
Seeking entropy 

Complex behavior from intrinsic motivation to 
occupy action-state path space



Approaches for Brain and Behavior

Bottom-Up Approach: from synapses neurons and circuits to emerging behaviors

• emphasis on data collection and simulation, but not on theory

• no emphasis on behavior

Proposal. Top-Down approach: from behavior to synapses, neurons and circuits
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Seeking entropy 

Complex behavior from intrinsic motivation to 
occupy action-state path space



• Natural tendency to move, explore, and interact with the environment
with curiosity

• 7-12m babies babble and motor-babble

• Infants explore with curiosity

Why?

• Movement and curiosity → learning

• Learning → higher future rewards

Standard Hypothesis: Animals are reward/utility maximizers (von Neumann,
Sutton & Barto, Kahneman)

Life is (in) motion



Are we utility maximizers?

(Getty Images)

BBC News: a robot escapes the hotel 

room where it was cleaning

Reward function? 

𝑤1

𝑤2

𝑤3



The goal: occupy action-state path space

• We abandon the idea that maximizing utility is the goal and that
moving is the mean to achieve the goal

• We adopt the opposite view: moving around is the goal, and
external rewards are just means



Principle: agents maximize occupancy of action-state path space

Max Occupancy Principle (MOP)

Ramírez-Ruiz, Grytskyy, Moreno-Bote, arXiv, 2022

• These agents will be naturally “curious” and “explorative”

• They will seek reward only to occupy more space

• Survival instinct (will avoid terminal states with no actions available)

• Preference of freedom

• They will occupy internal states → variability in neural activity

The goal: occupy action-state path space



Modeling behavior with MDPs

𝑠𝑡 𝑎𝑡

𝑟𝑡+1

𝑠𝑡+1 𝑎𝑡+1

𝑟𝑡+2

𝑠𝑡+2
…

𝑎1
𝑎2

𝑎𝑛

… 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡)

𝜋(𝑎|𝑠𝑡) is the policy: probability of performing an action given current state

𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡) is the world model: a (stochastic) mapping between states, given
actions

𝑟𝑡+1 is the reward: a policy-independent, action-state signal, 𝑟(𝑠, 𝑎)

𝑉𝜋(𝑠) ≡ 𝔼𝜋 ∑
𝑡=0

∞

𝛾𝑡𝑟𝑡+1|𝑠0 = 𝑠 is the state value under the policy

𝑠1
𝑠2

𝑠𝑚

…



𝑠𝑡 𝑎𝑡

𝑅𝑡+1

𝑠𝑡+1

𝑎1
𝑎2

𝑎𝑛

… 𝜋(𝑎𝑡|𝑠𝑡)

Entropy as a measure of action-state occupancy

Deterministic policy: 𝜋(𝑎|𝑠𝑡) = 1 for only one action 𝑎

Occupancy gain is 𝑅𝑡+1 = 0

Occupancy gain: 𝑅𝑡+1 = −ln 𝜋 𝑎𝑡 𝑠𝑡 , a form of intrinsic reward; policy-dependent

Action occupancy is its expectation (= policy entropy),

𝔼𝜋 𝑅𝑡+1|𝑠0 = 𝑠𝑡 = 𝐻 𝐴 𝑠𝑡 = −∑
𝑎
𝜋 𝑎 𝑠𝑡 ln(𝜋 𝑎 𝑠𝑡 )



𝑠𝑡 𝑎𝑡

𝑅𝑡+1

𝑠𝑡+1

𝑎1
𝑎2

𝑎𝑛

… 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡)

𝑠1
𝑠2

𝑠𝑚

…

The joint probability of an action-state (𝑎𝑡 , 𝑠𝑡+1) is 𝜋 𝑎𝑡 𝑠𝑡 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

For deterministic policy and environments, only one action-state (𝑎𝑡 , 𝑠𝑡+1) is available

Thus, occupancy gain of that action-state is 𝑅𝑡+1 = 0

Action-state occupancy gain: 𝑅𝑡+1 = −ln 𝜋 𝑎𝑡 𝑠𝑡 𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

