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1. Whatis the problem?

How do neural networks learn?

2. Whatis the new input?

The paper “Toy Models of Superposition” *) (September 14, 2022)
claims that
“features come in direct sums”

3. What will we talk about today?

o How to evaluate these claims
(Clustering using the Grassmannian, ...)

o How to go beyond

(x) https://transformer-circuits.pub/2022/toy_model/index.html


https://transformer-circuits.pub/2022/toy_model/index.html
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How it began

Chris Olah @ch402 - Sep 14

i OK, I can buy that. But... oh dear.
Why is there a *tetrahedron® in my neural net???
What is going on???

&) Anthropic @AnthropicAl - Sep 14
Amazingly, features in superposition are organized into subspaces with
geometry corresponding to regular polytopes (pentagons, tetrahedra)
and other solutions to the Thomson problem. This creates discretized
“energy levels” in the amount of dimensionality allocated to features.

this th
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About this talk

I'm a discrete geometer

| know very little about neural networks / ML

| found this paper fascinating

I would like to learn about neural networks / ML from you!
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Setup

e ONBx,...,x,ofn“features”

HYPOTHETICAL DISENTANGLED MODEL

of sparsity S; and importance |; P
®
o
e ONBhy, ..., hy ®
of m < nhidden dimensions ®
@ cR"
e m X nprojection matrix W:
features — hidden dimensions OBSERVED MODEL
@ heRm

Wx = h
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Setup

e ONBx,...,x,ofn“features”

HYPOTHETICAL DISENTANGLED MODEL

of sparsity S; and importance |; P
®
e ONBh, ... Iy .
of m < nhidden dimensions ®
@ cR"
e m X nprojection matrix W:
features — hidden dimensions OBSERVED MODEL
@ heRm
Wx = h ®
o

Each columnw; € R" of W is therefore a feature direction:
e w;represents the feature x; € IR" in hidden-dimension space R"

e |w;| says how well feature is represented
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Sparsity

Linear Model

ReLU Output Model
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Linear models
learn the top m
features. 1 -8 =
0.001 is shown, but
others are similar.

In the dense

regime, ReLU
output models
also learn the
top m features

As sparsity increases, superposition allows models to
represent more features. The most important features are
initially untouched. This early superposition is organized in
antipodal pairs (more on this later).

In the high sparsity regime, models put all features in
superposition, and continue packing more. Note that at
this point we begin to see positive interference and
negative biases. We'll talk about this more later.

Parameters
2

Sparsity S:
e probability that x; = o when generating a random input vector.

e Ifx; should not be zero, draw x; uniformly from [0, 1] a bit weird. .
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Features appear to come in direct sums

Even if only
is active, using
linear dot product
_—¥ | projection on the
superposition leads to
interference which the
model must tolerate or

If the features aren't as
sparse as a superposition
is expecting, multiple
present features can
additively interfere such
that there are multiple
possible nonlinear

filter. reconstructions of an
- + — + -
A triangular bipyramid is the A pentagonal bipyramid is the An octahedron is the tegum
tegum product of a triangle and an tegum product of a pentagon and product of three antipodes.
antipode. As a result, we observe an antipode. As a result, we observe This doesn't change the
3x2/3 features and 2x1/2 features, 5x2/5 features and 2x1/2 features, observed lines since 3/6=1/2.

rather than 6x3/5 featurs. rather than 7x3/7 features.
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Dynamics during training

Feature Weight Trajectories
(top and 3D perspecitve)

\l 000 and @90 denote
® & / correlated feature sets.
Note that the resulting
triangular antiprism is
equivelant to a octahedron,
o with features forming antipodal
i pairs with features from a
LY i different correlated feature set.
Al
o . o
. .
. .
.
0 Initially, weights 0 The first change in 0 Next, each set of @ Finally, the triangles ] .
are initialized randomly training is that the two correlated features rotate into an
close to zero. sets of correlated expands into a antiprism
features push apart triangle.

one axis.
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Finding feature bundles in weight space, |~ Summandsof direct-sum
subconfigurations

e Each summand consists of vectors in a k-plane, for some k

e Weare looking for k-planesin W = (wy, w,, ..., w,) C R™.



https://en.wikipedia.org/wiki/Hough_transform
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.. . . e e
Finding feature bundles in weight space, |~ Summandsof direct-sum
subconfigurations

e Each summand consists of vectors in a k-plane, for some k
e Weare looking for k-planesin W = (wy, w,, ..., w,) C R".

