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Introduction

We are interested in computing topological invariants of spaces.

We work with the computer algebra system Kenzo, devoted to the
computation of homology and homotopy groups of complicated
spaces, which can be of infinite type.

We use a previous work where we developed a set of algorithms and
programs for computing spectral sequences.
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Chain complexes, homology

Consider the chain complex

C∗ : · · · ←− Cn−1
dn←− Cn

dn+1←−− Cn+1 ←− · · ·

The n-homology group of C∗ is defined as

Hn(C∗) :=
Ker dn
Im dn+1

Given a simplicial set X , a chain complex C∗(X ) can be constructed such
that the homology groups of X are defined as

Hn(X ) := Hn(C∗(X ))

These groups can be determined by means of diagonalization algorithms
on matrices when the chain complex C∗ is of finite type (a free chain
complex with a finite number of generators in each degree).
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Effective homology and the Kenzo system

Kenzo uses the following method to determine homology groups of a given
chain complex:

If a complex C∗ is of finite type, its homology groups can be
determined by means of diagonalization algorithms on some matrices.

Otherwise, a pair of reductions C∗⇐⇐ Ĉ∗⇒⇒D∗ from the initial chain
complex C∗ to another one D∗ of finite type is constructed, such that
the homology groups of C∗ and D∗ are isomorphic.

A reduction ρ : Ĉ⇒⇒C∗ is given by three maps f : Ĉ∗ → C∗,
g : C∗ → Ĉ∗ and h : Ĉ∗ → Ĉ∗+1 satisfying some properties, which in
particular imply that H∗(Ĉ∗) ∼= H∗(C∗).

The pair of reductions C∗⇐⇐ Ĉ∗⇒⇒D∗ is called the effective
homology of C∗ and D∗ is said to be effective.
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g : C∗ → Ĉ∗ and h : Ĉ∗ → Ĉ∗+1 satisfying some properties, which in
particular imply that H∗(Ĉ∗) ∼= H∗(C∗).
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complex C∗ to another one D∗ of finite type is constructed, such that
the homology groups of C∗ and D∗ are isomorphic.
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A reduction ρ : Ĉ⇒⇒C∗ is given by three maps f : Ĉ∗ → C∗,
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Definition of spectral sequence

Definition

A spectral sequence E = (E r , d r )r≥1 is a family of bigraded Z-modules
E r = {E r

p,q}, each provided with a differential
d r = {d r

p,q : E r
p,q → E r

p−r ,q+r−1} of bidegree (−r , r − 1) and with

isomorphisms H(E r , d r ) = Ker d r/ Im d r ∼= E r+1 for every r ≥ 1.
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Why are spectral sequences useful?

They usually converge to interesting things (frequently homology or
homotopy groups).

Definition

Let H∗ = {Hn}n∈N be a graded group. A spectral sequence (E r , d r )r≥1 is
said to converge to H∗ (denoted by E 1 ⇒ H∗) if there is a filtration F of

H∗ and for each (p, q) one has an isomorphism E∞
p,q
∼= FpHp+q

Fp−1Hp+q
.

Examples:

The Serre spectral sequence converges to the homology groups of
the total space of a fibration.

The Eilenberg–Moore spectral sequence converges to the
homology groups of the loop space of a simplicial set.

The Adams spectral sequence converges to the homotopy groups of
a simplicial set.
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Why are spectral sequences useful?

Theorem (Serre, 1951)

Let G ↪→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Suppose Hi (G ) and Hi (B) are zero for odd i and free abelian for even i .
The entries E 2

p,q of the E 2 page are then zero unless p and q are even.



7/36

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let G ↪→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Suppose Hi (G ) and Hi (B) are zero for odd i and free abelian for even i .
The entries E 2

p,q of the E 2 page are then zero unless p and q are even.



7/36

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let G ↪→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Suppose Hi (G ) and Hi (B) are zero for odd i and free abelian for even i .
The entries E 2

p,q of the E 2 page are then zero unless p and q are even.



7/36

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let G ↪→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Suppose Hi (G ) and Hi (B) are zero for odd i and free abelian for even i .
The entries E 2

p,q of the E 2 page are then zero unless p and q are even.

