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Many complex networks, ranging from social to biological systems, exhibit
structural patterns consistent with an underlying hyperbolic geometry. Re-
vealing the dimensionality of this latent space can disentangle the structural
complexity of communities, impact efficient network navigation, and funda-
mentally shape connectivity and system behavior. We introduce a novel topo-
logical data analysis weighting scheme for graphs, based on chordless cycles,
aimed at estimating the dimensionality of networks in a data-driven way. We
further show that the resulting descriptors can effectively estimate network di-
mensionality using a neural network architecture trained in a synthetic graph
database constructed for this purpose, which does not need retraining to trans-
fer effectively to real-world networks. Thus, by combining cycle-aware fil-
trations, algebraic topology, and machine learning, our approach provides a
robust and effective method for uncovering the hidden geometry of complex
networks and guiding accurate modeling and low-dimensional embedding.
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1 Introduction

The rapid growth of data has created significant challenges in science and technology. Large
datasets from fields like biology (e.g., gene expression and protein interactions), social net-
works (e.g., agent behavior), and physics (e.g., cosmological simulations) often contain rich
structural information hidden in their complex nature. Capturing this information requires tools
capable of detecting patterns in data. Topological data analysis (TDA) [1, 2, 3, 4] is one of such
approaches, using ideas from topology to identify features that persist across scales.

In TDA, scales are usually defined through filtrations, a systematic way to build a sequence
of simplicial complexes that encode the geometric and topological structure of a dataset across
multiple levels of resolution. Central to the analysis of such simplicial complexes is persistent
homology [2, 3], the main TDA computational method that tracks the emergence, persistence,
and disappearance of topological features —such as connected components or loops— in a
filtered simplicial complex as the filtration parameter evolves. In this context, graphs can be
treated as simplicial complexes and can be filtered by assigning weights to their nodes and/or
to their edges.

The success of persistent homology depends critically on the choice of a filtration and topo-
logical features of interest, and the selection of these depends on the problem being addressed.
Not every filtration or feature descriptor is suitable for every problem, underscoring the impor-
tance of designing suitable TDA pipelines to achieve meaningful results. The triad filtration-
feature-framework (FFF) embodies an intertwined relationship that forms the foundation for
effectively leveraging persistent homology. However, filtration schemes based on a variety of
quantifiers, such as Forman-Ricci curvature [5] or betweenness centrality [6], are sometimes
applied indiscriminately to data without considering the specificities of the selected topological
features and the nature or framework of the problem at hand.

This work emphasizes the importance of aligning the FFF triad by tackling dimensional-
ity detection in complex networks, which also contributes to bridging the gap between com-
plex network theory and TDA. Simplicial complexes associated with complex networks have
emerged as powerful representations in network science [7, 8, 9, 10, 11], offering insights
into higher-order structures beyond pairwise interactions. Moreover, persistent homology of
filtered simplicial complexes has been applied to the study of complex networks in general
[12, 13, 14, 15, 16, 17] and to neuroscience in particular [18, 19, 20, 21].

However, the concept of network dimensionality remains largely unexplored within TDA.
In network science, it has been addressed within the framework of network geometry [22].
A model-driven approach [23] leverages the geometric SP /HP+! model [24, 25], which re-
produces the observed connectivity of real networks, to reveal their intrinsic dimensionality
in a latent hyperbolic space, where nodes are more likely to be connected if they are closer to
each other. The real network’s specific dimension is determined by projecting the frequencies of
chordless cycles of varying lengths onto the background model’s configuration space. This tech-
nique revealed ultra low-dimensional structures in real networks [23] previously masked by ap-
parent high-dimensionality. An alternative methodology to determine network dimensionality



within the same modeling framework uses an embedding technique, named D-Mercator [26],
to produce multidimensional maps of real networks in (D + 1)-hyperbolic space. The maps
are used to estimate intrinsic dimensionality in terms of navigability and community structure,
producing results consistent with the configuration space approach.

In this work, we propose a third method for dimensionality detection in complex networks
based on TDA, that complements a trilogy in combination with the configuration-space and em-
bedding methods used in [23] and [26], respectively. The dimensionality detection task, crucial
for understanding the intrinsic geometry of data, showcases how tailored filtrations and feature
selection can enhance the ability of persistent homology to analyze and interpret complex data
for specific purposes. Specifically, we introduce a chordless cycle filtration scheme and use it
to compute extended persistence of cycles, as the topological descriptor that best captures the
distribution of cycles in synthetic and real networks to predict their dimensionality.

Moreover, we propose a data-driven approach to estimate network dimensionality by train-
ing a neural network on nearly 800000 synthetic networks. A multilayer perceptron accu-
rately estimates dimensionality and transfers effectively to real-world networks, generalizing
and adapting to new data without retraining. Ablation experiments demonstrate that TDA fea-
tures play an important role in this task, even when combined with average cycle densities and
degree-related graph features.

2 Results

Our approach for estimating network dimensionality with persistent homology is two-fold.
In [23], it has been shown that measuring the intrinsic dimensionality of a complex network
is possible by computing profiles of structural properties that are sensitive to dimensionality.
These properties are densities of chordless cycles of sizes three (triangle), four (squares), and
five (pentagons), but the method required generating ensembles of synthetic networks for each
candidate network. Here, we instead focus on persistence summaries using a filtration based
on the density of cycles and show that these descriptors reliably detect latent dimensionality.
We then leverage the descriptors to develop a supervised machine-learning model, trained on a
large database of synthetic graphs with known dimensions and controlled properties, to predict
the intrinsic dimension of an input network.

2.1 Persistence descriptors for dimensionality estimation

Many real networks share universal properties, such as sparsity, heavy-tailed degree distribu-
tions, the small-world effect, high clustering coefficients, and self-similarity. These properties
can be captured by a simple geometric framework [27] using the S! /H? model [24, 28], which
combines a popularity coordinate —controlling node degrees— with a similarity coordinate that
represents all other attributes influencing network connectivity. This model can be generalized
to a D-dimensional similarity space, yielding the S /HP*+! model [24, 25]; see Section 4 for



more details. These models have been used to determine the dimensionality of real networks
by analyzing their cycle profiles [23]. Here, however, we propose to measure their persistence
descriptors instead.