Action-state occupancy: 𝔼𝜋 𝑅𝑡+1|𝑠0 = 𝑠𝑡 = 𝐻 𝐴 𝑠𝑡 + 𝔼𝑠′,𝑎𝑡|𝜋 𝐻(𝑆′|𝑠𝑡 , 𝑎𝑡)|𝑠0 = 𝑠𝑡

Entropy as a measure of action-state occupancy



𝑠𝑡 𝑎𝑡

𝑅𝑡+1

𝑠𝑡+1 𝑎𝑡+1

𝑅𝑡+2

𝑠𝑡+2
…

𝑎1
𝑎2

𝑎𝑛

… 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡)

𝑠1
𝑠2

𝑠𝑚

…

𝑉𝜋(𝑠) ≡ 𝔼𝜋 ∑
𝑡=0

∞

𝛾𝑡𝑅𝑡+1|𝑠0 = 𝑠 = 𝔼𝜋 ∑
𝑡=0

∞

𝛾𝑡 (𝐻 𝐴 𝑠𝑡 +𝐻(𝑆′|𝑠𝑡 , 𝑎𝑡))|𝑠0 = 𝑠

Cumulative future action-state entropy is the only measure with the additive property:

“occupancy of a path of any length is the sum of

expected occupancies of any of its sub-paths”

State OccupancyAction Occupancy

Cumulative entropy measures action-state path 
occupancy



𝑗

Desired properties of action-state path occupancy

𝑝𝑖𝑗

action-state

𝑖

action-state path of 

length 1

1. Occupancy gain by performing a transition from action-state 𝑖 to 𝑗 is a function 𝐶(𝑝𝑖𝑗)

2. Performing a low probability transition leads to a higher occupancy gain



𝑗

𝑝𝑖𝑗

𝑖

1/7

3/7

3/7

“emptiest” path

action-state

Desired properties of action-state path occupancy

1. Occupancy gain by performing a transition from action-state 𝑖 to 𝑗 is a function 𝐶(𝑝𝑖𝑗)

2. Performing a low probability transition leads to a higher occupancy gain

3. 𝐶(𝑝) is a smooth function



action-state

𝑗

𝑝𝑖𝑗

𝑖

1. Occupancy gain by performing a transition from action-state 𝑖 to 𝑗 is a function 𝐶(𝑝𝑖𝑗)

2. Performing a low probability transition leads to a higher occupancy gain

3. 𝐶(𝑝) is a smooth function

Definition: occupancy of one-step paths is 𝐶𝑖
(1)

≡ ∑𝑗 𝑝𝑖𝑗𝐶(𝑝𝑖𝑗)

Desired properties of action-state path occupancy



action-state

𝑗

𝑝𝑖𝑗

𝑖

𝑘𝑝𝑗𝑘

action-state path of 

length 2

Desired properties of action-state path occupancy

1. Occupancy gain by performing a transition from action-state 𝑖 to 𝑗 is a function 𝐶(𝑝𝑖𝑗)

2. Performing a low probability transition leads to a higher occupancy gain

3. 𝐶(𝑝) is a smooth function

Definition: occupancy of one-step paths is 𝐶𝑖
(1)

≡ ∑𝑗 𝑝𝑖𝑗𝐶(𝑝𝑖𝑗)

4. Additive property: 𝐶𝑖
(2)

≡ ∑𝑗𝑘 𝑝𝑖𝑗𝑝𝑗𝑘𝐶 𝑝𝑖𝑗𝑝𝑗𝑘 = 𝐶𝑖
(1)

+ ∑𝑗 𝑝𝑖𝑗𝐶𝑗
(1)



1. Occupancy gain by performing a transition from action-state 𝑖 to 𝑗 is a function 𝐶(𝑝𝑖𝑗)

2. Performing a low probability transition leads to a higher occupancy gain

3. 𝐶(𝑝) is a smooth function

Definition: occupancy of one-step paths is 𝐶𝑖
(1)

≡ ∑𝑗 𝑝𝑖𝑗𝐶(𝑝𝑖𝑗)

4. Additive property: 𝐶𝑖
(2)

≡ ∑𝑗𝑘 𝑝𝑖𝑗𝑝𝑗𝑘𝐶 𝑝𝑖𝑗𝑝𝑗𝑘 = 𝐶𝑖
(1)