• 0 • 0 • 0

0 0 0 0 0 0

• 0 • 0 • 0

0 0 0 0 0 0

• 0 • 0 • 0

0 0 0 0 0 0

p

q r=2

//

OO



7/36

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let G ↪→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Suppose Hi (G ) and Hi (B) are zero for odd i and free abelian for even i .
The entries E 2

p,q of the E 2 page are then zero unless p and q are even.

• 0 • 0 • 0

0 0 0 0 0 0

• 0 • 0 • 0

0 0 0 0 0 0

• 0 • 0 • 0

0 0 0 0 0 0

p

q r=2

r=3

//

OO



7/36

Why are spectral sequences useful?

Theorem (Serre, 1951)

Let G ↪→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Suppose Hi (G ) and Hi (B) are zero for odd i and free abelian for even i .
The entries E 2

p,q of the E 2 page are then zero unless p and q are even.
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Problems of spectral sequences

The problem of differentials
In some cases it is not possible to deduce all the differential maps and
obtain the final groups

The extension problem
Even if we obtain the final groups, we can face extension problems to
determine H∗

They are not algorithms producing the desired H∗
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Spectral sequence of a filtered chain complex

Given a Z-filtration of a chain complex C∗ = (Cn, dn):

. . . ⊆ Fp−1C∗ ⊆ FpC∗ ⊆ . . . ⊆ C∗,

a spectral sequence (E r
p , d

r
p) is defined as follows:

E r
p,q :=

FpCp+q ∩ d−1(Fp−rCp+q−1) + Fp−1Cp+q

d(Fp+r−1Cp+q+1) + Fp−1Cp+q
terms of the s.s.

· · · ←− E r
p−r

d r
p←− E r

p

d r
p+r←−− E r

p+r ←− · · · differentials induced by d

It holds:
E r+1 ∼= Ker d r/ Im d r
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Generalized filtrations and spectral systems

The notion of spectral sequence of a filtered complex was generalized by
B. Matschke for a filtration indexed over a poset I , i.e. a collection of
sub-chain complexes {FiC∗}i∈I with FiC∗ ⊆ FjC∗ if i ≤ j .

A spectral system (also called generalized spectral sequence or higher
spectral sequence) is a set of groups, for all z ≤ s ≤ p ≤ b in I and for
each degree n:

Sn[z , s, p, b] =
FpCn ∩ d−1

n (FzCn−1) + FsCn

dn+1(FbCn+1) + FsCn

and differential maps dn : Sn[z2, s2, p2, b2]→ Sn−1[z1, s1, p1, b1] induced by
the differential of C∗.

Example: Z-filtration (Fp)p∈Z, indices z ≤ s ≤ p ≤ b in Z:
p− r p− 1 p p+ r − 1

Er
p

z s p b

S[z, s, p, b]
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The posets Zm and D(Zm)

Consider Zm, seen as the poset (Zm,≤) with the coordinate-wise order
relation: P = (p1, . . . , pm) ≤ Q = (q1, . . . , qm) if and only if pi ≤
qi , for all 1 ≤ i ≤ m.

A downset of Zm is a subset p ⊆ Zm such that if P ∈ p and Q ≤ P in
Zm then Q ∈ p.

We denote D(Zm) the collection of all downsets of Zm, which is a poset
with respect to the inclusion ⊆.
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Motivating example

Theorem (Serre, 1951)

Let G ↪−→ E → B be a fibration and suppose the base B is 1-reduced.
There is a spectral sequence converging to H∗(E ) whose second page is
given by E 2

p,q = Hp(B;Hq(G )).

Theorem (Matschke, 2013)

Consider a tower of fibrations

E N B

G M

and suppose the base B is 1-reduced. There exists a D(Z2)-spectral
system converging to H∗(E ) whose second page is given by

S∗
n (P; 2) = Hp2(B;Hp1(M;Hn−p1−p2(G ))), P = (p1, p2) ∈ Z2.
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Algorithms

We have developed a set of programs computing generalized spectral
sequences implemented in the Computer Algebra System Kenzo.

