$
C_{*}: \quad \cdots \leftarrow C_{n-1} \stackrel{d_{n}}{\leftarrow} C_{n} \stackrel{d_{n+1}}{\leftarrow} C_{n+1} \leftarrow \cdots
$$

Chain complexes, homology

Consider the chain complex

$$
C_{*}: \quad \cdots \leftarrow C_{n-1} \stackrel{d_{n}}{\leftarrow} C_{n} \stackrel{d_{n+1}}{\leftarrow} C_{n+1} \leftarrow \cdots
$$

The n-homology group of C_{*} is defined as

$$
H_{n}\left(C_{*}\right):=\frac{\operatorname{Ker} d_{n}}{\operatorname{Im} d_{n+1}}
$$

Chain complexes, homology

Consider the chain complex

$$
C_{*}: \quad \cdots \leftarrow C_{n-1} \stackrel{d_{n}}{\leftarrow} C_{n} \stackrel{d_{n+1}}{\leftarrow} C_{n+1} \leftarrow \cdots
$$

The n-homology group of C_{*} is defined as

$$
H_{n}\left(C_{*}\right):=\frac{\operatorname{Ker} d_{n}}{\operatorname{Im} d_{n+1}}
$$

Given a simplicial set X, a chain complex $C_{*}(X)$ can be constructed such that the homology groups of X are defined as

$$
H_{n}(X):=H_{n}\left(C_{*}(X)\right)
$$

Chain complexes, homology

Consider the chain complex

$$
C_{*}: \quad \cdots \leftarrow C_{n-1} \stackrel{d_{n}}{\leftarrow} C_{n} \stackrel{d_{n+1}}{\leftarrow} C_{n+1} \leftarrow \cdots
$$

The n-homology group of C_{*} is defined as

$$
H_{n}\left(C_{*}\right):=\frac{\operatorname{Ker} d_{n}}{\operatorname{Im} d_{n+1}}
$$

Given a simplicial set X, a chain complex $C_{*}(X)$ can be constructed such that the homology groups of X are defined as

$$
H_{n}(X):=H_{n}\left(C_{*}(X)\right)
$$

These groups can be determined by means of diagonalization algorithms on matrices when the chain complex C_{*} is of finite type (a free chain complex with a finite number of generators in each degree).

Effective homology and the Kenzo system

Effective homology and the Kenzo system

Kenzo uses the following method to determine homology groups of a given chain complex:

Effective homology and the Kenzo system

Kenzo uses the following method to determine homology groups of a given chain complex:

- If a complex C_{*} is of finite type, its homology groups can be determined by means of diagonalization algorithms on some matrices.

Effective homology and the Kenzo system

Kenzo uses the following method to determine homology groups of a given chain complex:

- If a complex C_{*} is of finite type, its homology groups can be determined by means of diagonalization algorithms on some matrices.
- Otherwise, a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type is constructed, such that the homology groups of C_{*} and D_{*} are isomorphic.

Effective homology and the Kenzo system

Kenzo uses the following method to determine homology groups of a given chain complex:

- If a complex C_{*} is of finite type, its homology groups can be determined by means of diagonalization algorithms on some matrices.
- Otherwise, a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type is constructed, such that the homology groups of C_{*} and D_{*} are isomorphic.
A reduction $\rho: \hat{C} \Rightarrow C_{*}$ is given by three maps $f: \hat{C}_{*} \rightarrow C_{*}$, $g: C_{*} \rightarrow \hat{C}_{*}$ and $h: \hat{C}_{*} \rightarrow \hat{C}_{*+1}$ satisfying some properties, which in particular imply that $H_{*}\left(\hat{C}_{*}\right) \cong H_{*}\left(C_{*}\right)$.

Effective homology and the Kenzo system

Kenzo uses the following method to determine homology groups of a given chain complex:

- If a complex C_{*} is of finite type, its homology groups can be determined by means of diagonalization algorithms on some matrices.
- Otherwise, a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type is constructed, such that the homology groups of C_{*} and D_{*} are isomorphic.
A reduction $\rho: \hat{C} \Rightarrow C_{*}$ is given by three maps $f: \hat{C}_{*} \rightarrow C_{*}$, $g: C_{*} \rightarrow \hat{C}_{*}$ and $h: \hat{C}_{*} \rightarrow \hat{C}_{*+1}$ satisfying some properties, which in particular imply that $H_{*}\left(\hat{C}_{*}\right) \cong H_{*}\left(C_{*}\right)$.
The pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ is called the effective homology of C_{*}

Effective homology and the Kenzo system

Kenzo uses the following method to determine homology groups of a given chain complex:

- If a complex C_{*} is of finite type, its homology groups can be determined by means of diagonalization algorithms on some matrices.
- Otherwise, a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type is constructed, such that the homology groups of C_{*} and D_{*} are isomorphic.
A reduction $\rho: \hat{C} \Rightarrow C_{*}$ is given by three maps $f: \hat{C}_{*} \rightarrow C_{*}$, $g: C_{*} \rightarrow \hat{C}_{*}$ and $h: \hat{C}_{*} \rightarrow \hat{C}_{*+1}$ satisfying some properties, which in particular imply that $H_{*}\left(\hat{C}_{*}\right) \cong H_{*}\left(C_{*}\right)$.
The pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ is called the effective homology of C_{*} and D_{*} is said to be effective.

Definition of spectral sequence

Definition of spectral sequence

Definition

A spectral sequence $E=\left(E^{r}, d^{r}\right)_{r \geq 1}$ is a family of bigraded \mathbb{Z}-modules $E^{r}=\left\{E_{p, q}^{r}\right\}$, each provided with a differential
$d^{r}=\left\{d_{p, q}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right\}$ of bidegree $(-r, r-1)$ and with isomorphisms $H\left(E^{r}, d^{r}\right)=\operatorname{Ker} d^{r} / \operatorname{Im} d^{r} \cong E^{r+1}$ for every $r \geq 1$.

Definition of spectral sequence

Definition

A spectral sequence $E=\left(E^{r}, d^{r}\right)_{r \geq 1}$ is a family of bigraded \mathbb{Z}-modules $E^{r}=\left\{E_{p, q}^{r}\right\}$, each provided with a differential
$d^{r}=\left\{d_{p, q}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right\}$ of bidegree $(-r, r-1)$ and with isomorphisms $H\left(E^{r}, d^{r}\right)=\operatorname{Ker} d^{r} / \operatorname{Im} d^{r} \cong E^{r+1}$ for every $r \geq 1$.

Definition of spectral sequence

Definition

A spectral sequence $E=\left(E^{r}, d^{r}\right)_{r \geq 1}$ is a family of bigraded \mathbb{Z}-modules $E^{r}=\left\{E_{p, q}^{r}\right\}$, each provided with a differential
$d^{r}=\left\{d_{p, q}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right\}$ of bidegree $(-r, r-1)$ and with isomorphisms $H\left(E^{r}, d^{r}\right)=\operatorname{Ker} d^{r} / \operatorname{Im} d^{r} \cong E^{r+1}$ for every $r \geq 1$.

Definition of spectral sequence

Definition

A spectral sequence $E=\left(E^{r}, d^{r}\right)_{r \geq 1}$ is a family of bigraded \mathbb{Z}-modules $E^{r}=\left\{E_{p, q}^{r}\right\}$, each provided with a differential
$d^{r}=\left\{d_{p, q}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right\}$ of bidegree $(-r, r-1)$ and with isomorphisms $H\left(E^{r}, d^{r}\right)=\operatorname{Ker} d^{r} / \operatorname{Im} d^{r} \cong E^{r+1}$ for every $r \geq 1$.