e Hough Transform:(**)

forall k =1,...,Kdo
L < ()
forall s € () do
find unique rep p(S) of k-plane through S
L L, < append_to(L, p(S))
Clusterthe p(S) in Ly
Output best clusters

{x2) https://en.wikipedia.org/wiki/Hough_transform


https://en.wikipedia.org/wiki/Hough_transform

The Grassmannian

The moduli space of all k-dimensional subspaces of R" is
the Grassmannian G(m, k).

e dimG(m, k) = k(m — k)

e Pliickerembeddingin ]R]Pm, cut out by

_ (m+1
e Projector matrixembedding in RrP=("") ¢ IR™*™ cut out by
PT =P, P*=P, traceP=k.
o Idea: P projects to the given subspace

o P=AAT fromany (m x k) column-ONB A of the subspace
o must column-reduce A for uniqueness of P!
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The projector matrix embedding of G(m, k)

e ambientdim
D _ (m+1)

2

e R°c R™
(PT =P

e not full-dim:

pz=p
.Vk:

k(m —k)/m
oR:%\/ﬁ

e traceP =k

Distance in this embedding ~ “chordal distance”
good for clustering! Conway-Hardin-Sloane 1996
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How to cluster k-planes

e StartwithW = (wy,...,w,) € R"*"
> Collect all projectors onto subspaces N
L=()
forallk = 2,3,...,Kdo
foralls € () do
A = col-red(W, s) > make projector matrix unique
L L LUvec(AAT)

> Cluster and post-process them N
C + db-scan(L)

discard 1-element clusters

discard pyramid clusters

e implementedin juli::]
at https://gitlab.com/julian-upc/superpositions


https://gitlab.com/julian-upc/superpositions
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How to cluster k-planes

The implementation
e works on syntheticexamples
e needs to be hardened against perturbed examples.

Perturbation can bring about qualitatively different behavior:

e perturb, (n-gon(r)) @ perturb, (n-gon(s)) works

e perturb, (n-gon(r) & n-gon(s)) has numerical stability issues
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How to cluster k-planes

The implementation
e works on syntheticexamples
e needs to be hardened against perturbed examples.

Perturbation can bring about qualitatively different behavior:

e perturb, (n-gon(r)) @ perturb, (n-gon(s)) works

e perturb, (n-gon(r) & n-gon(s)) has numerical stability issues

Reason: unique choice of representative!

e appearance of small non-zero entries
e brings about discrete change in pivot structure

e anddiscrete jumps in distance between representatives
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. : : c Let's use our favorite tool —
Finding feature bundles in weight space, I oA

We are looking for spheres that are direct sums of smaller spheres!

Persistence Barcode

L Hz
Hz
Ha
0.765
e — D
0.765
—_ ]

0.75 1.00 1.25 1.50 1.75 2.00
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. : : c Let's use our favorite tool —
Finding feature bundles in weight space, I oA

We are looking for spheres that are direct sums of smaller spheres!

Persistence Barcode
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. : : c Let's use our favorite tool —
Finding feature bundles in weight space, I oA

We are looking for spheres that are direct sums of smaller spheres!

Persistence Barcode

L Hi
i Hz
Ha
0.765
1.175
L]
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. : : c Let's use our favorite tool —
Finding feature bundles in weight space, I -

We are looking for spheres that are direct sums of smaller spheres!

Persistence Barcode
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Persistence Barcode

Hi

Hs

0.765

S
JAN

1.732

0.75 1.00 1.25 1.50 1.75 2.00



FINDING DIRECT SUMS
00000e0

. : : c Let's use our favorite tool —
Finding feature bundles in weight space, I oA

We are looking for spheres that are direct sums of smaller spheres!

Persistence Barcode

Hi

Hs

0.868

O
JAN

1.732

0.75 1.00 1.25 1.50 1.75 2.00



FINDING DIRECT SUMS
00000e0

. : : c Let's use our favorite tool —
Finding feature bundles in weight space, I -

We are looking for spheres that are direct sums of smaller spheres!

Persistence Barcode

Hi

Hs

O
A

1.732

0.75 1.00 1.25 1.50 1.75 2.00



FINDING DIRECT SUMS
00000e0
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We are looking for spheres that are direct sums of smaller spheres!