If the I -filtered chain complex C∗ is of finite type, the groups Sn[z , s, p, b]
can be determined by means of diagonalization operations on matrices.

The result is a basis-divisors description of the group, that is:

a list of combinations (c1, . . . , cα+k)

a list of torsion coefficients (b1, . . . , bk , 0, α. . ., 0).
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Algorithms

To compute the differential map
d : S2 ≡ S [z2, s2, p2, b2]→ S1 ≡ S [z1, s1, p1, b1] applied to an element
a = [x ] given by a list of coordinates (a1, . . . ar ):

We compute the basis-divisors representation of both groups S1 and
S2.

We build the projection of x ∈ Fp ∩ d−1(Fz) + Fs over the factor
Fp ∩ d−1(Fz), denoted y .

We apply the differential map d to the element y ∈ Fp ∩ d−1(Fz).

We compute the coefficients of d(y) with respect to the set of
generators of S1.

We reduce them considering the corresponding divisors.
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Algorithms

If a I -filtered chain complex C∗ is not of finite type, we use the effective
homology method and we consider a pair of reductions C∗⇐⇐ Ĉ∗⇒⇒D∗
from the initial chain complex C∗ to another one D∗ of finite type (also
filtered over I ).

Theorem

Let ρ = (f , g , h) : C∗ ⇒ D∗ be a reduction between the I -filtered chain
complexes (C∗,F ) and (D∗,F

′), and suppose that f and g are compatible
with the filtrations. Then, given four indices z ≤ s ≤ p ≤ b in I , the map
f induces an isomorphism f z,s,p,b : Sn[z , s, p, b]→ S ′

n[z , s, p, b] whenever
the homotopy h : (C∗,F )→ (C∗+1,F ) satisfies the conditions

h(Fz) ⊆ Fs and h(Fp) ⊆ Fb.
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Discrete Morse Theory for algorithmic efficiency

Our programs use discrete vector fields to reduce the number of generators
of the chain complex.

Theorem

Let F = (Fi )i∈I be an I -filtration of C∗, and let V = {(σj ; τj)}j∈J be an
admissible discrete vector field on C∗ such that, for all j ∈ J, the cells σj
and τj appear together in the filtration. Then there exists a reduction
ρ =: C∗⇒⇒C c

∗ , where C c
∗ is the critical chain complex (generated by the

cells which do not appear in the vector field), which is compatible with the
filtrations.

Corollary

Under the same hypotheses, the generalized spectral sequences associated
with the I -filtrations of C∗ and C c

∗ are isomorphic.
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Programs computing spectral systems

We have enhanced our programs for classical spectral sequences, to
compute the groups Sn[z , s, p, b] and the differential maps for all
indexes.

Our programs are also valid in the integer case and this makes it
possible to solve the possible extension problems.

They can also be applied in the infinite case, where the effective
homology method can be used to determine the groups Sn[z , s, p, b]
by means of a pair of reductions between the initial chain complex C∗
and an auxiliary chain complex of finite type.

A. Guidolin, A. R. Effective Computation of Generalized Spectral Sequences.
Proceedings ISSAC 2018, 183-190.
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Programs computing Serre spectral systems

We consider a tower of simplicial fibrations.

We have defined the associated spectral system in this framework.

We have proved that it behaves well with respect to the effective
homology method.

We use the previous programs to determine all the groups and
differential maps.

A. Guidolin, A. R. Computing Higher Leray–Serre Spectral Sequences of Towers of
Fibrations. Foundations of Computational Mathematics 21(4), 1023–1074, 2021.
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Example

1

2

1 2

> (gen-spsq-group K ’(1 1) ’(1 2) ’(2 2) ’(2 2) 1)

Generalized spectral sequence S[(1 1),(1 2),(2 2),(2 2)]_{1}

Component Z

> (gen-spsq-group K ’(1 1) ’(1 1) ’(2 2) ’(2 2) 1)

Generalized spectral sequence S[(1 1),(1 1),(2 2),(2 2)]_{1}

Component Z

Component Z
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Discrete vector fields: example