Definition of spectral sequence

Definition

A spectral sequence $E=\left(E^{r}, d^{r}\right)_{r \geq 1}$ is a family of bigraded \mathbb{Z}-modules $E^{r}=\left\{E_{p, q}^{r}\right\}$, each provided with a differential $d^{r}=\left\{d_{p, q}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right\}$ of bidegree $(-r, r-1)$ and with isomorphisms $H\left(E^{r}, d^{r}\right)=\operatorname{Ker} d^{r} / \operatorname{Im} d^{r} \cong E^{r+1}$ for every $r \geq 1$.

Definition of spectral sequence

Definition

A spectral sequence $E=\left(E^{r}, d^{r}\right)_{r \geq 1}$ is a family of bigraded \mathbb{Z}-modules $E^{r}=\left\{E_{p, q}^{r}\right\}$, each provided with a differential
$d^{r}=\left\{d_{p, q}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right\}$ of bidegree $(-r, r-1)$ and with isomorphisms $H\left(E^{r}, d^{r}\right)=\operatorname{Ker} d^{r} / \operatorname{Im} d^{r} \cong E^{r+1}$ for every $r \geq 1$.

Since $E_{p, q}^{r+1}$ is a subquotient of $E_{p, q}^{r}$ for each $r \geq 1$, one can define the final groups of the spectral sequence as $E_{p, q}^{\infty}=\bigcap_{r \geq 1} E_{p, q}^{r}$.

Definition of spectral sequence

Definition

A spectral sequence $E=\left(E^{r}, d^{r}\right)_{r \geq 1}$ is a family of bigraded \mathbb{Z}-modules $E^{r}=\left\{E_{p, q}^{r}\right\}$, each provided with a differential
$d^{r}=\left\{d_{p, q}^{r}: E_{p, q}^{r} \rightarrow E_{p-r, q+r-1}^{r}\right\}$ of bidegree $(-r, r-1)$ and with isomorphisms $H\left(E^{r}, d^{r}\right)=\operatorname{Ker} d^{r} / \operatorname{Im} d^{r} \cong E^{r+1}$ for every $r \geq 1$.

Since $E_{p, q}^{r+1}$ is a subquotient of $E_{p, q}^{r}$ for each $r \geq 1$, one can define the final groups of the spectral sequence as $E_{p, q}^{\infty}=\bigcap_{r \geq 1} E_{p, q}^{r}$. Under good conditions (very frequently), the spectral sequence stabilizes.

Why are spectral sequences useful?

Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or homotopy groups).

Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or homotopy groups).

Definition

Let $H_{*}=\left\{H_{n}\right\}_{n \in \mathbb{N}}$ be a graded group. A spectral sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$ is said to converge to H_{*} (denoted by $E^{1} \Rightarrow H_{*}$) if there is a filtration F of H_{*} and for each (p, q) one has an isomorphism $E_{p, q}^{\infty} \cong \frac{F_{p} H_{p+q}}{F_{p-1} H_{p+q}}$.

Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or homotopy groups).

Definition

Let $H_{*}=\left\{H_{n}\right\}_{n \in \mathbb{N}}$ be a graded group. A spectral sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$ is said to converge to H_{*} (denoted by $E^{1} \Rightarrow H_{*}$) if there is a filtration F of H_{*} and for each (p, q) one has an isomorphism $E_{p, q}^{\infty} \cong \frac{F_{p} H_{p+q}}{F_{p-1} H_{p+q}}$.

Examples:

Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or homotopy groups).

Definition

Let $H_{*}=\left\{H_{n}\right\}_{n \in \mathbb{N}}$ be a graded group. A spectral sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$ is said to converge to H_{*} (denoted by $E^{1} \Rightarrow H_{*}$) if there is a filtration F of H_{*} and for each (p, q) one has an isomorphism $E_{p, q}^{\infty} \cong \frac{F_{p} H_{p+q}}{F_{p-1} H_{p+q}}$.

Examples:

- The Serre spectral sequence converges to the homology groups of the total space of a fibration.

Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or homotopy groups).

Definition

Let $H_{*}=\left\{H_{n}\right\}_{n \in \mathbb{N}}$ be a graded group. A spectral sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$ is said to converge to H_{*} (denoted by $E^{1} \Rightarrow H_{*}$) if there is a filtration F of H_{*} and for each (p, q) one has an isomorphism $E_{p, q}^{\infty} \cong \frac{F_{p} H_{p+q}}{F_{p-1} H_{p+q}}$.

Examples:

- The Serre spectral sequence converges to the homology groups of the total space of a fibration.
- The Eilenberg-Moore spectral sequence converges to the homology groups of the loop space of a simplicial set.

Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or homotopy groups).

Definition

Let $H_{*}=\left\{H_{n}\right\}_{n \in \mathbb{N}}$ be a graded group. A spectral sequence $\left(E^{r}, d^{r}\right)_{r \geq 1}$ is said to converge to H_{*} (denoted by $E^{1} \Rightarrow H_{*}$) if there is a filtration F of H_{*} and for each (p, q) one has an isomorphism $E_{p, q}^{\infty} \cong \frac{F_{p} H_{p+q}}{F_{p-1} H_{p+q}}$.

Examples:

- The Serre spectral sequence converges to the homology groups of the total space of a fibration.
- The Eilenberg-Moore spectral sequence converges to the homology groups of the loop space of a simplicial set.
- The Adams spectral sequence converges to the homotopy groups of a simplicial set.

Why are spectral sequences useful?

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let $G \hookrightarrow E \rightarrow B$ be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to $H_{*}(E)$ whose second page is given by $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(G)\right)$.

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let $G \hookrightarrow E \rightarrow B$ be a fibration and suppose the base B is 1-reduced. There is a spectral sequence converging to $H_{*}(E)$ whose second page is given by $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(G)\right)$.

Suppose $H_{i}(G)$ and $H_{i}(B)$ are zero for odd i and free abelian for even i. The entries $E_{p, q}^{2}$ of the E^{2} page are then zero unless p and q are even.

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let $G \hookrightarrow E \rightarrow B$ be a fibration and suppose the base B is 1-reduced. There is a spectral sequence converging to $H_{*}(E)$ whose second page is given by $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(G)\right)$.

Suppose $H_{i}(G)$ and $H_{i}(B)$ are zero for odd i and free abelian for even i. The entries $E_{p, q}^{2}$ of the E^{2} page are then zero unless p and q are even.

¢						$\mathrm{r}=2$
0	0	0	0	0	0	
-	0	-	0	-	0	
0	0	0	0	0	0	
\bullet	0	-	0	-	0	
0	0	0	0	0	0	
			0			

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let $G \hookrightarrow E \rightarrow B$ be a fibration and suppose the base B is 1-reduced. There is a spectral sequence converging to $H_{*}(E)$ whose second page is given by $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(G)\right)$.

Suppose $H_{i}(G)$ and $H_{i}(B)$ are zero for odd i and free abelian for even i. The entries $E_{p, q}^{2}$ of the E^{2} page are then zero unless p and q are even.

Q						$\mathrm{r}=2$
0	0	0	0	0	0	$\mathrm{r}=3$
-	0	\bullet	0	-	0	
0	0	0	0	0	0	
\bullet	0	-	0	\bullet	0	
0	0	0	0	0	0	
		-	0			

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let $G \hookrightarrow E \rightarrow B$ be a fibration and suppose the base B is 1-reduced. There is a spectral sequence converging to $H_{*}(E)$ whose second page is given by $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(G)\right)$.

Suppose $H_{i}(G)$ and $H_{i}(B)$ are zero for odd i and free abelian for even i. The entries $E_{p, q}^{2}$ of the E^{2} page are then zero unless p and q are even.