The goal of persistent homology is to compute topological features of a space equipped
with a filtration. In the context of graphs, one can define filtrations by endowing either nodes or
edges with suitable weightings. A common choice is the degree filtration on nodes; however, it
has been shown that the degree filtration is less expressive for some graph learning tasks than
other, motif-based, filtrations [1]. In this work, we propose an edge weighting scheme based on
densities of chordless cycles. A chordless cycle is defined as a closed edge path in which no
two non-consecutive nodes are connected by an edge.

Our goal is to determine an optimal value of D for the S” /HP*! model corresponding to a
real network, in which v and 5 —the parameters of the model controlling the scale-free degree
distribution and the clustering coefficient, respectively— are usually unknown. In our data-
driven method, optimality is defined in the same way as in [23], by picking the dimension of
a closest point in the configuration space of synthetic surrogates generated from the given real
network, using D-dimensional geometric randomization (D-GR), as described in Section 4.1,
with different values of v, 5, and D. The D-GR model, originally proposed for D = 1 [29],
works on the observed sequence of node degrees and rewires the network to maximize the
likelihood that the new topology is generated by the S /HP*! model.

Thus, for each complex network G, whose dimensionality is to be estimated, we generated
an ensemble of synthetic surrogates G, . . ., G,, using the S” model with a range of values of D
and a range of values of the clustering coefficient 5 until 5 = 6. Densities of edge triangles,
chordless squares, and chordless pentagons were then computed as specified in Section 4.2 for
each surrogate in the ensemble and for the target network. Therefore, each network G yields
three weighted graphs (G, w,), (G, w,) and (G, w,), where the edge weights w;, w;, w, are the
densities of triangles, squares, and pentagons, respectively. The mean value of w; over all the
edges of a graph is denoted by C', and similarly with squares and pentagons.

Topological features of graphs equipped with a filtration given by edge weights were com-
puted using persistent homology, a tool from algebraic topology used to describe shape charac-
teristics from many kinds of data (Section 4.2). In this work, persistence refers specifically to
the evolution of cycles along the values of a given filtration. However, cycles in graphs have
infinite persistence, since there are no higher-dimensional simplices to eventually fill them. We
therefore computed extended persistence of cycles, defined as the difference between the largest
and smallest weights among the simplices forming a closed path. Since we focus on graphs
equipped with edge weightings only, we introduce in this article a new technique for replacing
a given edge-weighted graph with a larger, topologically equivalent graph, that carries weights
on nodes and on the original edges in a way that is consistent with both sublevel and superlevel
filtrations; see Section 4.2 for a detailed description of our method.

Total extended persistence was used as a topological descriptor, resulting in a feature vec-
tor (I'P;, T Ps, T P,) for each network. A representation of the configuration space is shown in
Fig. 1, where each point corresponds to a surrogate graph. Points are coloured by the corre-



sponding dimension. The target network from which surrogates were generated has D = 1 and
is marked with a black cross.
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Figure 1: 3D view of a point cloud representing an ensemble of 1330 surrogates of the Human?2
network (connectome of the human brain, including one hemisphere) in the configuration space
of total persistence computed from three chordless cycle densities (triangles, squares, and pen-
tagons). Points are coloured by dimension. The target network is marked with a black cross.

In order to estimate the dimensionality of the target network, a k-nearest neighbors clas-
sifier (kNN) was used. The classifier identifies the & surrogates closest to the target network
in the surrogate configuration space (TP, T'P;, T FP,) by minimizing Euclidean distance. The
value of k£ was not fixed, but it was determined within each ensemble of surrogates, by finding
the value of £ with highest accuracy in classifying each surrogate in the ensemble. Specifi-
cally, the inferred dimension D* of the target network (G, maximizes the weighted frequency
f(D)= Zle w; 0p, p, where the normalized weights are inversely proportional to the distance
between the real network and the i-th surrogate G; in the (T'P;, T P, T'P,) space, and dp, p i8
the Kronecker delta function [23]. A schematic pipeline summary of the suggested methodol-
ogy is shown in Fig. 2a.

The closeness of the kNN approximation was measured with a congruency index reflecting
the fidelity of the surrogates with respect to the target network. The index is defined as the ratio
p = dy/d, where d, is the distance between the point in configuration space corresponding to
the target network and its closest neighbor, and d is the average of the distances between each
surrogate point and its closest neighbor. Hence, the value of p is large when the point cloud is
clustered while the target network falls far away from the clusters. For comparability reasons,



B=15D,y=27 B=15Dy=35

i
Ensemble of o~ .
surrogates N - 1.0
- ]
\ 4 ) 0.8
Filtration by densities Filtration by densities| 73 ©
of chordless cycles of chordless cycles 8 ™~ - 0.6
Ty g & Br2Shy=27 Rr2SDy=35
® 0.4
g
Total persistence Total persistence [ . 02

7654321

t | 0.0
kNN .
1 23456 7 1 23456 7
Predicted dimension

Inferred dimension

|

Figure 2: (a) Pipeline of our first method and (b) confusion matrices. Given a target network,
we generate an ensemble of surrogates and, for each of them (including the given network), we
compute densities of chordless cycles. We equip the graphs with these weightings and perform a
topological analysis using extended persistence. For each network, we compute total persistence
of cycles and use a kNN classifier in the configuration space to infer a dimensionality D* for the
real network. The upper two confusion matrices show results obtained with synthetic networks
for 5 = 1.5 D and two different values v = 2.7 and v = 3.5. This choice of 3 corresponds to the
small-world phase even ify > 3. The lower two confusion matrices show results for 5 = 2.5 D;
in this case, networks with v > 3 are large worlds. In each matrix, the rows correspond to
the true dimension D and the columns correspond to the inferred dimension D*. Thus, the
j-th box in the ¢-th row shows the fraction of i-dimensional networks that were classified as
j-dimensional. The darker the color, the greater the number. Each matrix is evaluated with 70
synthetic networks.

it is convenient to provide values of 1/p, as in Table 1, since, in most cases, 1/p takes values
between 0 and 1, with values closer to one indicating higher fidelity between the target network
and its surrogates.