Filtration over Z2 of a digital image:

Associated simplicial complex: 203 vertices, 408 edges and 208 triangles.
Reduced chain complex: 21 vertices, 23 edges and 5 triangles.
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Generalized Serre spectral sequence: example

First stages of the Postnikov tower for computing the homotopy groups of
the sphere S3, given by the following tower of fibrations:

E N B = S3

G = K (Z2, 3) M = K (Z, 2)

> (gen-spsq-group K ’((1 -2)) ’((1 -1)) ’((0 0)) ’((0 1) (1 0)) 6)

Generalized spectral sequence S[((1 -2)),((1 -1)),((0 0)),((0 1)

(1 0))]_{6}

Component Z/2Z

> (gen-spsq-group K ’((-1 -1)) ’((-1 -1)) ’((12 12)) ’((12 12)) 6)

Generalized spectral sequence S[((-1 -1)),((-1 -1)),((12 12)),

((12 12))]_{6}

Component Z/6Z
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Multi-parameter persistence and persistence of
I -filtrations

Multi-parameter filtrations (or Zm-filtrations) of simplicial complexes:

3.2. Multidimensional persistence 45

stability of the methods of persistent homology [CSEH07, CCSG+09].

Since in Section 3.3 we will explain the relation between persistent homology and spectral

sequences, let us conclude this section introducing the subject with a brief overview of the uses of

spectral sequences in persistence theory. The connection between spectral sequences and persistent

homology was first mentioned in the introduction of [ZC05], even if it was not detailed there. In

the book by Edelsbrunner and Harer [EH10, § VII.4] an algorithm to compute the barcode based

on the block reduction of a matrix is presented, which is inspired by spectral sequences: first, one

reduces the blocks corresponding to the 1-page E1, then the blocks corresponding to the 2-page,

repeating the process until the whole matrix is reduced. Some clarifications on the relation between

persistent homology and spectral sequences appear in [RHRS14]; eventually the paper [BP17]

illustrates the connection in a very explicit form, which we will generalize in the following. It is

worth mentioning the completely different approach introduced in [LSVJ11], where the authors

show how the Mayer-Vietoris spectral sequence (see for example [Bro82, Ch. VII.4]) can be used for

parallelized computation of persistent homology, an idea further developed in [LM15].

3.2 Multidimensional persistence

Consider again the filtration of simplicial complexes (3.1) of the previous section, here denoted

shortly by

K1 ↪−→ K2 ↪−→ · · · ↪−→ KN ,

recalling that it can be interpreted as a family of simplicial complexes which “grow”with respect to a

single parameter. In some applications a setting in which simplicial complexes vary according to two

or more parameters may be more interesting, for example because the interplay of the parameters

can reveal information on the data. For instance, consider again the filtration of Vietoris-Rips (or

Čech) complexes which can be constructed from a point cloud by letting the radius parameter ε

vary (Example 1.23). Since outliers in the point cloud can sometimes compromise the effectiveness

of topological methods, we can introduce (as in [CZ09, § 1.1]) a second parameter ρ related to the

density of the points, which allows to discard points located “far from the others”. Combining the

two parameters, we can build a filtration along two dimensions of the following form

K1N ′ K2N ′ · · · KNN ′

· · · · · · · · ·

K12 K22 · · · KN2

K11 K21 · · · KN1

(3.5)

where each row is a filtration with respect to the first parameter for a fixed value of the second one,

and each column is a filtration with respect to the second parameter for a fixed value of the first one.

Associated invariant: rank invariant

βP,Q
n := dimF Im(Hn(KP)→ Hn(KQ)), P,Q ∈ Zm, P ≤ Q.

Similarly, for an I -filtration (Fi )i∈I , we define the rank invariant as the
collection of integers

βn(v ,w) := dimF Im(Hn(Fv )→ Hn(Fw )), v ,w ∈ I , v ≤ w .
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Our results

Show that spectral systems and multi-parameter persistence are
related, generalizing previous results for spectral sequences and
persistent homology.

Develop programs computing multi-parameter persistence by using
our previous programs for spectral systems, generalizing other existing
software.