+ ∑𝑗 𝑝𝑖𝑗𝐶𝑗
(1)

action-state

𝑗

𝑝𝑖𝑗

𝑖

𝑘𝑝𝑗𝑘

Desired properties of action-state path occupancy



Additive property: 𝐶𝑖
(2)

≡ ∑𝑗𝑘 𝑝𝑖𝑗𝑝𝑗𝑘𝐶 𝑝𝑖𝑗𝑝𝑗𝑘 = 𝐶𝑖
1
+∑𝑗 𝑝𝑖𝑗𝐶𝑗

1

𝐶𝑖
(2)

≡ ∑𝑗𝑘 𝑝𝑖𝑗𝑝𝑗𝑘𝐶 𝑝𝑖𝑗𝑝𝑗𝑘

= −∑𝑗𝑘 𝑝𝑖𝑗𝑝𝑗𝑘 log 𝑝𝑖𝑗𝑝𝑗𝑘

= −∑𝑗𝑘 𝑝𝑖𝑗𝑝𝑗𝑘 log 𝑝𝑖𝑗 −∑𝑗𝑘 𝑝𝑖𝑗𝑝𝑗𝑘 log 𝑝𝑗𝑘

= −∑𝑗 𝑝𝑖𝑗 log 𝑝𝑖𝑗 − ∑𝑗 𝑝𝑖𝑗 ∑𝑘 𝑝𝑗𝑘 log 𝑝𝑗𝑘

= 𝐶𝑖
(1)

+∑𝑗 𝑝𝑖𝑗𝐶𝑗
(1)

𝐶(𝑝)must be −log 𝑝



𝑠𝑡 𝑎𝑡

𝑅𝑡+1

𝑠𝑡+1 𝑎𝑡+1

𝑅𝑡+2

𝑠𝑡+2
…

𝑎1
𝑎2

𝑎𝑛

… 𝑝(𝑠𝑡+1|𝑠𝑡, 𝑎𝑡)𝜋(𝑎𝑡|𝑠𝑡)

𝑠1
𝑠2

𝑠𝑛

…

𝑉𝜋(𝑠) ≡ 𝔼𝜋 ∑
𝑡=0

∞

𝛾𝑡𝑅𝑡+1|𝑠0 = 𝑠 = 𝔼𝜋 ∑
𝑡=0

∞

𝛾𝑡 (𝛼𝐻 𝐴 𝑠𝑡 + 𝛽𝐻(𝑆′|𝑠𝑡 , 𝑎𝑡))|𝑠0 = 𝑠

Bellman eq:      𝑉𝜋 𝑠 = 𝛼𝐻 𝐴 𝑠𝑡 + 𝛽𝔼𝑎,𝑠′|𝑠,𝜋 𝐻(𝑆′|𝑠, 𝑎)|𝑠 + 𝛾 𝔼𝑠′|𝑠,𝜋 𝑉𝜋(𝑠
′)

Optimal value:         𝑉∗ 𝑠 = ln(∑𝑎 exp 𝛼−1𝛽𝐻 𝑆′ 𝑠, 𝑎 + 𝛾 𝛼−1𝔼𝑠′|𝑠,𝑎 𝑉∗ 𝑠′ )

Optimal policy: 𝜋∗(𝑎|𝑠) ∝ exp(𝛼−1𝛽𝐻(𝑆′ |𝑠, 𝑎) + 𝛾 𝛼−1𝔼𝑠′|𝑠,𝑎 𝑉∗(𝑠′) )

Immediate Occupancy Future Occupancy

Cumulative entropy measures of action-state occupancy



Example (1 step forward)

𝑠𝑡

𝜋(𝑎|𝑠𝑡)

𝑎1

𝑎2

𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

𝑠1

𝑠2

𝑠3

𝑠𝑡+1

½

½

½

½

1

𝜋 𝑎 𝑠𝑡 is suboptimal!



Example (1 step forward)

𝑠𝑡

𝜋∗(𝑎|𝑠𝑡)

𝑎1

𝑎2

𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

𝑠1

𝑠2

𝑠3

𝑠𝑡+1

½

½

1

𝜋∗ 𝑎 𝑠𝑡 is optimal!