As an evaluation step, the performance of the chordless cycle density filtration was tested
on synthetic target networks generated using the S” model for specific values of D (from 1



to 7), with different degree heterogeneities by varying the exponent (v = 2.7 and v = 3.5), and
two values of inverse temperature (3 = 2.5 D, corresponding to the high clustering regime, and
B = 1.5 D, corresponding to the low clustering regime). For each combination (D, , /3), ten
synthetic target networks were generated, and the above method was applied to each of them to
infer a dimensionality D*. Inferred dimensionalities were compared with the original dimension
D from which the target synthetic network was generated. Confusion matrices to visualize the
performance of the inference method are shown in Fig. 2b. Our predictions generate some small
confusion with contiguous values of D to the diagonal, especially for low values of 5 and ~,
but this is expected, due to the high heterogeneity of the degree distribution.

Estimated dimension values for selected real-world target networks using TDA are shown in
Table 1. The resulting values were compared with those obtained by implementing the method
described in [23], using the configuration space of mean cycle densities (C;, Cs, C},), which
have been recalculated using the D-GR procedure. Inverse values of the congruency index p are
shown. As additional information, 2D projections of the configuration space (1'F;, T'FP;, T'P,)
for the selected real-world networks are displayed in Figs. S1 and S2.

Table 1: Inferred dimensionality of real-world networks. Comparison of the inferred dimension
between three different methods: (1) Mean densities of chordless cycles; (2) TDA: Persistent
homology from chordless cycle density filtrations; (3) DIMNN: A neural network trained on a
database of synthetic networks. The 1/p values are inverses of the congruency indices; higher
values correspond to a closer match between the real network and its surrogate models.

Network Domain Densities TDA DIMNN
dim 1/p dim 1/p dim

Human2-C Biological (Connectome) 3 0.07 1 0.21 2
Human-M Biological (Metabolic) 3 019 4 046 3
Cargoships ~ Economic (Trade) 3 010 2 0.09 5
Bible-CO Informational (Language) 4 0.05 1 0.04 5
Jazz-CA Social (Collaboration) 2 006 2 041 2
EUEmail Social (Communication) 2 0.09 1 0.28 2
Friends-ON  Social (Communication) 6 006 6 0.19 7
Friends-OFF  Social (Offline) 8 072 8 0.28 10

2.2 Dimensionality estimation using neural networks

The method described in the previous section and the approach from [23] rely on a large set of
surrogate networks. For each new real network, one needs to generate a set of synthetic net-
works, compute their properties, and use a classifier to detect the dimension. As a consequence,
when a new network is considered, the entire pipeline must be repeated. In this section, we



propose an alternative based on a neural network that, once trained, can estimate dimensions
directly, even for very large networks, generalizing and adapting to new data without retraining.

Neural networks excel for such tasks, since our aim is to approximate an unknown function
yielding dimensionality values from a collection of predictors, including mean chordless cycle
densities and/or persistence of corresponding filtrations. For this purpose, we created a database
of synthetic complex networks called SYNNET, which we use to train a neural network, named
DIMNN, to estimate the dimensionality of real-world networks. The main advantage of this
method is that training in our database is performed only once and independently of specific
target networks. This avoids the need to generate surrogates for each case under study. In total,
we produced 792 000 synthetic networks generated from the S” model (see Section 4.3 for
more details). An 80%-20% training-validation split was used.

For each synthetic network in the database, chordless cycle densities were computed as in
Section 4.2 and averaged over all edges, as well as total persistence values obtained from the
corresponding filtrations, and, additionally, the first moment and the normalized second mo-
ment of the degree distribution (i.e., the expected square divided by the square of the expected
value). The normalized second moment is sensitive to degree fluctuations and so to very high
degree nodes: for highly heterogeneous networks, the ratio becomes large, while for homoge-
neous networks the ratio is close to 1. Hence, the normalized second moment tends to correlate
with . Likewise, the average density of triangles C'; serves as an approximation of the inverse
temperature [3.

Other relevant descriptors of complex networks that we integrated in our feature vectors are
minimum and maximum degree, and average neighbor degree, which is denoted by (k) (see
Section 4.2). This is a measure used to quantify degree-degree correlations in a graph, that is,
how the degree of a node relates to the degrees of its neighbors.

Feature vectors consisting of number of nodes, average degree, normalized second moment
of the degree distribution, minimum and maximum degrees, average neighbor degree, mean
chordless cycle densities C}, C, C), and total persistences 1'F;, T'P;, TP, of the corresponding
filtrations were fed into a residual multilayer perceptron (see Section 4.3 for details). Our
pipeline is shown in Fig. 3a. The highest classification accuracy obtained with DIMNN for
estimating the dimensionality in the range D = 1 to D = 10 was 83.00% on the validation set
with the full feature vector. Confusion matrices are shown in Fig. 3b.

We also performed an ablation study, selecting subsets of the feature vector for both training
and predictions. In Fig. 4, we show how the performance changes as a set of features is added
at a time. The lowest accuracy is obtained when we use only the vector of mean chordless
cycle densities with no other added features. Once degree-related properties are appended to
the feature vector —e.g., minimum, maximum, and average degrees—, the accuracy increases,
and incorporating topological information improves the accuracy further. In fact, combining
total persistence with mean chordless cycle densities maximizes the performance. In Table S1,
we show mean validation accuracies as well as the number of epochs and total training times,
and a corresponding heatmap is provided in Fig. S4.