Propose and compute a new descriptor which allows one to express
other topological features and distinguish between different filtrations.

Use the effective homology theory to apply our programs to spaces of
infinite type.

A. Guidolin, J. Divasón, A. R., F. Vaccarino. Computing invariants for
multipersistence via spectral systems and effective homology. Journal of
Symbolic Computation 104, 724–753, 2021.
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Relation between multi-parameter persistence and
spectral systems

A partially ordered abelian group (I ,+,≤) is an abelian group (I ,+)
endowed with a partial order ≤ that is translation invariant: for all
p, t, t ′ ∈ I , if t ≤ t ′ then p + t ≤ p + t ′.

Theorem

Let (I ,+,≤) be a partially ordered abelian group, and let (Fi )i∈I be an I -filtration of
chain complexes. Then, for any v ,w ∈ I such that v ,w ≥ 0 there is an exact sequence

· · · → Sn[−∞,−∞, p − v , p − v + w ]
ℓ−→ Sn[−∞,−∞, p, p + w ]

ℓ−→
ℓ−→ Sn[p − v − w , p − v , p, p + w ]

k−→
k−→ Sn−1[−∞,−∞, p − v − w , p − v ]

ℓ−→ Sn−1[−∞,−∞, p − w , p] → · · · ,

which yields the relation

dimF Sn[p − v − w , p − v , p, p + w ] = βp,p+w
n − βp−v,p+w

n

+ βp−v−w,p−v
n−1 − βp−v−w,p

n−1 .
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Relation between multi-parameter persistence and
spectral systems

Consider the partially ordered abelian group (Zm,+,≤) and a
Zm-filtration (FP)P∈Zm . The previous theorem gives a relation between
the rank invariant of multi-parameter persistence and the dimension of the
terms of the spectral system over Zm.

The relation can be inverted using an inductive argument.

Corollary

Given a Zm-filtration (FP)P∈Zm , the rank invariant {βP,Q
n }P≤Q∈Zm and the

dimension of the terms of the spectral system
{dimF Sn[z , s, p, b]}z≤s≤p≤b∈Zm carry the same amount of topological
information on the filtration.

Our results generalize those obtained by Basu and Parida for spectral
sequences and persistent homology (defined from Z-filtrations)

S. Basu, L. Parida . Spectral Sequences, Exact Couples and Persistent Homology of
filtrations. Expositiones Mathematicae 35 (1), 119–132, 2017.
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Generalizing the rank invariant in the finite case

We generalize existing programs for computing multi-parameter
persistence, which are valid for specific situations. We consider integer
coefficients and a general poset I .

We define the quotient group:

Hv ,w
n :=

FvCn ∩ Ker dn
FvCn ∩ d(FwCn+1)

,

When computing this group with coefficients in a field and the poset Zm,
its rank corresponds to the rank invariant. It represents the homology
classes in Hn(Fv ) which are still present in Hn(Fw ).

We compute these groups by using our previous programs for computing
spectral systems. We obtain the rank and also the generators and the
torsion coefficients.
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Computation of a new descriptor

We propose a new descriptor which tries to express the notions of birth
and death.

For regular persistent homology, defined from Z-filtrations:

M i ,j
n :=

FiCn ∩ d(FjCn+1) + Fi−1Cn

FiCn ∩ d(Fj−1Cn+1) + Fi−1Cn
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Multipersistence

Example:

1
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The class corresponding to the (boundary of) the triangle bcd is born at
both positions (1, 2) and (2, 1) and the (boundary of) the triangle cde is
born at positions (1, 3), (2, 2) and (3, 1).
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Computation of a new descriptor

Definition

Let (FP) be a Zm-filtration and consider the canonically associated
D(Zm)-filtration (Fp =

∑
P∈p FP). For each p ≤ b in D(Zm) we define

Mp,b
n =

F̂pCn ∩ d(F̂bCn+1)