Persistence Barcode
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Finding feature bundles in weight space, I -

We are looking for spheres that are direct sums of smaller spheres!
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We are looking for spheres that are direct sums of smaller spheres!
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. : : c Let's use our favorite tool —
Finding feature bundles in weight space, I oA

We are looking for spheres that are direct sums of smaller spheres!

Persistence Barcode
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T . . g s h
Finding feature bundles in weight space, [I| "S"aPssPeres
are a better goal

e Theauthors of [Toy] actually think
that feature vectors make spherical codes, i.e.,
points maximally apart on a fixed low-dimensional sphere

e Sometimes, these codes decompose into direct sums
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Finding feature bundles in weight space, [I| "S"aPssPeres
are a better goal

e Theauthors of [Toy] actually think
that feature vectors make spherical codes, i.e.,
points maximally apart on a fixed low-dimensional sphere

e Sometimes, these codes decompose into direct sums

Example
2-sphere through 4 points: Expand the first row of

X*+y+z2 x y z
XK +yitz X o &
XX+Y2+22 X, Y, 2,
X+ +22 X3 ¥ 23
X HYi+z, Xy Yy 24

T G e G|
(@]

Question

Find a good distance measure to represent & cluster these spheres
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Correlation, anti-correlation, ...and then?

In [Toy], the authors observe that
e correlated features combine in one summand
e anti-correlated features combine in the other summand

of a 2-component direct sum.

Question
What happens for sums with 3 or more components?



Revisiting W T

HYPOTHETICAL DISENTANGLED MODEL

[ ] .

P To recover the original vector, we'll use the transpose of the same matrix W T This has the

Y advantage of avoiding any ambiguity regarding what direction in the lower-dimensional space

o really corresponds to a feature. It also seems relatively mathematically principled9 ,and

[ ] empirically works. "

@ rcR"

Recall that W7 = W1 if W is orthonormal. Although W can't be literally orthonormal,

OBSERVED MODEL our intuition from compressed sensing is that it will be "almost orthenormal” in the sense

® hcR" of Candes & Tao [25].

[ J

[ ]

This is a very weak excuse:
e W isvery far from being even square (necessary for orthogonality)

e Even the columns of W are very far from being orthogonal
(That's the whole point of superposition)

So...why do they use W ?



Revisiting W T

HYPOTHETICAL DISENTANGLED MODEL

[ ] 7

P To recover the original vector, we'll use the transpose of the same matrix 1V T This has the

Y advantage of avoiding any ambiguity regarding what direction in the lower-dimensional space

o really corresponds to a feature. It also seems relatively mathematically principled9 ,and

[ ] empirically works. "

@ <R

Recall that W7 = W1 if W is orthonormal. Although W can't be literally orthonormal,

OBSERVED MODEL our intuition from compressed sensing is that it will be "almost orthenormal” in the sense

® hcR" of Candes & Tao [25].

[ J

[ ]

This is a very weak excuse:
e W isvery far from being even square (necessary for orthogonality)

e Even the columns of W are very far from being orthogonal
(That's the whole point of superposition)

So...why do they use W ?

Because W encodes a neural net that reconstructs x given h!
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The affine setting: incorporating bias and activation function

The modelin [Toylis x’ = ReLU(W ' h+ b)
—_——

X

X1 = W11h1+Wz1hz+“‘+quhm+b1 = <W1,h>+b1 = <W1,h>

— WV, ;b1
x| = | w' Ih+ b
V), !bﬂ
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The affine setting: incorporating bias and activation function

The modelin [Toylis x’ = ReLU(W ' h+b) = ReLU (WTE)
—_——

X

X1 = W11h1+Wz1hz+“‘+quhm+b1 = <W1,h>+b1 = <W1,h>

|V, ;b1 o E— ),

i
x| = | wT Ih+ b = WTh
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DeCIS i 0 n bo un da rl eS The final step is whether to add an activation function. This turns out to be critical to whether

superposition occurs. In a real neural network, when features are actually used by the model
to do computation, there will be an activation function, so it seems principled to include one

at the end.
' — ReLU(WT h+b) = ReLU (W' h) x!
o = ReLU(x)
X1 = <W1)h>+b1 = <W‘l)h>
Xn = (Wnyh) + b, = <W7mﬁ> X
W, [re—

The decision boundaries

g|
_‘
(—— |
Il
o

(he R™ : (wi,h) = o}

form an affine hyperplane arrangement Wy, o e




Understanding the loss function: L = ), > . Ii(x; — x{)?