2/3

1/3



Example (2 steps forward)

𝑠𝑡

𝜋∗(𝑎|𝑠𝑡)

𝑎1

𝑎2

𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

𝑠1

𝑠2

𝑠3

𝑠𝑡+1

½

½

1

<2/3

>1/3 𝑎5
…

𝑎3

𝑎4



Example (2 steps forward)

𝑠𝑡

𝜋∗(𝑎|𝑠𝑡)

𝑎1

𝑎2

𝑝(𝑠𝑡+1|𝑠𝑡 , 𝑎𝑡)

𝑠1

𝑠2

𝑠3

𝑠𝑡+1

½

½

1

>2/3

<<1/3

…

𝑎3

𝑠𝑡+2

𝑠𝑅𝐼𝑃

…

𝑎4

𝑎5



𝑅𝜋 𝑠, 𝑎 = −𝛼 ln𝜋 𝑎 𝑠 − 𝛽 ln 𝑝 𝑠′ 𝑠, 𝑎

(𝛼, 𝛽) = 1,1

𝑅𝜋 𝑠, 𝑎 = 𝑟(𝑠, 𝑎)

𝑠 = 𝑥, 𝑦, 𝐸

Δ𝐸𝑓𝑜𝑜𝑑 = 10

Δ𝐸𝑙𝑖𝑣𝑖𝑛𝑔 = −1

terminal states: 𝐸 = 0

Occupancy vs reward maximization



Occupancy vs reward maximization



Complex behaviors in a prey-predator example



Complex behaviors in a prey-predator example

Visitations



𝑅𝜋 𝑠, 𝑎 = 𝑟(𝑠, 𝑎) : R agent

𝑅𝜋 𝑠, 𝑎, 𝑠′ = − ln𝜋 𝑎 𝑠 𝑝 𝑠′ 𝑠, 𝑎 : H agent

Dancing while balancing a pole



Altruistic behavior

𝑅𝜋 𝑠, 𝑎 = −𝛼 ln𝜋 𝑎 𝑠 − 𝛽 ln 𝑝 𝑠′ 𝑠, 𝑎

𝑠 = (𝑜𝑤𝑛𝑒𝑟 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 𝑝𝑒𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛)



Neural variability

• What is the mechanistic origin of neuronal variability?

Stochastic elements in the nervous systems (e.g., stochastic vesicle release) plus
recurrent connections (i.e., feedback loops) (Moreno-Bote, PlosCB, 2014)

Chaotic dynamics due to strong recurrency (Van Vreeswijk & Sompolinsky, 1996)

• Hypothesis:

Variability is the result of the brain “occupying activity space”

Thus, neuronal variability is promoted as long as it does not result into non-adaptive
behavior or pathological activity

…but activity will be pushed close to pathological regimes



Generating and controlling variability

𝑑

𝑑𝑡
𝑥𝑖 = −𝑥𝑖 + 𝑓(∑

𝑗
𝑤𝑖𝑗𝑥𝑗)

𝑥𝑖

RNN

𝑁 = 100
𝑤𝑖𝑗 ∼ 𝑁(0, 𝜎)



Generating and controlling variability

Uncontrolled Chaotic RNN

𝑑

𝑑𝑡
𝑥𝑖 = −𝑥𝑖 + 𝑓(∑

𝑗
𝑤𝑖𝑗𝑥𝑗)

𝑥𝑖

RNN

𝑁 = 100
𝑤𝑖𝑗 ∼ 𝑁(0, 𝜎)



𝑑

𝑑𝑡
𝑥𝑖 = −𝑥𝑖 + 𝑓(∑

𝑗
𝑤𝑖𝑗𝑥𝑗+∑

𝑘
𝑣𝑖𝑘𝑎𝑘)

෠𝑉(𝒙𝑡, 𝜃)

𝒙𝑡

𝜃𝑘+1 = arg min
𝜃

∑𝒙𝑡∈𝑝𝑎𝑡ℎ𝑠
෠𝑉 𝒙𝑡, 𝜃 − ln ∑𝑎 𝑒

෡𝑉(𝒙′(𝒙𝑡,𝒂),𝜃𝑘)
2

𝜋(𝒂|𝒙𝑡) ∝ exp(𝛾 ෠𝑉(𝒙′(𝒙𝑡, 𝒂), 𝜃))

𝜋(𝒂𝑡+1|𝒙𝑡)