Next, we show the results of applying the trained DIMNN to detect the dimensionality of
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Figure 3: (a) Pipeline of dimensionality estimation using DIMNN and (b) confusion matrices.
A multilayer perceptron is trained on a database of synthetic complex networks, with features
coming from filtrations by densities of chordless cycles concatenated with averages of chordless
cycle densities and degree-related graph features. The parameters of the trained model are
stored and the model is applied to target networks. Confusion matrices show results for the four
combinations of 3 < 2D versus > 2D, and v < 3 versus y > 3, from a range of values 1.2 D
to 5.0 D for 5 and 2.2 to 5.0 for . In each matrix, the rows correspond to the true dimension
D and the columns correspond to the inferred dimension D*.

real-world complex networks. We analyzed the 10 networks from the previous section and
predicted their dimensions. Table 1 compares the inferred dimension across three different
methods. One can observe that the predictions do not vary significantly, by only one or two
dimensions in most cases, which highlights the robustness of the trained neural network. We
incorporated another dataset of real complex networks [30]. First, we filtered out bipartite
and temporal networks, and restricted to networks with topological properties aligned with the
training dataset (Fig. S6). In total, we gathered 53 new networks with properties summarized in
Tables S3 and S4.

In Fig. 5a, we group the dataset by domain, showing that the Biological and Transportation
categories together account for more than half of all networks. We then apply our trained
neural network to predict the intrinsic dimensions of these real-world networks (see Fig. 5b).
Biological networks span a wide range of dimensions (from 1 through 6), whereas all networks
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Figure 4: Validation accuracies after five repetitions of DIMNN using the SYNNET database.
Blue: Accuracies obtained using total persistences 1'F;, TP, T'F,, plus cumulative features.
Orange: Accuracies using average cycle densities Cy, C, C,, plus cumulative features Green:
Accuracies obtained combining total persistences and mean cycle densities plus cumulative
features. Successive columns correspond to incorporating one after the other the following
additional features into the model: (i) no added features; (ii) number of nodes /NV; (iii) number
of nodes and average degree (k); (iv) number of nodes, average degree, and normalized second
moment (k%) /(k)?; (v) number of nodes, average degree, normalized second moment, minimum
degree K, and maximum degree ky,..; (vi) number of nodes, average degree, normalized
second moment, minimum degree, maximum degree, and mean average neighbor degree (k).

in the Software domain lie at dimension 1. A closer look at subdomains (Fig. S7) reveals that
web graphs —an Informational subdomain— also have dimension 1, while language networks
(also Informational) appear at dimensions 5 and 9.

Subsequently, to enhance confidence in the predictions made by DIMNN, a complementary
neural network model was trained. The base architecture was the same as for DIMNN, but
the loss function was changed to mean squared error (MSE), with the goal of transforming a
classification task into a regression task. Thus, contrary to DIMNN, the output range of the
regressor was not restricted to the interval [1,10]. Since regression yields continuous values,
each prediction was rounded to the nearest integer. We use the term pseudo-accuracy to denote
the accuracy obtained by the regressor after rounding its predictions to integers. Moreover,
residual connections were removed.

The regressor model exhibits behavior very consistent with that of DIMNN on synthetic

10
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Figure 5: (a) Number of networks for each network domain. (b) Inferred dimension of real
networks using DIMNN, grouped by network domain. The size of the marker indicates the
number of networks.

networks (Fig. S5). The percentage of agreement between the two models on the validation set
is 79.33% if total persistences are combined with mean chordless cycle densities, and reaches
88.86% when degree-related graph features are added to the training process. The discrepancy
between the two models is defined as the absolute value of the difference between their predicted
dimensions, computed only from those networks in the validation set on which the two models
do not agree. The median discrepancy value was found to be 1, with a mean of 1.05 and a
standard deviation of 0.2543 when a full vector of descriptors was fed to the model. Additional
details are given in Table S2.

When applied to the real-world network dataset described in Tables S3 and S4, the per-
centage of agreement between the two models was 64.15% over 53 networks with full feature
vectors in the models, with a median discrepancy of 1, a mean of 2.95, and a standard deviation
of 3.2032, indicating the occurrence of a few larger discrepancies.

3 Discussion

The main contribution of this work is to use densities of cycles (triangles, chordless squares,
and chordless pentagons) in a complex network as weights on its edges, and treat each of these
three weightings as a filtering function on the underlying graph. Persistence descriptors are
computed from the corresponding filtrations and used for estimating the dimensionality of the
given network. The expressiveness of edge-based filtrations defined via densities of chordless
cycles is further examined in [31], where they are compared with other motif-based filtrations
in graph isomorphism detection tasks.

Although topological invariants of graphs are crucial in the study of complex networks,
methods from topological data analysis have not been broadly used in this context [1, 32]. To

11



our knowledge, this is the first work that utilizes extended persistent homology of graphs for
dimensionality estimation in complex networks. Ordinary (as opposite to extended) persistent
homology is not well-suited for this purpose, since cycles become permanent in graphs. Us-
ing Vietoris-Rips simplicial complexes from graph distances is not suitable in our work either,
due to the small-world property, and clique complexes of graphs are not optimal either, since
triangles become invisible in clique complexes. The extended persistence or lifetime of a cycle
in a weighted graph is the difference between the largest weight and the smallest weight of the
edges and vertices that form the given cycle. The total lifetime for a set of linearly independent
cycles carries relevant information about the geometric structure of the graph.

Other persistence descriptors could be used for analytical purposes. We found persistence
of connected components along the filtrations to be less expressive than its cycle-based counter-
part. We also remark that the expressivity of cycle persistence is influenced by certain network
parameters, such as inverse temperature (). Indeed, in the point cloud shown in Fig. 1, low
values of 3 tend to separate network dimensions less prominently.

Our results show that total extended persistence computed by means of chordless cycle
filtrations yields dimensionality estimates which are comparable with those obtained in previous
work [23]; see Table 1. Moreover, total persistence improves the accuracy of a neural network
classifier if added to feature vectors containing averages of chordless cycle densities and other
graph features such as average degree, as shown in Fig. 4 and in Table S1. Our conclusion is
that TDA enhances the performance of dimensionality estimation by means of a neural network,
even in the presence of average cycle densities and degree-related graph descriptors.