Q							$\mathrm{r}=2$
0	0	0	0	0			$\mathrm{r}=3$
-	0	\bullet	0	-			$\mathrm{r}=4$
0	0	0	0	0			
\bullet	0	-	0	-			
0	0	0	0	0			

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let $G \hookrightarrow E \rightarrow B$ be a fibration and suppose the base B is 1-reduced. There is a spectral sequence converging to $H_{*}(E)$ whose second page is given by $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(G)\right)$.

Suppose $H_{i}(G)$ and $H_{i}(B)$ are zero for odd i and free abelian for even i. The entries $E_{p, q}^{2}$ of the E^{2} page are then zero unless p and q are even.

- The problem of differentials In some cases it is not possible to deduce all the differential maps and obtain the final groups
- The problem of differentials

In some cases it is not possible to deduce all the differential maps and obtain the final groups

- The extension problem

Even if we obtain the final groups, we can face extension problems to determine H_{*}

- The problem of differentials

In some cases it is not possible to deduce all the differential maps and obtain the final groups

- The extension problem

Even if we obtain the final groups, we can face extension problems to determine H_{*}

They are not algorithms producing the desired H_{*}

Spectral sequence of a filtered chain complex

Spectral sequence of a filtered chain complex

Given a \mathbb{Z}-filtration of a chain complex $C_{*}=\left(C_{n}, d_{n}\right)$:

$$
\ldots \subseteq F_{p-1} C_{*} \subseteq F_{p} C_{*} \subseteq \ldots \subseteq C_{*},
$$

a spectral sequence $\left(E_{p}^{r}, d_{p}^{r}\right)$ is defined as follows:

Spectral sequence of a filtered chain complex

Given a \mathbb{Z}-filtration of a chain complex $C_{*}=\left(C_{n}, d_{n}\right)$:

$$
\ldots \subseteq F_{p-1} C_{*} \subseteq F_{p} C_{*} \subseteq \ldots \subseteq C_{*},
$$

a spectral sequence $\left(E_{p}^{r}, d_{p}^{r}\right)$ is defined as follows:

$$
E_{p, q}^{r}:=\frac{F_{p} C_{p+q} \cap d^{-1}\left(F_{p-r} C_{p+q-1}\right)+F_{p-1} C_{p+q}}{d\left(F_{p+r-1} C_{p+q+1}\right)+F_{p-1} C_{p+q}}
$$

terms of the s.s.

Spectral sequence of a filtered chain complex

Given a \mathbb{Z}-filtration of a chain complex $C_{*}=\left(C_{n}, d_{n}\right)$:

$$
\ldots \subseteq F_{p-1} C_{*} \subseteq F_{p} C_{*} \subseteq \ldots \subseteq C_{*},
$$

a spectral sequence $\left(E_{p}^{r}, d_{p}^{r}\right)$ is defined as follows:

$$
E_{p, q}^{r}:=\frac{F_{p} C_{p+q} \cap d^{-1}\left(F_{p-r} C_{p+q-1}\right)+F_{p-1} C_{p+q}}{d\left(F_{p+r-1} C_{p+q+1}\right)+F_{p-1} C_{p+q}} \quad \text { terms of the s.s. }
$$

$\cdots \leftarrow E_{p-r}^{r} \stackrel{d_{p}^{r}}{\leftarrow} E_{p}^{r} \stackrel{d_{p+r}^{r}}{\leftarrow} E_{p+r}^{r} \leftarrow \cdots \quad$ differentials induced by d

Spectral sequence of a filtered chain complex

Given a \mathbb{Z}-filtration of a chain complex $C_{*}=\left(C_{n}, d_{n}\right)$:

$$
\ldots \subseteq F_{p-1} C_{*} \subseteq F_{p} C_{*} \subseteq \ldots \subseteq C_{*},
$$

a spectral sequence $\left(E_{p}^{r}, d_{p}^{r}\right)$ is defined as follows:

$$
E_{p, q}^{r}:=\frac{F_{p} C_{p+q} \cap d^{-1}\left(F_{p-r} C_{p+q-1}\right)+F_{p-1} C_{p+q}}{d\left(F_{p+r-1} C_{p+q+1}\right)+F_{p-1} C_{p+q}}
$$

$\cdots \leftarrow E_{p-r}^{r} \stackrel{d_{p}^{r}}{\leftarrow} E_{p}^{r} \stackrel{d_{p+r}^{r}}{\leftrightarrows} E_{p+r}^{r} \leftarrow \cdots \quad$ differentials induced by d
It holds:

$$
E^{r+1} \cong \operatorname{Ker} d^{r} / \operatorname{Im} d^{r}
$$

Generalized filtrations and spectral systems

Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex was generalized by B. Matschke for a filtration indexed over a poset l, i.e. a collection of sub-chain complexes $\left\{F_{i} C_{*}\right\}_{i \in I}$ with $F_{i} C_{*} \subseteq F_{j} C_{*}$ if $i \leq j$.

Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex was generalized by B. Matschke for a filtration indexed over a poset l, i.e. a collection of sub-chain complexes $\left\{F_{i} C_{*}\right\}_{i \in I}$ with $F_{i} C_{*} \subseteq F_{j} C_{*}$ if $i \leq j$.

A spectral system (also called generalized spectral sequence or higher spectral sequence) is a set of groups, for all $z \leq s \leq p \leq b$ in I and for each degree n :

$$
S_{n}[z, s, p, b]=\frac{F_{p} C_{n} \cap d_{n}^{-1}\left(F_{z} C_{n-1}\right)+F_{s} C_{n}}{d_{n+1}\left(F_{b} C_{n+1}\right)+F_{s} C_{n}}
$$

Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex was generalized by B. Matschke for a filtration indexed over a poset l, i.e. a collection of sub-chain complexes $\left\{F_{i} C_{*}\right\}_{i \in I}$ with $F_{i} C_{*} \subseteq F_{j} C_{*}$ if $i \leq j$.

A spectral system (also called generalized spectral sequence or higher spectral sequence) is a set of groups, for all $z \leq s \leq p \leq b$ in I and for each degree n :

$$
S_{n}[z, s, p, b]=\frac{F_{p} C_{n} \cap d_{n}^{-1}\left(F_{z} C_{n-1}\right)+F_{s} C_{n}}{d_{n+1}\left(F_{b} C_{n+1}\right)+F_{s} C_{n}}
$$

and differential maps $d_{n}: S_{n}\left[z_{2}, s_{2}, p_{2}, b_{2}\right] \rightarrow S_{n-1}\left[z_{1}, s_{1}, p_{1}, b_{1}\right]$ induced by the differential of C_{*}.

Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex was generalized by B. Matschke for a filtration indexed over a poset I, i.e. a collection of sub-chain complexes $\left\{F_{i} C_{*}\right\}_{i \in I}$ with $F_{i} C_{*} \subseteq F_{j} C_{*}$ if $i \leq j$.

A spectral system (also called generalized spectral sequence or higher spectral sequence) is a set of groups, for all $z \leq s \leq p \leq b$ in I and for each degree n :

$$
S_{n}[z, s, p, b]=\frac{F_{p} C_{n} \cap d_{n}^{-1}\left(F_{z} C_{n-1}\right)+F_{s} C_{n}}{d_{n+1}\left(F_{b} C_{n+1}\right)+F_{s} C_{n}}
$$

and differential maps $d_{n}: S_{n}\left[z_{2}, s_{2}, p_{2}, b_{2}\right] \rightarrow S_{n-1}\left[z_{1}, s_{1}, p_{1}, b_{1}\right]$ induced by the differential of C_{*}.