I

linear: L ~ Y L(1— (|Wi|*)? + Y L(W;wi)?

i i#j
Feature benefit is the value a model attains from
representing a feature. In a real neural network,
this would be analagous to the potential of a
feature to improve predictions if represented

Interference betwen ; and T; occurs
when two features are embedded
non-orthogonally and, as a result, affec
each other’s predictions. This prevents

accurately. superposition in linear models.
2 2
L : L=Y fIl(mlfReLU(HVViH 2 +6))° + Y /IjReLU(W]--W',erbj)
1 0=x;<1 i#£j 0=2i=1
If we focus on the case x; = 1, we get something which looks even more analagous to the linear case:
= Y L(1 - ReLU(||Wi|? + b;))? + Y LReLU(W;-W; + b;)?
i

i#7

Feature benefit is similar to before. Note that
ReLU never makes things worse, and that the
bias can help when the model doesn’t represent
a feature by taking on the expected value.

Interference is similar to before but
ReLU means that negative interference,
or interference where a negative bias
pushes it below zero, is “free” in the
1-sparse case.
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Understanding the loss function

L: L= Y. j Ii(x; — ReLU(||W;|P2; + 6:))°  + Y /I,-ReLU(W;-Wm,m)

t 0=x;<1 i#£j 0=2i=1

If we focus on the case x; = 1, we get something which looks even more analagous to the linear case
S L1 — ReLU(||Wi|? + b))? + Y LReLU(W;-W; + b;)?
i i#7

Feature benefit is similar to before. Note that
ReLU never makes things worse, and that the
bias can help when the model doesn’t represent
a feature by taking on the expected value.

Interference is similar to before but
ReLU means that negative interference,
or interference where a negative bias
pushes it below zero, is “free” in the
1-sparse case.

e Ifli =1,|wj| =1andb; = oforalli: Thomson problem
(minimizing the potential energy of charged particles on a sphere)
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Understanding the loss function

L : L= Y. fll(ml — ReLU(|[W;|*z; +5))° + > [IjReLU(W]--mm, +b;)
1 0=x;<1 i#£j 0=2i=1
If we focus on the case x; = 1, we get something which looks even more analagous to the linear case:
3" L1 — ReLU(||Wi| [ + b:))? + Y LReLU(W;-W; + b;)?
i i#]

Feature benefit is similar to before. Note that
ReLU never makes things worse, and that the
bias can help when the model doesn’t represent
a feature by taking on the expected value.

Interference is similar to before but
ReLU means that negative interference,
or interference where a negative bias
pushes it below zero, is “free” in the
1-sparse case.

e Ifli =1,|wj| =1andb; = oforalli: Thomson problem
(minimizing the potential energy of charged particles on a sphere)

Question

Why do spherical codes apparently also appear in the general case?
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Wrap-up

Dynamics of learning! Haven't said anything

Finding direct sums in existing networks:

o Harden the Grassmannian reconstruction against O (IR )-action
o TDA probably nota good fit
o Find a good distance measure to represent and cluster spheres

Analyze large direct sums in terms of anti/correlation

Figure out what makes direct-sum hyperplane arrangements special

o Are they minima for training?
o Role of “sparsity”?

e Compose two or more layers of such components

o forexample, adding two nodes for binary classification
o addinganother whole component
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The loss function

o 242 2
linear: L ~ E L1 - (|W;|]) - E L(W;-W,)
i i#£j

Feature benefit is the value a model attains from Interference betwen i and &j occurs
representing a feature. In a real neural network, when two features are embedded
this would be analagous to the potential of a non-arthogonally and, as a result, affec
feature to improve predictions if represented each other’s predictions. This prevents
accurately. superposition in linear models.

RelU: [ = [ |[I(z — ReLU(WTWz + b))||*dp(z) where z is
distributed such that zz; = 0 with probability S.

The integral over z decomposes into a term for each sparsity
pattern according to the binomial expansion of ((1—5) + S)™. We
can group terms of the sparsity together, rewriting the loss as
L=(1-8)"Ly+...+(1-8)8" 1Ly + S"Ly, with each Ly
corresponding to the loss when the input is a k-sparse vector. Note
thatas S — 1, Ly and Ly dominate. The Ly term, corresponding to
the loss on a zero vector, is just a penalty on positive biases,

3, ReLU(b;)2. So the interesting term is L1, the loss on 1-sparse
vectors:
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