In fact, estimating network dimensionality without the need to generate surrogates is another
major advance made in this article. For this purpose, a universal database of synthetic graphs
has been generated from a uniformly distributed range of parameter values. Real-world network
dimensionality estimates can then be obtained by running a neural network model trained on our
database. This approach considerably reduces the computation time of estimations as well as
the amount of memory required for this task. It is far more ambitious than creating an ensemble
of surrogates for each given real network under study, as done in the first part of our work.

Fig. 4 highlights the importance of the normalized second moment (k?)/(k)? in the accu-
racy of a neural network classifier for latent dimension. This could be due to the fact that the
normalized second moment correlates with the exponent ~, and knowledge of /5 and - is crucial
for dimensionality estimation. An approximation of (3 is provided by the average density of
triangles C', which is also correlated with the total persistence value 7'F,.

The agreement between two independently trained neural network models, each optimized
with a different loss function, is a strong indicator of robustness and generalization. When
models trained with distinct objective functions (in our case, cross-entropy for classification
and mean squared error for regression) converge to similar predictions on previously unseen
data, it is unlikely that their performance is due to overfitting specific patterns or uninformative
noise in the training set. Rather, such an agreement suggests that both models are approximat-
ing the same underlying relationship between the input features (topological and density-based
descriptors) and the latent embedding dimension. It is remarkable that a neural network trained

12



on synthetic networks yields results closely aligned with earlier work on the latent dimension
of real-world networks. Moreover, the discrepancies found between the dimensionality pre-
dictions of the two models may serve to detect potential out-of-distribution real networks with
respect to the D-GR model in the study dataset, which therefore deserve further examination.

Subsequent research could focus on optimizing the accuracy of a neural network for dimen-
sionality classification of synthetic networks and enhancing the performance of latent dimen-
sion estimates for real-world networks. On the one hand, this could be achieved by enriching
the training database with a wider range of complex network shapes. On the other hand, the
neural network architecture could be optimized for the intended tasks. This article only pro-
vides a proof of concept for the benefits of a cycle-based filtration in TDA and the feasibility
of our novel, deep-learning assisted, dimensionality estimation method. While our architecture
(Fig. S3) has demonstrated a capability to perform in a way consistent with previous work [23]
and has achieved an accuracy above 83% on synthetic networks, improving its overall effective-
ness remains a challenge to be addressed in future work.

4 Methods

4.1 Multidimensional geometric soft configuration model

The SP /HP*! model. 1In the S” model, a node i is assigned two hidden variables: a hid-
den degree k;, quantifying its importance or popularity, and a position v; in a D-dimensional
similarity space, represented as a D-sphere. The probability of connection between any pair
of nodes ¢+ and j follows a gravity law, in which similar nodes are angularly closer and, thus,
probably connected [27]. Specifically, nodes ¢ and j are connected with probability

1

RAG;
1+ | ——25
(prit;) P

where D is the dimension of the model, 5 controls the level of clustering of the network and
the coupling of the network with the underlying metric space, j+ controls the average degree,
and Ad,; is the angular distance between nodes 7 and j, which are assigned positions v; and
v; on the D-sphere. The radius R of the sphere is set such that the density of /N nodes is 1
(without loss of generality). This yields R = [I'(2) N/ (QW)%] VP Wwhere T is the gamma
function [27]. For 8 < D, networks are unclustered in the infinite-size limit, whereas for 5 > D
networks exhibit finite clustering in the thermodynamic limit. Finally, the parameter . controls
the average degree of the network and is defined as

_ BT(R)sin (%)
ort3 (k)

Pij = (D

2)
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The S” model is isomorphic to the purely geometric H”™! model [25] in (D +1)-hyperbolic
space by mapping the hidden degree into the radial coordinates as

2k . 2
ri=R— 2™ with R=2In % . 3)
D ko (u3)

A network generation procedure following the S” /HP+! model is described in Algorithm 1
in Supplementary Information, where a cutoff «. is calculated to prevent excessive fluctuations
in the largest expected degrees when v < 3; see [33].

Microcanonical formulation of S” model. A microcanonical version of the S* model was
first proposed in [29], where it was called geometric randomization model (GR). The GR works
on the sequence of observed node degrees and assigns node positions randomly in the similarity
space. The network is rewired to maximize the likelihood that the new topology is generated by
the S! model while preserving the observed degrees and, thus, the total number of edges.

In this work, we extended GR to higher dimensional similarity spaces, which we call D-GR.
We used D-GR to generate synthetic networks for dimensionality estimation when investigat-
ing the relationship between total persistence in homological dimension 1 computed from three
types of chordless cycles filtrations and the inferred dimension (see Section 2.1). We want to
highlight the main difference with respect to the previous approach [23]. In [23], the authors
infer the set of degrees « from a given network and generate synthetic networks with Eq. (1)
given the parameters § and D. Although in [23] the degree distribution of the generated surro-
gates is very similar to that of the input network, the D-GR procedure is more constrained and
maintains the exact degree values of the input network.

In the D-GR model, we assign to each node ¢ a random position in the D 4 1 dimensional
Euclidean space v; € RP*! with ||v;|| = R. The nodes are uniformly distributed on the D-
sphere using Marsaglia’s algorithm [34].

The rewiring procedure is carried out with the Metropolis-Hastings algorithm, aimed at
finding the adjacency matrix that maximizes the likelihood function

£=1Irn—py) 4)

1<j

where p;; comes from Eq. (1) and a;; are elements of the adjacency matrix. The method pro-
ceeds as described in Algorithm 2 in Supplementary Information.

As shown in [29], the probability of swapping links between nodes ¢ and j and between
nodes [ and m is given by

L, (Aeij Aelm)ﬁ )

L. \ Ay A6,
Notice that Eq. (5) does not depend on the dimension D.
To validate our approach, we generated synthetic networks with known dimension using the
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SP model (see Algorithm 1 in the Supplementary Information), with the following parameters:
the number of nodes (/V) was set to 500 and the average degree (k) to 10; dimension (D) ranging
from 1 to 7; the inverse temperature parameter (/3) taking values 1.5 D and 2.5 D; and the power-
law exponent () taking values 2.7 and 3.5. For each set of parameters, we generated 10 network
realizations, thus obtaining 280 synthetic networks. For each of these, we produced a set of
surrogates using the D-GR method (Algorithm 2 in the Supplementary Information), scanning
over different values: dimension (D) ranging from 1 to 7 and rescaled inverse temperature 3/D
ranging from 1.2 to 3.0 with steps of 0.1. The geometric randomization was repeated 10 times,
yielding 1330 surrogates per synthetic network. At the end of this procedure, we obtained a
total of 372 400 networks, that were used in the confusion matrices in Fig. 2.