Example: \mathbb{Z}-filtration $\left(F_{p}\right)_{p \in \mathbb{Z}}$, indices $z \leq s \leq p \leq b$ in \mathbb{Z} :

The posets \mathbb{Z}^{m} and $D\left(\mathbb{Z}^{m}\right)$

The posets \mathbb{Z}^{m} and $D\left(\mathbb{Z}^{m}\right)$

Consider \mathbb{Z}^{m}, seen as the poset $\left(\mathbb{Z}^{m}, \leq\right)$ with the coordinate-wise order relation: $P=\left(p_{1}, \ldots, p_{m}\right) \leq Q=\left(q_{1}, \ldots, q_{m}\right)$ if and only if $p_{i} \leq$ q_{i}, for all $1 \leq i \leq m$.

The posets \mathbb{Z}^{m} and $D\left(\mathbb{Z}^{m}\right)$

Consider \mathbb{Z}^{m}, seen as the poset $\left(\mathbb{Z}^{m}, \leq\right)$ with the coordinate-wise order relation: $P=\left(p_{1}, \ldots, p_{m}\right) \leq Q=\left(q_{1}, \ldots, q_{m}\right)$ if and only if $p_{i} \leq$ q_{i}, for all $1 \leq i \leq m$.

A downset of \mathbb{Z}^{m} is a subset $p \subseteq \mathbb{Z}^{m}$ such that if $P \in p$ and $Q \leq P$ in \mathbb{Z}^{m} then $Q \in p$.

The posets \mathbb{Z}^{m} and $D\left(\mathbb{Z}^{m}\right)$

Consider \mathbb{Z}^{m}, seen as the poset $\left(\mathbb{Z}^{m}, \leq\right)$ with the coordinate-wise order relation: $P=\left(p_{1}, \ldots, p_{m}\right) \leq Q=\left(q_{1}, \ldots, q_{m}\right)$ if and only if $p_{i} \leq$ q_{i}, for all $1 \leq i \leq m$.

A downset of \mathbb{Z}^{m} is a subset $p \subseteq \mathbb{Z}^{m}$ such that if $P \in p$ and $Q \leq P$ in \mathbb{Z}^{m} then $Q \in p$.

We denote $D\left(\mathbb{Z}^{m}\right)$ the collection of all downsets of \mathbb{Z}^{m}, which is a poset with respect to the inclusion \subseteq.

Motivating example

Motivating example

Theorem (Serre, 1951)

Let $G \hookrightarrow E \rightarrow B$ be a fibration and suppose the base B is 1 -reduced. There is a spectral sequence converging to $H_{*}(E)$ whose second page is given by $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(G)\right)$.

Motivating example

Theorem (Serre, 1951)

Let $G \hookrightarrow E \rightarrow B$ be a fibration and suppose the base B is 1 -reduced. There is a spectral sequence converging to $H_{*}(E)$ whose second page is given by $E_{p, q}^{2}=H_{p}\left(B ; H_{q}(G)\right)$.

Theorem (Matschke, 2013)

Consider a tower of fibrations

and suppose the base B is 1 -reduced. There exists a $D\left(\mathbb{Z}^{2}\right)$-spectral system converging to $H_{*}(E)$ whose second page is given by

$$
S_{n}^{*}(P ; 2)=H_{p_{2}}\left(B ; H_{p_{1}}\left(M ; H_{n-p_{1}-p_{2}}(G)\right)\right), \quad P=\left(p_{1}, p_{2}\right) \in \mathbb{Z}^{2}
$$

Algorithms

Algorithms

We have developed a set of programs computing generalized spectral sequences implemented in the Computer Algebra System Kenzo.

Algorithms

We have developed a set of programs computing generalized spectral sequences implemented in the Computer Algebra System Kenzo.

If the I-filtered chain complex C_{*} is of finite type, the groups $S_{n}[z, s, p, b]$ can be determined by means of diagonalization operations on matrices.

Algorithms

We have developed a set of programs computing generalized spectral sequences implemented in the Computer Algebra System Kenzo.

If the I-filtered chain complex C_{*} is of finite type, the groups $S_{n}[z, s, p, b]$ can be determined by means of diagonalization operations on matrices.

The result is a basis-divisors description of the group, that is:

- a list of combinations $\left(c_{1}, \ldots, c_{\alpha+k}\right)$
- a list of torsion coefficients $\left(b_{1}, \ldots, b_{k}, 0, \ldots .0\right)$.

Algorithms

Algorithms

To compute the differential map
$d: S_{2} \equiv S\left[z_{2}, s_{2}, p_{2}, b_{2}\right] \rightarrow S_{1} \equiv S\left[z_{1}, s_{1}, p_{1}, b_{1}\right]$ applied to an element $a=[x]$ given by a list of coordinates $\left(a_{1}, \ldots a_{r}\right)$:

Algorithms

To compute the differential map
$d: S_{2} \equiv S\left[z_{2}, s_{2}, p_{2}, b_{2}\right] \rightarrow S_{1} \equiv S\left[z_{1}, s_{1}, p_{1}, b_{1}\right]$ applied to an element $a=[x]$ given by a list of coordinates $\left(a_{1}, \ldots a_{r}\right)$:

- We compute the basis-divisors representation of both groups S_{1} and S_{2}.

Algorithms

To compute the differential map
$d: S_{2} \equiv S\left[z_{2}, s_{2}, p_{2}, b_{2}\right] \rightarrow S_{1} \equiv S\left[z_{1}, s_{1}, p_{1}, b_{1}\right]$ applied to an element $a=[x]$ given by a list of coordinates $\left(a_{1}, \ldots a_{r}\right)$:

- We compute the basis-divisors representation of both groups S_{1} and S_{2}.
- We build the projection of $x \in F_{p} \cap d^{-1}\left(F_{z}\right)+F_{s}$ over the factor $F_{p} \cap d^{-1}\left(F_{z}\right)$, denoted y.

Algorithms

To compute the differential map $d: S_{2} \equiv S\left[z_{2}, s_{2}, p_{2}, b_{2}\right] \rightarrow S_{1} \equiv S\left[z_{1}, s_{1}, p_{1}, b_{1}\right]$ applied to an element $a=[x]$ given by a list of coordinates $\left(a_{1}, \ldots a_{r}\right)$:

- We compute the basis-divisors representation of both groups S_{1} and S_{2}.
- We build the projection of $x \in F_{p} \cap d^{-1}\left(F_{z}\right)+F_{s}$ over the factor $F_{p} \cap d^{-1}\left(F_{z}\right)$, denoted y.
- We apply the differential map d to the element $y \in F_{p} \cap d^{-1}\left(F_{z}\right)$.

Algorithms

To compute the differential map $d: S_{2} \equiv S\left[z_{2}, s_{2}, p_{2}, b_{2}\right] \rightarrow S_{1} \equiv S\left[z_{1}, s_{1}, p_{1}, b_{1}\right]$ applied to an element $a=[x]$ given by a list of coordinates $\left(a_{1}, \ldots a_{r}\right)$:

- We compute the basis-divisors representation of both groups S_{1} and S_{2}.
- We build the projection of $x \in F_{p} \cap d^{-1}\left(F_{z}\right)+F_{s}$ over the factor $F_{p} \cap d^{-1}\left(F_{z}\right)$, denoted y.
- We apply the differential map d to the element $y \in F_{p} \cap d^{-1}\left(F_{z}\right)$.
- We compute the coefficients of $d(y)$ with respect to the set of generators of S_{1}.

Algorithms

To compute the differential map $d: S_{2} \equiv S\left[z_{2}, s_{2}, p_{2}, b_{2}\right] \rightarrow S_{1} \equiv S\left[z_{1}, s_{1}, p_{1}, b_{1}\right]$ applied to an element $a=[x]$ given by a list of coordinates $\left(a_{1}, \ldots a_{r}\right)$:

- We compute the basis-divisors representation of both groups S_{1} and S_{2}.
- We build the projection of $x \in F_{p} \cap d^{-1}\left(F_{z}\right)+F_{s}$ over the factor $F_{p} \cap d^{-1}\left(F_{z}\right)$, denoted y.
- We apply the differential map d to the element $y \in F_{p} \cap d^{-1}\left(F_{z}\right)$.
- We compute the coefficients of $d(y)$ with respect to the set of generators of S_{1}.
- We reduce them considering the corresponding divisors.