Ap,n + Bb,n
where

F̂pCn ={σ|σ ∈ FPjCn for all 1 ≤ j ≤ k} = ⋂
j FPjCn

Ap,n =
∑

Q(F̂pCn ∩ d(F̂bCn+1) ∩ FQCn) +
∑

X (F̂pCn ∩ d(F̂bCn+1) ∩ FXCn)

Bp,n =
∑

R(F̂pCn ∩ d(F̂bCn+1) ∩ d(FRCn+1))

+
∑

Y (F̂pCn ∩ d(F̂bCn+1) ∩ d(FYCn+1))

with Q ∈ Zm not comparable with the points Pj defining the downset p,
X ∈ p \ {P1, . . . ,Pk}, R ∈ Zm not comparable with the points Bj defining the
downset b and Y ∈ b \ {B1, . . . ,Br}.
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Multi-parameter persistence

Example:
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> (multiprst-m-group K (list ’(1 3) ’(2 2) ’(3 1))

(list ’(2 3) ’(3 2)) 1)

Multipersistence group M[((1 3) (2 2) (3 1)),((2 3) (3 2))]_{1}

Component Z

> (multiprst-m-gnrts K (list ’(1 3) ’(2 2) ’(3 1))

(list ’(2 3) ’(3 2)) 1)

({CMBN 1}<1 * CD><-1 * CE><1 * DE>)
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Multipersistence

Our new descriptor distinguishes different filtrations:
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Effective homology for infinitely generated spaces

If a I -filtered chain complex C∗ is not of finite type, we use the effective
homology method and we consider a pair of reductions C∗⇐⇐ Ĉ∗⇒⇒D∗
from the initial chain complex C∗ to another one D∗ of finite type (also
filtered over I ).

Theorem

Let ρ = (f , g , h) : C∗ ⇒ D∗ be a reduction between the I -filtered chain
complexes (C∗,F ) and (D∗,F

′), and suppose that the maps f , g and h are

compatible with the filtrations. Then, Hp,b
n (D∗) ∼= Hp,b

n (C∗) for all p ≤ b

in I and Mp,b
n (D∗) ∼= Mp,b

n (C∗) for every p < b.

This result allows us to apply our programs to compute multi-parameter
persistence of filtered complexes of infinite type.
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from the initial chain complex C∗ to another one D∗ of finite type (also
filtered over I ).

Theorem

Let ρ = (f , g , h) : C∗ ⇒ D∗ be a reduction between the I -filtered chain
complexes (C∗,F ) and (D∗,F

′), and suppose that the maps f , g and h are

compatible with the filtrations. Then, Hp,b
n (D∗) ∼= Hp,b

n (C∗) for all p ≤ b

in I and Mp,b
n (D∗) ∼= Mp,b

n (C∗) for every p < b.

This result allows us to apply our programs to compute multi-parameter
persistence of filtered complexes of infinite type.



33/36

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral
systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and
Eilenberg–More spectral sequences, by means of a Z2-filtration on the
chain complex CobarC∗(B)(Z,Z)⊗t C∗(E ).

D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre
and Eilenberg–Moore spectral sequences. Journal of Symbolic Computation 114,
122–148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that
of a multicomplex, to define new spectral systems. The spectral system of
an iterated tower of fibrations can be defined in this way. We are working
in defining an m-multicomplex to define the Eilenberg–Moore spectral
sequence for a cube of fibrations.



33/36

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral
systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and
Eilenberg–More spectral sequences, by means of a Z2-filtration on the
chain complex CobarC∗(B)(Z,Z)⊗t C∗(E ).

D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre
and Eilenberg–Moore spectral sequences. Journal of Symbolic Computation 114,
122–148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that
of a multicomplex, to define new spectral systems. The spectral system of
an iterated tower of fibrations can be defined in this way. We are working
in defining an m-multicomplex to define the Eilenberg–Moore spectral
sequence for a cube of fibrations.



33/36

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral
systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and
Eilenberg–More spectral sequences, by means of a Z2-filtration on the
chain complex CobarC∗(B)(Z,Z)⊗t C∗(E ).