To infer the dimension of real networks, we proceeded in a similar fashion. We applied
the D-GR method with the same set of parameters described above, yielding a total of 1330
surrogates for each real network. Inferred dimensions of real networks are described in Table 1.

It is worth noting some limitations of this method. The acceptance probability depends on
the parameter 3. For very large values of (3, the acceptance ratio becomes binary, i.e., moves
that increase the likelihood are almost always accepted, and those that decrease it are almost
always rejected, and the likelihood plateau cannot be reached. Thus, the algorithm is restricted
to moderate values of 3 and corresponding values of the clustering coefficient. Techniques such
as simulated annealing or parallel tempering can restore good mixing in the large j regime. In
this work, however, we restrict our attention to real networks whose topology is well-captured
by a moderate value of 3.

Moreover, even though the S” /HP*! model captures a wide range of topological network
properties, some real networks may lie outside the range of values and are located further
away from the surrogate networks in the persistence (1'F;, T'Ps, T'P,) and mean cycle density
(Cy, Cs, Cp) configuration spaces.

4.2 Graph features

Densities of chordless cycles. Let G = (V, E) be a graph and e;; = {v;,v;} be an edge
between nodes v; and v; in F, with degrees k; > 1 and k; > 1, respectively. The density
of triangles corresponding to the edge e;;, also called edge clustering coefficient [35], is the
number #A,;; of edge triangles in ' containing e;; divided by the maximum possible number
of triangles in G containing e;; given the degrees k; and k;, that is,

# D
min(ki, k]) —1

Ct(eij) = (6)
An edge cycle is chordless if there is no edge between its nodes except those that form the cycle.
Density of squares, denoted C;(e;;), is defined by dividing the number #0J;; of chordless edge
squares in GG containing e;; by the maximum possible number of such squares given the degrees
k; and k; and the existing triangles through e;; in G. To define the density of pentagons C,(e;;)
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per edge ¢;;, we count the number #O;; of chordless pentagons containing e;; and normalize
it by the maximum possible number of such pentagons, assuming known the degrees of v; and
v; and the degrees of their respective neighbors. One could also define similar densities per
node. However, in [35], the authors found the definitions relative to edges to be more stable
with respect to degree heterogeneity than those relative to nodes.

Regarding the computational cost of computing chordless cycles, the time complexities
for computing densities of triangles, squares, and pentagons are O(N(k)?), O(N (k)?), and
O(N (k)*), respectively, where (k) is the average degree and N = #F is the number of edges.
In sparse graphs, (k) < N. Even though the computational cost for large graphs might be high,
the computations can be easily parallelized or implemented on GPU with CUDA [36].

Extended persistent homology. In this work, we use persistent homology to extract infor-
mation from a graph G equipped with a filtration {G,}, where t is a real-valued parameter.
Persistence refers to the evolution of cycles along the values of the given filtration.

Homology of graphs is a special case of simplicial homology of simplicial complexes [37].
In the case of graphs, homology is determined by two numbers, called Betti numbers, namely
the number [, of connected components and the cardinality /3; of a maximal set of linearly
independent cycles. Cycles are finite formal sums z = > \;e; of oriented edges with coeffi-
cients \; = +1 such that > \;0e; = 0, where, for an edge e € F from vy to vy, we denote
Ode = v; —vy. Thus, cycles are algebraic representations of closed edge paths in the given graph.

In a filtered simplicial complex { K}, the birth of a cycle z of any dimension is the ¢-value
at which z appears in K, and the death of z is the t-value at which z becomes the boundary of a
higher chain. Hence, in the case of a filtered graph, the birth of a cycle z is the ¢-value at which
z is formed, and the death value is infinite, since a graph does not contain higher simplices.

To avoid infinite persistence values, we use extended persistence, as in [38, 39]. For a graph
G = (V, E) equipped with a node weighting wy : V' — R, the sublevel filtration {G,} is defined
as Gy = (Vi, Ey), where V; = {v € V | wy(v) <t} and E} is the subset of £ spanned by V;, and
the superlevel filtration {G'} is defined as G* = (V! E"), where V! = {v € V | wy(v) > t}
and E' is the subset of E spanned by V. Then the extended persistence of a cycle z in G is
defined as |d — b|, where b is the birth value of z in the sublevel filtration {G;} and d is the
birth value of z in the superlevel filtration {G*}. Note, however, that no edge weighting can be
defined on G compatibly with wy which is consistent with both {G;} and {G'}, in general.

In our work, chordless cycle filtrations are defined by means of edge weightings, not node
weightings. Although it is perfectly possible to exchange the roles of nodes and edges in the
definitions of sublevel and superlevel filtrations, extended persistence calculations have been
carried out using the Python library Gudhi [40], which only provides software for computing
extended persistence of graphs with a weighting on their nodes (see Section 2.1 of [39]). There-
fore, we introduce a method to replace a graph G = (V, ) equipped with an edge weighting
wg: E — R by a topologically equivalent graph G’ = (V' E’) in which ' C E’ and endowed
with a node weighting wy: V' — R yielding the same extended persistence diagram as G.

To achieve this, we split each node v; € V of degree d; into d; distinct nodes v;; € V’,
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where j ranges over the subindices of the neighbors of v;. Each node v; ; is assigned weight
wy(v; ;) = wg(e;j) where e;; = {v;,v;}. The set E' contains horizontal edges {v; ;,v;,;} for
v; ; with a fixed 7 value, sequentially from smallest weight to largest, as in Fig. 6. Hence, the
set of horizontal edges in E’ is in bijective correspondence with F, and the weighting wy- is
consistent with wg on all edges of F, in both the sublevel and superlevel filtrations of G’.