𝒂𝑡+1

𝑥𝑖

RNN

V-FFN

PN

Generating and controlling variability



Generating and controlling variability

Uncontrolled Chaotic RNN Controlled Chaotic RNN



𝑉𝜋 𝑠 = 𝔼𝑎,𝑠′|𝑠,𝜋[𝑅𝜋(𝑠, 𝑎, 𝑠′)] + 𝛾 𝔼𝑠′|𝑠,𝜋 𝑉𝜋(𝑠
′)

𝑅𝜋 𝑠, 𝑎, 𝑠′ = 𝑟(𝑠, 𝑎, 𝑠′) − 𝛼 ln 𝜋 𝑎 𝑠 +𝛼0 ln 𝜋0 𝑎 𝑠 − 𝛽 ln 𝑝 𝑠′ 𝑠, 𝑎 + 𝛽0 ln 𝑝0 𝑠′ 𝑠, 𝑎

Classification of (recursive) frameworks

Entropy-regularized RL

(action-entropy RL)

Standard RL (policy-independent reward)

KL RL

(action-KL RL) action-state KL RL (*)

Soft RL

(*) New

𝑅𝜋 𝑠, 𝑎, 𝑠′ = −𝛼 ln 𝜋 𝑎 𝑠 − 𝛽 ln 𝑝 𝑠′ 𝑠, 𝑎 Reward-free frameworks 

max occupancy 

principle (MOP) (*) action-state MOP (𝛼 > 0, 𝛽 ≥ 0) (*)

empowerment (𝛼 > 0, 𝛽 < 0) (*)



Conclusions

• Are we really utility maximizers?

• Defining reward functions is problematic, even dangerous

• MOP principle: the goal is to occupy action-state path space

• External rewards are the means to accomplish that objective

• Entropy seeking behavior is fun, lively and energetic

• Goal-directed behavior emerges

(terminal states and internal states are critical)

• A possible account of neural variability



Approaches for Brain and Behavior

Bottom-Up Approach: from synapses neurons and circuits to emerging behaviors

• emphasis on data collection and simulation, but not on theory

• no emphasis on behavior

Proposal. Top-Down approach: from behavior to synapses, neurons and circuits
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Moreno-Bote Comp Neuro Lab
Ramírez-Ruiz, Grytskyy, Moreno-Bote, arXiv, 

2022







𝑑

𝑑𝑡
𝑥𝑖 = −𝑥𝑖 + 𝑓(∑

𝑗
𝑤𝑖𝑗𝑥𝑗+∑

𝑘
𝑣𝑖𝑘𝑎𝑘)

෠𝑉(𝒙𝑡, 𝜃)

𝒙𝑡

𝜃𝑘+1 = arg min
𝜃

∑𝒙𝑡∈𝑝𝑎𝑡ℎ𝑠
෠𝑉 𝒙𝑡, 𝜃 − ln ∑𝑎 𝑒

෡𝑉(𝒙′(𝒙𝑡,𝒂),𝜃𝑘)
2

𝜋(𝒂|𝒙𝑡) ∝ exp(𝛾 ෠𝑉(𝒙′(𝒙𝑡, 𝒂), 𝜃))

𝜋(𝒂𝑡+1|𝒙𝑡)

𝒂𝑡+1

𝑥𝑖

RNN

V-FFN

PN

Generating and controlling variability



𝑑

𝑑𝑡
𝑥𝑖 = −𝑥𝑖 + 𝑓(∑

𝑗
𝑤𝑖𝑗𝑥𝑗+𝑎𝑖)

෠𝑉(𝒙𝑡, 𝜃)

𝒙𝑡

𝑥𝑖

𝜃∗ = arg min
𝜃

∑𝒙𝑡∈𝑝𝑎𝑡ℎ𝑠
෠𝑉 𝒙𝑡, 𝜃 − ln ∑𝑎 𝑒

෡𝑉(𝒙′(𝒙𝑡,𝒂),𝜃)
2

𝜋(𝒂|𝒙𝑡) ∝ exp(𝛾 ෠𝑉(𝒙′(𝒙𝑡, 𝒂), 𝜃))

𝜋(𝒂𝑡+1|𝒙𝑡)

𝒂𝑡+1

RNN

V-FFN

PN