D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre
and Eilenberg–Moore spectral sequences. Journal of Symbolic Computation 114,
122–148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that
of a multicomplex, to define new spectral systems. The spectral system of
an iterated tower of fibrations can be defined in this way. We are working
in defining an m-multicomplex to define the Eilenberg–Moore spectral
sequence for a cube of fibrations.



33/36

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral
systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and
Eilenberg–More spectral sequences, by means of a Z2-filtration on the
chain complex CobarC∗(B)(Z,Z)⊗t C∗(E ).

D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre
and Eilenberg–Moore spectral sequences. Journal of Symbolic Computation 114,
122–148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that
of a multicomplex, to define new spectral systems. The spectral system of
an iterated tower of fibrations can be defined in this way. We are working
in defining an m-multicomplex to define the Eilenberg–Moore spectral
sequence for a cube of fibrations.



33/36

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral
systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and
Eilenberg–More spectral sequences, by means of a Z2-filtration on the
chain complex CobarC∗(B)(Z,Z)⊗t C∗(E ).

D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre
and Eilenberg–Moore spectral sequences. Journal of Symbolic Computation 114,
122–148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that
of a multicomplex, to define new spectral systems.

The spectral system of
an iterated tower of fibrations can be defined in this way. We are working
in defining an m-multicomplex to define the Eilenberg–Moore spectral
sequence for a cube of fibrations.



33/36

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral
systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and
Eilenberg–More spectral sequences, by means of a Z2-filtration on the
chain complex CobarC∗(B)(Z,Z)⊗t C∗(E ).

D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre
and Eilenberg–Moore spectral sequences. Journal of Symbolic Computation 114,
122–148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that
of a multicomplex, to define new spectral systems. The spectral system of
an iterated tower of fibrations can be defined in this way.

We are working
in defining an m-multicomplex to define the Eilenberg–Moore spectral
sequence for a cube of fibrations.



33/36

On-going work: new spectral systems

(Joint work with D. Miguel, A. Guidolin, and J. Rubio)

We try to develop and implement simplicial constructions of new spectral
systems related with different spectral sequences.

First of all, we have defined a spectral system combining Serre and
Eilenberg–More spectral sequences, by means of a Z2-filtration on the
chain complex CobarC∗(B)(Z,Z)⊗t C∗(E ).

D. Miguel, A. Guidolin, A. R., J. Rubio. Effective spectral systems relating Serre
and Eilenberg–Moore spectral sequences. Journal of Symbolic Computation 114,
122–148, 2023.

We have defined a new notion of m-multicomplex, which generalizes that
of a multicomplex, to define new spectral systems. The spectral system of
an iterated tower of fibrations can be defined in this way. We are working
in defining an m-multicomplex to define the Eilenberg–Moore spectral
sequence for a cube of fibrations.
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On-going work: new Kenzo-SageMath interface

(Joint work with J. Cuevas-Rozo, J. Divasón, and M. Marco-Buzunáriz)

The Kenzo program can deal with infinite objects are coded by means of
functional programming. Indeed, it is the only program that permits
computations in algebraic topology over (some kind of) infinite structures.

Kenzo is written in Common Lisp and it lacks a friendly interface.
SageMath is a general purpose computer algebra system. It uses Jupyter
notebooks as a graphical user interface, and it is mainly developed in
Python.

We have integrated (part of) the Kenzo system within Sagemath as an
interface and an optional package. Our work makes it possible to
communicate both computer algebra programs and enhances the
SageMath system with new capabilities in algebraic topology. In particular
we can compute some kind of spectral sequences, dealing with simplicial
objects of infinite nature.
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J. Cuevas-Rozo, M. Marco-Buzunáriz, A. R. Computing with Kenzo from Sage.
MEGA 2019, software presentation.

J. Cuevas-Rozo, J. Divasón, M. Marco-Buzunáriz, A. R. A Kenzo interface for
algebraic topology computations in SageMath. ISSAC 2019, Best software demo
award.

J. Cuevas-Rozo, J. Divasón, M. Marco-Buzunáriz, A. R. Integration of the Kenzo
system within SageMath for new Algebraic Topology Computations. Mathematics
9(7), 722, 2021.
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¡Muchas gracias!
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