We call G’ a degree-splitting subdivision of G. The graph G’ is then fed into Gudhi [40] as a
node-weighted graph, and total persistence > |d; — b;| of cycles in the corresponding extended
persistence diagram is recorded (relative cycles provided by the Gudhi software, if any, are
discarded). The graph G’ has the same Betti numbers as G at the same thresholds, since G is
obtained from G’ by contracting vertical edges, which does not change homology.

be €b
e We g * Weg
€c *—1 Ce
We ws Ws Ws
C
a b c dc ¢ C
[ @ w4y Wy
w1 w9
w by e—ed,
w3 4 ws w3
b, Ch
wao L 4 "wz

a) g——o ba
w1 w1

Figure 6: Degree-splitting subdivision of a graph G (left), converting an edge weighting wg into
a node weighting on G’ (right) that induces wg on the horizontal edges. In this example, two
generating cycles with birth-death coordinates (4, 2) and (6, 3) yield a total persistence of 5.

Degree-related graph features. The following descriptors from complex network theory are
calculated to train the models used in Section 2.2. For each graph G = (V, E), we consider
the average degree of its nodes, (k) = (1/#V)>_, ., deg(v). The minimal degree k., and
maximal degree k., are also considered. The average neighbor degree of G is the average of
the mean neighbor degree of its nodes:

1 1
(Fnn) = i vezv (m ;deg(u)>.

The normalized second moment of G is defined as the quotient (k?)/(k)?, where we denote
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(K*y = (1/#V) >, v deg(v)?. Its significance is due to the fact that it correlates inversely
with the power-law exponent v in scale-free networks [41].

4.3 Database and neural network architecture

For a better understanding and comparison of the results, we used the same real-world networks
as those reported in [23]. These are undirected networks with fewer than 100 000 nodes from
very different domains. Tables S3 and S4 include a detailed description of the data as reported
in [23].

SYNNET dataset for inferring dimension using neural networks. Deep networks require
large amounts of data to avoid overfitting and to learn robust features, due to their large number
of parameters. In fact, neural networks generally require large datasets to achieve high perfor-
mance [42, 43]. However, with the S” model, we tackle this challenge by generating plenty of
synthetic graphs with known dimensions to train neural networks.

We prepared a dataset of 792 000 synthetic networks generated using the S” model by means
of the method described in Supplementary Algorithm 1 with the following input parameters:
dimension (D) from 1 to 10; number of nodes (V) with values 200, 400, 750, 1000, 2500;
power-law exponent (y) with values 2.2, 2.4, 3.0, 4.0, 5.0; average degree ((k)) with values 4,
8, 12, 25; and rescaled inverse temperature (/D) with values 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.5,
2.8, 3.0, 3.5, 4.0, 5.0. For each set of parameters, 66 network realizations were made. The
dataset covers a wide range of network properties —in particular, (k,,) € [4.4,300.8],C; €
[0.073,0.891], C, € [0.00505, 0.24193], C,, = [0.00010, 0.02165].

The database contains a set of feature vectors for each network, aiming for its use in a
multilayer perceptron (MLP), which is described in Section 4.3. The following descriptors
were computed, resulting in a 12-dimensional feature vector: N, (k), (k?)/(k)?, kmin» Kmax
(kon)» Cy, Cs, C,, TP, TP;, TP,, as described in Section 4.2. Once a MLP is trained, the same
features are computed for real networks in order to predict their dimensions.

It is worth mentioning that some real networks could have very distinct topological proper-
ties that are not included in our dataset. Hence, neural networks might be prone to misclassi-
fying them. We can overcome this issue by extending the range or parameters used to generate
the dataset. In the released code, we provide a check for the out-of-distribution parameters.

Neural network DIMNN model. For the classification task, a deep multilayer perceptron
(MLP) architecture combined with the techniques of residual networks (ResNets) was used, as
in [44]. Deeper neural networks are capable of capturing highly non-linear relationships in data,
but training very deep architectures often leads to optimization difficulties such as vanishing
gradients. ResNets address these issues through the introduction of skip (residual) connections,
which add the input of a layer to its output. Such mappings facilitate gradient flow and stabilize
training, enabling the construction of deeper and more expressive models [45].
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The proposed architecture integrates residual connections into a fully connected MLP, al-
lowing the model to benefit from the depth of representation while maintaining stable training
dynamics. The network comprises 21 hidden layers with ReLu activations, and the configura-
tion depicted in Fig. S3. The output layer uses a softmax activation. A dropout regularization of
50% is applied throughout the network to mitigate overfitting and enhance generalization. The
training process was carried out using AdamW as optimizer, with a learning rate of 0.0005 and
incorporating early stopping to prevent overfitting. This architecture benefits from the expres-
sive power of deep learning while incorporating the robustness of residual learning, making it
convenient for the proposed classification task.
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1. DIMENSIONALITY ESTIMATION OF REAL NETWORKS WITH PERSISTENCE DESCRIPTORS
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FIG. S1: 2D projections representing an ensemble of 1330 surrogates for each real network in the phase space of total
persistence computed from three chordless cycle densities (triangles, squares, and pentagons). Points are colored by
dimension, and the target network is marked with a black cross. Part 1 of 2.
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FIG. S2: 2D projections representing an ensemble of 1330 surrogates for each real network in the phase space of total
persistence computed from three chordless cycle densities (triangles, squares, and pentagons). Points are colored by
dimension, and the target network is marked with a black cross. Part 2 of 2.



2. NEURAL NETWORK ARCHITECTURE AND PREDICTIONS
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FIG. S3: Schematic representation of the DIMNN neural network architecture. Boxes indicate layers within the MLP,
with the number above each box specifying the number of neurons in that layer. Blue arrows are used to denote skip
(residual) connections. Dashed gray boxes denote repeated layer blocks, with the repetition count indicated above
each block. The output layer is shaded in gray and employs a softmax activation, yielding a 10-dimensional output
corresponding to the number of classes in the classification problem.