Algorithms

Algorithms

If a l-filtered chain complex C_{*} is not of finite type, we use the effective homology method and we consider a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type (also filtered over I).

Algorithms

If a l-filtered chain complex C_{*} is not of finite type, we use the effective homology method and we consider a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type (also filtered over I).

Theorem

Let $\rho=(f, g, h): C_{*} \Rightarrow D_{*}$ be a reduction between the I-filtered chain complexes $\left(C_{*}, F\right)$ and $\left(D_{*}, F^{\prime}\right)$, and suppose that f and g are compatible with the filtrations. Then, given four indices $z \leq s \leq p \leq b$ in I, the map f induces an isomorphism $f^{z, s, p, b}: S_{n}[z, s, p, b] \rightarrow S_{n}^{\prime}[z, s, p, b]$ whenever the homotopy $h:\left(C_{*}, F\right) \rightarrow\left(C_{*+1}, F\right)$ satisfies the conditions

$$
h\left(F_{z}\right) \subseteq F_{s} \quad \text { and } \quad h\left(F_{p}\right) \subseteq F_{b} .
$$

Discrete Morse Theory for algorithmic efficiency

Discrete Morse Theory for algorithmic efficiency

Our programs use discrete vector fields to reduce the number of generators of the chain complex.

Discrete Morse Theory for algorithmic efficiency

Our programs use discrete vector fields to reduce the number of generators of the chain complex.

Theorem

Let $F=\left(F_{i}\right)_{i \in I}$ be an I-filtration of C_{*}, and let $V=\left\{\left(\sigma_{j} ; \tau_{j}\right)\right\}_{j \in J}$ be an admissible discrete vector field on C_{*} such that, for all $j \in J$, the cells σ_{j} and τ_{j} appear together in the filtration. Then there exists a reduction $\rho=: C_{*} \Rightarrow C_{*}^{c}$, where C_{*}^{c} is the critical chain complex (generated by the cells which do not appear in the vector field), which is compatible with the filtrations.

Discrete Morse Theory for algorithmic efficiency

Our programs use discrete vector fields to reduce the number of generators of the chain complex.

Theorem

Let $F=\left(F_{i}\right)_{i \in I}$ be an I-filtration of C_{*}, and let $V=\left\{\left(\sigma_{j} ; \tau_{j}\right)\right\}_{j \in J}$ be an admissible discrete vector field on C_{*} such that, for all $j \in J$, the cells σ_{j} and τ_{j} appear together in the filtration. Then there exists a reduction $\rho=: C_{*} \Rightarrow C_{*}^{c}$, where C_{*}^{c} is the critical chain complex (generated by the cells which do not appear in the vector field), which is compatible with the filtrations.

Corollary

Under the same hypotheses, the generalized spectral sequences associated with the l-filtrations of C_{*} and C_{*}^{c} are isomorphic.

Programs computing spectral systems

Programs computing spectral systems

- We have enhanced our programs for classical spectral sequences, to compute the groups $S_{n}[z, s, p, b]$ and the differential maps for all indexes.

Programs computing spectral systems

- We have enhanced our programs for classical spectral sequences, to compute the groups $S_{n}[z, s, p, b]$ and the differential maps for all indexes.
- Our programs are also valid in the integer case and this makes it possible to solve the possible extension problems.

Programs computing spectral systems

- We have enhanced our programs for classical spectral sequences, to compute the groups $S_{n}[z, s, p, b]$ and the differential maps for all indexes.
- Our programs are also valid in the integer case and this makes it possible to solve the possible extension problems.
- They can also be applied in the infinite case, where the effective homology method can be used to determine the groups $S_{n}[z, s, p, b]$ by means of a pair of reductions between the initial chain complex C_{*} and an auxiliary chain complex of finite type.

Programs computing spectral systems

- We have enhanced our programs for classical spectral sequences, to compute the groups $S_{n}[z, s, p, b]$ and the differential maps for all indexes.
- Our programs are also valid in the integer case and this makes it possible to solve the possible extension problems.
- They can also be applied in the infinite case, where the effective homology method can be used to determine the groups $S_{n}[z, s, p, b]$ by means of a pair of reductions between the initial chain complex C_{*} and an auxiliary chain complex of finite type.

圊
A. Guidolin, A. R. Effective Computation of Generalized Spectral Sequences. Proceedings ISSAC 2018, 183-190.

Programs computing Serre spectral systems

- We consider a tower of simplicial fibrations.
- We consider a tower of simplicial fibrations.
- We have defined the associated spectral system in this framework.
- We consider a tower of simplicial fibrations.
- We have defined the associated spectral system in this framework.
- We have proved that it behaves well with respect to the effective homology method.
- We consider a tower of simplicial fibrations.
- We have defined the associated spectral system in this framework.
- We have proved that it behaves well with respect to the effective homology method.
- We use the previous programs to determine all the groups and differential maps.

Programs computing Serre spectral systems

- We consider a tower of simplicial fibrations.
- We have defined the associated spectral system in this framework.
- We have proved that it behaves well with respect to the effective homology method.
- We use the previous programs to determine all the groups and differential maps.

嘈
A. Guidolin, A. R. Computing Higher Leray-Serre Spectral Sequences of Towers of Fibrations. Foundations of Computational Mathematics 21(4), 1023-1074, 2021.

Example

Example

Generalized spectral sequence $S\left[\left(\begin{array}{ll}1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 2\end{array}\right),\left(\begin{array}{ll}2 & 2\end{array}\right),\left(\begin{array}{ll}2 & 2\end{array}\right] _\{1\}\right.$
Component Z
> (gen-spsq-group $K^{\prime}\left(\begin{array}{lll}1 & 1\end{array}\right)$ '(1 1$)^{\prime}$ '(2 2$)^{\prime}\left(\begin{array}{lll}2 & 2) & 1)\end{array}\right.$
Generalized spectral sequence $S\left[\left(\begin{array}{ll}1 & 1\end{array}\right),\left(\begin{array}{ll}1 & 1\end{array}\right),\left(\begin{array}{ll}2 & 2\end{array}\right),\left(\begin{array}{ll}2 & 2\end{array}\right)\right]\{1\}$
Component Z
Component Z

Discrete vector fields: example

Filtration over \mathbb{Z}^{2} of a digital image:

Discrete vector fields: example

Filtration over \mathbb{Z}^{2} of a digital image:

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles.

Discrete vector fields: example

Filtration over \mathbb{Z}^{2} of a digital image:

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles. Reduced chain complex: 21 vertices, 23 edges and 5 triangles.

