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Neural networks formalism

▶ Neural networks are defined as computational graphs, i.e. functions
f : Rn ×Θ → Rm given by the composition of multiple smaller
functions determined by the vertices of the graph.

▶ Computational graphs are hard-to-study mathematical structures.
We would like to have some easier, algebraic representations of neural
networks.
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Motivation to use quivers

▶ Quivers generalise the concept of graphs.

▶ The field of representation theory has strong results for quiver
representations.

▶ Decomposition of persistence modules into persistence barcodes is
proved by quiver representation theory!

▶ Can neural networks benefit from quiver theory?
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About the talk

▶ We will explore mainly the paper “The
Representation Theory of Neural
Networks”a, by Marco Antonio Armenta and
Pierre-Marc Jodoin.

▶ Several papers have been developed studying
neural networks theoretically:
▶ Neural teleportation, by Armenta et al.

Study of neural network isomorphisms and
consequences during training.

▶ Double Framed Moduli Spaces of Quiver
Representations, by Armenta et al.
Definition of the neural network category.
Further advances in neural network
representation theory.

aMarco Armenta and Pierre-Marc Jodoin. “The
representation theory of neural networks”. In: Mathematics
9.24 (2021), p. 3216.
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Basics of quiver representation theory

Quivers

▶ A quiver Q is given by a tuple (V ,E , s, t) where (V ,E ) is an
oriented graph with a set of vertices V and a set of oriented edges E
and maps s, t : E → V that send ϵ ∈ E to their source and target
vertices s(ϵ) ∈ V and t(ϵ) ∈ V respectively.



Basics of quiver representation theory

Quiver representations

▶ A quiver representation of Q is given by a pair of sets
W := ((Wv )v∈V , (We)e∈E ) where the Wv ’s are vector spaces and the
We ‘s are linear maps such that We : Ws(e) → Wt(e) for every e ∈ E .



Basics of quiver representation theory

Representation morphisms

▶ Let Q be a quiver and let W and U be two representations of Q. A
morphism of representations τ : W → U is a set of linear maps
τ = (τv )v∈V indexed by the vertices of Q, τv : Wv → Uv , such that
τt(e)We = Ueτs(e) for every e ∈ E . It is an isomorphism if τv is an
isomorphism for all v ∈ V (Q).



Basics of quiver representation theory

Thin representation of a quiver

▶ A thin representation of a quiver Q is a quiver representation W such
that Wv = C for all v ∈ V .



Basics of quiver representation theory

Actions and change of basis group

▶ Let G be a group and let X be a set. We say that there is an action
of G on X if there exists a map · : G × X → X such that e · x = x
and a · (b · x) = (ab) · x .

▶ The change of basis group of thin representations over a quiver Q is
G =

∏
v∈V C∗ where τσ = (τ1σ1, . . . , τnσn), n = |V (Q)|.

▶ G will act on the set X of thin representations of Q.
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Quiver theory for neural networks

Input-output quivers

▶ An input-output quiver Q is a quiver where a subset of d source
vertices of Q are called input vertices.

▶ Non-input source vertices are called bias.
▶ Sinks are called output vertices.
▶ It is arranged by layers if it is arranged by layers in the known,

natural way.
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Quiver theory for neural networks

Network quivers

▶ A network quiver Q is an input-output quiver arranged by layers
such that:

1. There are no loops on source vertices (input and bias) nor sink
(output) vertices.

2. There is exactly one loop on each hidden vertex.



Quiver theory for neural networks

Delooped quivers

▶ The delooped quiver Q̊ of Q is the quiver obtained by removing all
loops of Q and it is denoted by Q̊ = (V̊ , E̊ , s̊, t̊).

▶ The weights of a neural network define a thin quiver representation of
the delooped quiver Q̊ of its network quiver Q.

▶ Together with activation functions f : C → C we can obtain the
neural network function f (x , θ).
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Neural networks

▶ A neural network over a network quiver Q is a pair (W , f ) where W
is a thin representation of the delooped quiver Q̊ and f = (fv )v∈V are
activation functions, assigned to the loops of Q.

▶ The weights of the neural network (W , f ) are the complex numbers
defining the maps We for all e ∈ E .