Generalized Serre spectral sequence: example

First stages of the Postnikov tower for computing the homotopy groups of the sphere S^{3}, given by the following tower of fibrations:

Generalized Serre spectral sequence: example

First stages of the Postnikov tower for computing the homotopy groups of the sphere S^{3}, given by the following tower of fibrations:

$>$ (gen-spsq-group $\left.\left.K \quad,((1-2)) \quad,\left(\left(\begin{array}{ll}1 & -1\end{array}\right)\right)^{\prime}\left(\left(\begin{array}{ll}0 & 0\end{array}\right)\right)^{\prime}\left(\begin{array}{ll}0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0\end{array}\right)\right) 6\right)$
Generalized spectral sequence $S\left[\left(\begin{array}{ll}(1-2\end{array}\right)\right),\left(\left(\begin{array}{ll}1 & -1\end{array}\right)\right),\left(\left(\begin{array}{ll}0 & 0\end{array}\right)\right),\left(\left(\begin{array}{ll}0 & 1\end{array}\right)\right.$
(1 0))]_\{6\}
Component Z/2Z

Generalized spectral sequence $S\left[\left(\begin{array}{ll}-1 & -1\end{array}\right)\right),\left(\left(\begin{array}{ll}-1 & -1\end{array}\right)\right),\left(\left(\begin{array}{ll}12 & 12\end{array}\right)\right)$,
((12 12))]_\{6\}
Component Z/6Z

Multi-parameter persistence and persistence of l-filtrations

Multi-parameter filtrations (or \mathbb{Z}^{m}-filtrations) of simplicial complexes:

Multi-parameter persistence and persistence of l-filtrations

Multi-parameter filtrations (or \mathbb{Z}^{m}-filtrations) of simplicial complexes:

Associated invariant: rank invariant

$$
\beta_{n}^{P, Q}:=\operatorname{dim}_{\mathbb{F}} \operatorname{Im}\left(H_{n}\left(K_{P}\right) \rightarrow H_{n}\left(K_{Q}\right)\right), \quad P, Q \in \mathbb{Z}^{m}, \quad P \leq Q .
$$

Multi-parameter persistence and persistence of l-filtrations

Multi-parameter filtrations (or \mathbb{Z}^{m}-filtrations) of simplicial complexes:

Associated invariant: rank invariant

$$
\beta_{n}^{P, Q}:=\operatorname{dim}_{\mathbb{F}} \operatorname{Im}\left(H_{n}\left(K_{P}\right) \rightarrow H_{n}\left(K_{Q}\right)\right), \quad P, Q \in \mathbb{Z}^{m}, \quad P \leq Q
$$

Similarly, for an I-filtration $\left(F_{i}\right)_{i \in I}$, we define the rank invariant as the collection of integers

$$
\beta_{n}(v, w):=\operatorname{dim}_{\mathbb{F}} \operatorname{Im}\left(H_{n}\left(F_{v}\right) \rightarrow H_{n}\left(F_{w}\right)\right), \quad v, w \in I, \quad v \leq w .
$$

Our results

Our results

- Show that spectral systems and multi-parameter persistence are related, generalizing previous results for spectral sequences and persistent homology.

Our results

- Show that spectral systems and multi-parameter persistence are related, generalizing previous results for spectral sequences and persistent homology.
- Develop programs computing multi-parameter persistence by using our previous programs for spectral systems, generalizing other existing software.

Our results

- Show that spectral systems and multi-parameter persistence are related, generalizing previous results for spectral sequences and persistent homology.
- Develop programs computing multi-parameter persistence by using our previous programs for spectral systems, generalizing other existing software.
- Propose and compute a new descriptor which allows one to express other topological features and distinguish between different filtrations.

Our results

- Show that spectral systems and multi-parameter persistence are related, generalizing previous results for spectral sequences and persistent homology.
- Develop programs computing multi-parameter persistence by using our previous programs for spectral systems, generalizing other existing software.
- Propose and compute a new descriptor which allows one to express other topological features and distinguish between different filtrations.
- Use the effective homology theory to apply our programs to spaces of infinite type.

Our results

- Show that spectral systems and multi-parameter persistence are related, generalizing previous results for spectral sequences and persistent homology.
- Develop programs computing multi-parameter persistence by using our previous programs for spectral systems, generalizing other existing software.
- Propose and compute a new descriptor which allows one to express other topological features and distinguish between different filtrations.
- Use the effective homology theory to apply our programs to spaces of infinite type.

R
A. Guidolin, J. Divasón, A. R., F. Vaccarino. Computing invariants for multipersistence via spectral systems and effective homology. Journal of Symbolic Computation 104, 724-753, 2021.

Relation between multi-parameter persistence and spectral systems

Relation between multi-parameter persistence and spectral systems

A partially ordered abelian group $(I,+, \leq)$ is an abelian group $(I,+)$ endowed with a partial order \leq that is translation invariant: for all $p, t, t^{\prime} \in I$, if $t \leq t^{\prime}$ then $p+t \leq p+t^{\prime}$.

Relation between multi-parameter persistence and spectral systems

A partially ordered abelian group $(I,+, \leq)$ is an abelian group $(I,+)$ endowed with a partial order \leq that is translation invariant: for all $p, t, t^{\prime} \in I$, if $t \leq t^{\prime}$ then $p+t \leq p+t^{\prime}$.

Theorem

Let $(I,+, \leq)$ be a partially ordered abelian group, and let $\left(F_{i}\right)_{i \in I}$ be an I-filtration of chain complexes. Then, for any $v, w \in I$ such that $v, w \geq 0$ there is an exact sequence

$$
\begin{aligned}
& \cdots \rightarrow S_{n}[-\infty,-\infty, p-v, p-v+w] \xrightarrow{\ell} S_{n}[-\infty,-\infty, p, p+w] \xrightarrow{\ell} \\
& \stackrel{\ell}{\rightarrow} S_{n}[p-v-w, p-v, p, p+w] \stackrel{k}{\rightarrow} \\
& \quad \xrightarrow{k} S_{n-1}[-\infty,-\infty, p-v-w, p-v] \xrightarrow{\ell} S_{n-1}[-\infty,-\infty, p-w, p] \rightarrow \cdots,
\end{aligned}
$$

which yields the relation

$$
\begin{aligned}
\operatorname{dim}_{\mathbb{F}} S_{n}[p-v-w, p-v, p, p+w]=\beta_{n}^{p, p+w}-\beta_{n}^{p-v, p+w} & \\
& +\beta_{n-1}^{p-v-w, p-v}-\beta_{n-1}^{p-v-w, p}
\end{aligned}
$$

Relation between multi-parameter persistence and spectral systems

Relation between multi-parameter persistence and spectral systems

Consider the partially ordered abelian group $\left(\mathbb{Z}^{m},+, \leq\right)$ and a \mathbb{Z}^{m}-filtration $\left(F_{P}\right)_{P \in \mathbb{Z}^{m}}$. The previous theorem gives a relation between the rank invariant of multi-parameter persistence and the dimension of the terms of the spectral system over \mathbb{Z}^{m}.

Relation between multi-parameter persistence and spectral systems

Consider the partially ordered abelian group $\left(\mathbb{Z}^{m},+, \leq\right)$ and a \mathbb{Z}^{m}-filtration $\left(F_{P}\right)_{P \in \mathbb{Z}^{m}}$. The previous theorem gives a relation between the rank invariant of multi-parameter persistence and the dimension of the terms of the spectral system over \mathbb{Z}^{m}.

The relation can be inverted using an inductive argument.

Relation between multi-parameter persistence and spectral systems

Consider the partially ordered abelian group $\left(\mathbb{Z}^{m},+, \leq\right)$ and a \mathbb{Z}^{m}-filtration $\left(F_{P}\right)_{P \in \mathbb{Z}^{m}}$. The previous theorem gives a relation between the rank invariant of multi-parameter persistence and the dimension of the terms of the spectral system over \mathbb{Z}^{m}.

The relation can be inverted using an inductive argument.

Corollary

Given a \mathbb{Z}^{m}-filtration $\left(F_{P}\right)_{P \in \mathbb{Z}^{m}}$, the rank invariant $\left\{\beta_{n}^{P, Q}\right\}_{P \leq Q \in \mathbb{Z}^{m}}$ and the dimension of the terms of the spectral system $\left\{\operatorname{dim}_{\mathbb{F}} S_{n}[z, s, p, b]\right\}_{z \leq s \leq p \leq b \in \mathbb{Z}^{m}}$ carry the same amount of topological information on the filtration.

Relation between multi-parameter persistence and spectral systems

Consider the partially ordered abelian group $\left(\mathbb{Z}^{m},+, \leq\right)$ and a \mathbb{Z}^{m}-filtration $\left(F_{P}\right)_{P \in \mathbb{Z}^{m}}$. The previous theorem gives a relation between the rank invariant of multi-parameter persistence and the dimension of the terms of the spectral system over \mathbb{Z}^{m}.

The relation can be inverted using an inductive argument.

Corollary

Given a \mathbb{Z}^{m}-filtration $\left(F_{P}\right)_{P \in \mathbb{Z}^{m}}$, the rank invariant $\left\{\beta_{n}^{P, Q}\right\}_{P \leq Q \in \mathbb{Z}^{m}}$ and the dimension of the terms of the spectral system $\left\{\operatorname{dim}_{\mathbb{F}} S_{n}[z, s, p, b]\right\}_{z \leq s \leq p \leq b \in \mathbb{Z}^{m}}$ carry the same amount of topological information on the filtration.

Our results generalize those obtained by Basu and Parida for spectral sequences and persistent homology (defined from \mathbb{Z}-filtrations)
国 S. Basu, L. Parida. Spectral Sequences, Exact Couples and Persistent Homology of filtrations. Expositiones Mathematicae 35 (1), 119-132, 2017. 三

Generalizing the rank invariant in the finite case

Generalizing the rank invariant in the finite case

We generalize existing programs for computing multi-parameter persistence, which are valid for specific situations. We consider integer coefficients and a general poset I.

Generalizing the rank invariant in the finite case

We generalize existing programs for computing multi-parameter persistence, which are valid for specific situations. We consider integer coefficients and a general poset I.

We define the quotient group:

$$
H_{n}^{v, w}:=\frac{F_{v} C_{n} \cap \operatorname{Ker} d_{n}}{F_{v} C_{n} \cap d\left(F_{w} C_{n+1}\right)},
$$

Generalizing the rank invariant in the finite case

We generalize existing programs for computing multi-parameter persistence, which are valid for specific situations. We consider integer coefficients and a general poset I.

We define the quotient group:

$$
H_{n}^{v, w}:=\frac{F_{v} C_{n} \cap \operatorname{Ker} d_{n}}{F_{v} C_{n} \cap d\left(F_{w} C_{n+1}\right)},
$$

When computing this group with coefficients in a field and the poset \mathbb{Z}^{m}, its rank corresponds to the rank invariant.

Generalizing the rank invariant in the finite case

We generalize existing programs for computing multi-parameter persistence, which are valid for specific situations. We consider integer coefficients and a general poset I.

We define the quotient group:

$$
H_{n}^{v, w}:=\frac{F_{v} C_{n} \cap \operatorname{Ker} d_{n}}{F_{v} C_{n} \cap d\left(F_{w} C_{n+1}\right)}
$$

When computing this group with coefficients in a field and the poset \mathbb{Z}^{m}, its rank corresponds to the rank invariant. It represents the homology classes in $H_{n}\left(F_{v}\right)$ which are still present in $H_{n}\left(F_{w}\right)$.

Generalizing the rank invariant in the finite case

We generalize existing programs for computing multi-parameter persistence, which are valid for specific situations. We consider integer coefficients and a general poset I.

We define the quotient group:

$$
H_{n}^{v, w}:=\frac{F_{v} C_{n} \cap \operatorname{Ker} d_{n}}{F_{v} C_{n} \cap d\left(F_{w} C_{n+1}\right)}
$$

When computing this group with coefficients in a field and the poset \mathbb{Z}^{m}, its rank corresponds to the rank invariant. It represents the homology classes in $H_{n}\left(F_{v}\right)$ which are still present in $H_{n}\left(F_{w}\right)$.

We compute these groups by using our previous programs for computing spectral systems.

Generalizing the rank invariant in the finite case

We generalize existing programs for computing multi-parameter persistence, which are valid for specific situations. We consider integer coefficients and a general poset l.

We define the quotient group:

$$
H_{n}^{v, w}:=\frac{F_{v} C_{n} \cap \operatorname{Ker} d_{n}}{F_{v} C_{n} \cap d\left(F_{w} C_{n+1}\right)}
$$

When computing this group with coefficients in a field and the poset \mathbb{Z}^{m}, its rank corresponds to the rank invariant. It represents the homology classes in $H_{n}\left(F_{v}\right)$ which are still present in $H_{n}\left(F_{w}\right)$.

We compute these groups by using our previous programs for computing spectral systems. We obtain the rank and also the generators and the torsion coefficients.

Computation of a new descriptor

Computation of a new descriptor

We propose a new descriptor which tries to express the notions of birth and death.

Computation of a new descriptor

We propose a new descriptor which tries to express the notions of birth and death.

For regular persistent homology, defined from \mathbb{Z}-filtrations:

$$
M_{n}^{i, j}:=\frac{F_{i} C_{n} \cap d\left(F_{j} C_{n+1}\right)+F_{i-1} C_{n}}{F_{i} C_{n} \cap d\left(F_{j-1} C_{n+1}\right)+F_{i-1} C_{n}}
$$

Multipersistence

Multipersistence

Example:

Multipersistence

Example:

The class corresponding to the (boundary of) the triangle bcd is born at both positions $(1,2)$ and $(2,1)$

Multipersistence

Example:

The class corresponding to the (boundary of) the triangle bcd is born at both positions $(1,2)$ and $(2,1)$ and the (boundary of) the triangle cde is born at positions $(1,3),(2,2)$ and $(3,1)$.

Computation of a new descriptor

Computation of a new descriptor

Definition

Let $\left(F_{P}\right)$ be a \mathbb{Z}^{m}-filtration and consider the canonically associated $D\left(\mathbb{Z}^{m}\right)$-filtration $\left(F_{p}=\sum_{P \in p} F_{P}\right)$. For each $p \leq b$ in $D\left(\mathbb{Z}^{m}\right)$ we define
where

$$
M_{n}^{p, b}=\frac{\hat{F}_{p} C_{n} \cap d\left(\hat{F}_{b} C_{n+1}\right)}{A_{p, n}+B_{b, n}}
$$

$$
\begin{aligned}
\hat{F}_{p} C_{n}= & \left\{\sigma \mid \sigma \in F_{P_{j}} C_{n} \text { for all } 1 \leq j \leq k\right\}=\bigcap_{j} F_{P_{j}} C_{n} \\
A_{p, n}= & \sum_{Q}\left(\hat{F}_{p} C_{n} \cap d\left(\hat{F}_{b} C_{n+1}\right) \cap F_{Q} C_{n}\right)+\sum_{X}\left(\hat{F}_{p} C_{n} \cap d\left(\hat{F}_{b} C_{n+1}\right) \cap F_{X} C_{n}\right) \\
B_{p, n}= & \sum_{R}\left(\hat{F}_{p} C_{n} \cap d\left(\hat{F}_{b} C_{n+1}\right) \cap d\left(F_{R} C_{n+1}\right)\right) \\
& +\sum_{Y}\left(\hat{F}_{p} C_{n} \cap d\left(\hat{F}_{b} C_{n+1}\right) \cap d\left(F_{Y} C_{n+1}\right)\right)
\end{aligned}
$$

with $Q \in \mathbb{Z}^{m}$ not comparable with the points P_{j} defining the downset p, $X \in p \backslash\left\{P_{1}, \ldots, P_{k}\right\}, R \in \mathbb{Z}^{m}$ not comparable with the points B_{j} defining the downset b and $Y \in b \backslash\left\{B_{1}, \ldots, B_{r}\right\}$.