▶ The activation output of v ∈ V (Q) in
x , a(W , f )v (x), is:

▶ If v input, a(W , f )v (x) = xv .
▶ If v bias, a(W , f )v (x) = 1.
▶ If v hidden vertex, a(W , f )v(x) =

f
(∑

α∈ζv
Wαa(W , f )s(α)(x)

)
.

▶ If v output vertex, a(W , f )v(x) =∑
α∈ζv

Wαa(W , f )s(α)(x).
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Quiver theory for neural networks

Neural network morphisms

▶ A(n) (iso)morphism of neural networks over the same quiver Q
τ : (W , f ) → (V , g) is:

1. A(n) (iso)morphism of thin quiver representations τ : W → V ,
2. such that τv = 1 for v not hidden vertex,
3. and such that ∀v hidden vertex τv ◦ fv = gv ◦ τv .
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Quiver theory for neural networks

Hidden quiver and group of change of basis

▶ The hidden quiver of Q denoted by Q̄ is given by Q̊ but without the
source and sink vertices.

▶ The group of change of basis for neural networks is Ḡ =
∏

v∈V̄ C∗.

▶ An element τ̄ induces an element τ ∈ G group of change of basis of
thin representations Q̊ by setting τv = 1 for all v not hidden vertices.

▶ We define the action of τ ∈ Ḡ in a neural network (W , f ) as
▶ (τ ·W )e = We

τt(e)
τs(e)

.

▶ (τ · f )v (x) = τv f
(

x
τv

)
.

▶ Theorem: If τ : (W , f ) → (V , g) is an isomorphism of neural
networks then their network functions ψ(W , f ) = ψ(V , g) coincide.
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Quiver theory for neural networks

Implications and applications

▶ There are an infinite number of neural networks with the same
network function, independently of the architecture and the activation
functions.

▶ ReLU neural networks are positive scale invariant, i.e. ,multiplying
weights by positive factors in an appropiate way do not change the
network function nor the architecture (infinite minima in loss
functions).

▶ Use of persistent path homology directly on the quiver
representation of neural networks.
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Quiver theory for data representations

Data representations (I)

▶ A labeled dataset is given by a finite set D = {(xi , ti )} ⊆ Cd × Co .

▶ The data quiver representation of a neural network N over a quiver
Q and example x ∈ D is the thin representation of Q̊

(
W f

x

)
e
=


Wexs(e), if s(e) is an input vertex

We , if s(e) is an bias vertex

We
a(W ,f )s(e)(x)∑

β∈ζs(e)
Wβ ·a(W ,f )s(β)(x)

, if s(e) is a hidden vertex,

where ζs(e) is the set of oriented edges of Q with target s(e).

▶ The neural network defined by W f
x and identity activation functions

satisfy Ψ(W f
x , 1)(1

d) = Ψ(W , f )(x) (linear rectification!).
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Data representations (II)



Quiver theory for data representations

Applications

▶ Isomorphism classes
[
W f

x

]
= {τ ·W f

x : τ ∈ Ḡ} induce bad-behaved
Lie algebras.

▶ Under some technical transformations, we get what is called the
moduli space of data of a neural network N : a smooth algebraic
variety coming from the previous isomorphism classes.

Two possible outcomes:

1. Theoretical and practical study of the adjacency matrices W f
x for a

dataset D and different neural networks. Do these linear
transformations give us information about the general robustness of
a neural network? Should we study the topology of the set of
linear transformations induced by the neural network?

2. Manifold-hypothesis: It can be proved that the data manifold M in
the input space of a neural network (W , f ) forms a sub-manifold of
the moduli space that parameterise the image of the neural network.
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dataset D and different neural networks. Do these linear
transformations give us information about the general robustness of
a neural network? Should we study the topology of the set of
linear transformations induced by the neural network?

2. Manifold-hypothesis: It can be proved that the data manifold M in
the input space of a neural network (W , f ) forms a sub-manifold of
the moduli space that parameterise the image of the neural network.
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▶ The dimension of the moduli space is equal to the number of basis
paths in ReLU networks, that yields, provably, an upper bound of
the generalisation error.

▶ Can we use these moduli spaces to further amplify our knowledge on
generalisation bounds?
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