Multi-parameter persistence

Multi-parameter persistence

Example:

Multi-parameter persistence

Example:

> (multiprst-m-group K (list '(1 3) '(2 2) '(3 1)) (list '(2 3) '(3 2)) 1)
 Component Z

```
> (multiprst-m-gnrts K (list '(1 3) '(2 2) '(3 1))
    (list '(2 3) '(3 2)) 1)
({CMBN 1}<1 * CD><-1 * CE><1 * DE>)
```


Multipersistence

Multipersistence

Our new descriptor distinguishes different filtrations:

Multipersistence

Our new descriptor distinguishes different filtrations:


```
> (multiprst-m-group K1 (list '(1 2) '(2 1)) (list '(2 2)) 1)
Multipersistence group M[((1 2) (2 1)),((2 2))]_{1}
NIL
> (multiprst-m-group K2 (list '(1 2) '(2 1)) (list '(2 2)) 1)
Multipersistence group M[((1 2) (2 1)),((2 2))]_{1}
Component Z
```


Effective homology for infinitely generated spaces

Effective homology for infinitely generated spaces

If a l-filtered chain complex C_{*} is not of finite type, we use the effective homology method and we consider a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type (also filtered over I).

Effective homology for infinitely generated spaces

If a l-filtered chain complex C_{*} is not of finite type, we use the effective homology method and we consider a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type (also filtered over I).

Theorem

Let $\rho=(f, g, h): C_{*} \Rightarrow D_{*}$ be a reduction between the I-filtered chain complexes $\left(C_{*}, F\right)$ and $\left(D_{*}, F^{\prime}\right)$, and suppose that the maps f, g and h are compatible with the filtrations. Then, $H_{n}^{p, b}\left(D_{*}\right) \cong H_{n}^{p, b}\left(C_{*}\right)$ for all $p \leq b$ in I and $M_{n}^{p, b}\left(D_{*}\right) \cong M_{n}^{p, b}\left(C_{*}\right)$ for every $p<b$.

Effective homology for infinitely generated spaces

If a l-filtered chain complex C_{*} is not of finite type, we use the effective homology method and we consider a pair of reductions $C_{*} \Leftarrow \hat{C}_{*} \Rightarrow D_{*}$ from the initial chain complex C_{*} to another one D_{*} of finite type (also filtered over I).

Theorem

Let $\rho=(f, g, h): C_{*} \Rightarrow D_{*}$ be a reduction between the I-filtered chain complexes $\left(C_{*}, F\right)$ and $\left(D_{*}, F^{\prime}\right)$, and suppose that the maps f, g and h are compatible with the filtrations. Then, $H_{n}^{p, b}\left(D_{*}\right) \cong H_{n}^{p, b}\left(C_{*}\right)$ for all $p \leq b$ in I and $M_{n}^{p, b}\left(D_{*}\right) \cong M_{n}^{p, b}\left(C_{*}\right)$ for every $p<b$.

This result allows us to apply our programs to compute multi-parameter persistence of filtered complexes of infinite type.

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral systems related with different spectral sequences.

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and Eilenberg-More spectral sequences, by means of a \mathbb{Z}^{2}-filtration on the chain complex $\operatorname{Cobar}^{C_{*}(B)}(\mathbb{Z}, \mathbb{Z}) \otimes_{t} C_{*}(E)$.

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and Eilenberg-More spectral sequences, by means of a \mathbb{Z}^{2}-filtration on the chain complex $\operatorname{Cobar}^{C_{*}(B)}(\mathbb{Z}, \mathbb{Z}) \otimes_{t} C_{*}(E)$.

國 D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre and Eilenberg-Moore spectral sequences. Journal of Symbolic Computation 114, 122-148, 2023.

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and Eilenberg-More spectral sequences, by means of a \mathbb{Z}^{2}-filtration on the chain complex $\operatorname{Cobar}^{C_{*}(B)}(\mathbb{Z}, \mathbb{Z}) \otimes_{t} C_{*}(E)$.
(D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre and Eilenberg-Moore spectral sequences. Journal of Symbolic Computation 114, 122-148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that of a multicomplex, to define new spectral systems.
(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and Eilenberg-More spectral sequences, by means of a \mathbb{Z}^{2}-filtration on the chain complex $\operatorname{Cobar}^{C_{*}(B)}(\mathbb{Z}, \mathbb{Z}) \otimes_{t} C_{*}(E)$.

國 D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre and Eilenberg-Moore spectral sequences. Journal of Symbolic Computation 114, 122-148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that of a multicomplex, to define new spectral systems. The spectral system of an iterated tower of fibrations can be defined in this way.
(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and Eilenberg-More spectral sequences, by means of a \mathbb{Z}^{2}-filtration on the chain complex $\operatorname{Cobar}^{C_{*}(B)}(\mathbb{Z}, \mathbb{Z}) \otimes_{t} C_{*}(E)$.
(D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre and Eilenberg-Moore spectral sequences. Journal of Symbolic Computation 114, 122-148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that of a multicomplex, to define new spectral systems. The spectral system of an iterated tower of fibrations can be defined in this way. We are working in defining an m-multicomplex to define the Eilenberg-Moore spectral sequence for a cube of fibrations.

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of functional programming.

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of functional programming. Indeed, it is the only program that permits computations in algebraic topology over (some kind of) infinite structures.

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of functional programming. Indeed, it is the only program that permits computations in algebraic topology over (some kind of) infinite structures.

Kenzo is written in Common Lisp and it lacks a friendly interface.

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of functional programming. Indeed, it is the only program that permits computations in algebraic topology over (some kind of) infinite structures.

Kenzo is written in Common Lisp and it lacks a friendly interface. SageMath is a general purpose computer algebra system.

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of functional programming. Indeed, it is the only program that permits computations in algebraic topology over (some kind of) infinite structures.

Kenzo is written in Common Lisp and it lacks a friendly interface. SageMath is a general purpose computer algebra system. It uses Jupyter notebooks as a graphical user interface, and it is mainly developed in Python.

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of functional programming. Indeed, it is the only program that permits computations in algebraic topology over (some kind of) infinite structures.

Kenzo is written in Common Lisp and it lacks a friendly interface. SageMath is a general purpose computer algebra system. It uses Jupyter notebooks as a graphical user interface, and it is mainly developed in Python.

We have integrated (part of) the Kenzo system within Sagemath as an interface and an optional package.

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of functional programming. Indeed, it is the only program that permits computations in algebraic topology over (some kind of) infinite structures.

Kenzo is written in Common Lisp and it lacks a friendly interface. SageMath is a general purpose computer algebra system. It uses Jupyter notebooks as a graphical user interface, and it is mainly developed in Python.

We have integrated (part of) the Kenzo system within Sagemath as an interface and an optional package. Our work makes it possible to communicate both computer algebra programs and enhances the SageMath system with new capabilities in algebraic topology.

On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of functional programming. Indeed, it is the only program that permits computations in algebraic topology over (some kind of) infinite structures.

Kenzo is written in Common Lisp and it lacks a friendly interface. SageMath is a general purpose computer algebra system. It uses Jupyter notebooks as a graphical user interface, and it is mainly developed in Python.

We have integrated (part of) the Kenzo system within Sagemath as an interface and an optional package. Our work makes it possible to communicate both computer algebra programs and enhances the SageMath system with new capabilities in algebraic topology. In particular we can compute some kind of spectral sequences, dealing with simplicial objects of infinite nature.

On-going work: new Kenzo-SageMath interface

凅 J. Cuevas-Rozo, M. Marco-Buzunáriz, A. R. Computing with Kenzo from Sage. MEGA 2019, software presentation.
D. Cuevas-Rozo, J. Divasón, M. Marco-Buzunáriz, A. R. A Kenzo interface for algebraic topology computations in SageMath. ISSAC 2019, Best software demo award.

- J. Cuevas-Rozo, J. Divasón, M. Marco-Buzunáriz, A. R. Integration of the Kenzo system within SageMath for new Algebraic Topology Computations. Mathematics 9(7), 722, 2021.
¡Muchas gracias!