TABLE S1: Validation accuracies after five repetitions of DIMNN, a ResNet training with AdamW optimizer us-
ing the SYNNET network database. Columns correspond to features included in each model: N number of nodes,
(k) average degree, (k?)/(k)? normalized second moment, ki, minimum degree, kpya, maximum degree, (k,,) mean
average neighbor degree, C; average triangle density, Cs average chordless square density, C, average chordless pen-
tagon density, TF;, T P,, TP, total persistence in homological dimension 1 computed from chordless cycle filtrations
(triangles, squares, and pentagons, respectively).

Q

N (k) (k*)/{k)? kmin kmax (knn) C¢ Cs Cp TP, TPs TP, Accuracy (%) Time (sec) Epochs

v v/ 53.20 £ 2.15 7529.71 73.40

v v v/ 66.79 £ 0.67 7582.86 73.60
v v v v/ 68.95 £ 2.08 5718.05 55.50
v v v v v/ 81.53 £ 0.67 6372.85 61.40
v v v v Vv v v/ 80.96 £ 0.46 5449.96 52.75
s v v oY v v vV 82.32+£1.39 4890.98 47.40
v v oV 56.06 £ 1.17 8326.58 74.40

v v o v v 59.02+273 6348.86 65.00
v v v v v 59.45 £ 1.52 6015.84 60.00
v v v v v v 71.60 £ 2.30 6563.73 64.67
v v v v v v v oV 70.74 £ 2.57 6663.77 65.80
v v v v v v v v oV 73.10 £ 1.19 5592.25 54.80
v v v v v v 72.64 + 3.32 6518.76 59.20

v v v v v v v 74.57 £ 1.86 6343.14 57.00
v v v v v vy v 74.39 + 2.76 7928.53 59.40
v v v v v v v v 81.83 £0.44 7682.31 53.00
v v v v v v Vv v v v v 814140.38 5778.89 37.60
v v v v v v v v v v v v 83.00+£0.38 4796.51 42.60
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FIG. S4: Impact of cycle density and TDA features on DIMNN validation accuracy on the SYNNET dataset. Heatmap
of mean validation accuracy for five progressively enriched input network features. The results are averaged over five
neural network initializations.

TABLE S2: Comparative measures for each combination of graph features between the predictions of the DIMNN
classifier and a regressor with the same architecture and mean squared error as loss function, averaged over five
repetitions. Discrepancy is computed from the collection of SYNNET networks in the validation set on which the two
models do not agree. Agreement (%): Percentage of agreement between the two models; Median: Median discrepancy;
@3: Third quartile of discrepancy; Mean: Mean of discrepancy; Std: Standard deviation of discrepancy.

Descriptors Agreement (%) Median Q3 Mean  Std
Cy,Cs,Cp 44.31 1.0 2.0 1.41 0.69
N Cy, Cs, Cy 67.12 1.0 1.0 1.19 0.46

N, (k), ct,cs,c 73.18 1.0 1.0 1.18 0.45

N, (k), (k )/() ,Ct,Cs,Cy 88.45 1.0 1.0 1.04  0.24

N, (k), (k >/< )%, kmin, kmax, Ct, Cs, Cp 88.19 1.0 1.0 1.06  0.30
N( Y, (k) /{k)?, kmin, kmax, (kan), Ct, Cs, Cp 88.90 1.0 1.0 1.05 0.27
TP, TP, TP, 58.83 1.0 1.4 1.30 0.63
N,TP,, TP, TP, 67.75 1.0 1.0 1.22 0.56
N, (k),TP,, TP, TP, 71.06 1.0 1.0 1.18 0.48
N, (k), (k*)/{k)2, TP,,TPs, TP, 79.14 1.0 1.0 1.12 0.39
N, (k) (E*)/(E)?, kmin, kmax, TP, TPs, TP, 77.70 1.0 1.0 1.12 0.40
N, (k) (E*)/ (k)2 kmin, kmax, (kun), TP;, TPs, TP, 80.43 1.0 1.0 1.11 0.40
Ci,Cs,Cp, TP, TPs, TP, 79.33 1.0 1.0 1.05 0.24
N,C4,Cs,Cp, TP, TP, TP, 79.62 1.0 1.0 1.06 0.27
N, (k),Cy,Cs,Cp, TP, TPs, TP, 78.65 1.0 1.0 1.05 0.24
N, (k), (k*)/(k)?,Cy,Cs,Cp, TP, TPs, TP, 88.38 1.0 1.0 1.04  0.24
N, (kY, (k*)/(k)2, kmin, kmax, Ct, Cs, Cp, TPy, TPs, TP, 87.79 1.0 1.0 1.06 0.28
N, (k), (k*)/(k)2, kmin, kmax, (kan), Ct, Cs, Cp, TPy, TPs, TP, 88.86 1.0 1.0 1.05 0.25
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FIG. S5: Averages and standard deviations of pseudo-accuracy on a validation set after five runs of a neural network
regressor using the SYNNET database. Pseudo-accuracy refers to the fact that the prediction of a regressor is a
real number, which is approximated to the nearest integer. Blue: Accuracies obtained using total persistences TP,
TP, TP,, plus cumulative features. Orange: Accuracies using average cycle densities Cy, Cy, Cp, plus cumulative
features. Green: Accuracies obtained by combining total persistences and mean cycle densities plus cumulative
features. Successive columns correspond to incorporating one after the other the following additional features into
the model: (i) no added features; (ii) number of nodes N; (iii) number of nodes and average degree (k); (iv) number
of nodes, average degree, and normalized second moment (k2)/(k)?; (v) number of nodes, average degree, normalized
second moment, minimum degree knyi, and maximum degree kmax; (vi) number of nodes, average degree, normalized
second moment, minimum degree, maximum degree, and mean average neighbor degree (kyy).



3. TOPOLOGICAL PROPERTIES OF REAL NETWORKS AND THEIR INFERRED DIMENSIONS

We compile a dataset of 53 real-world networks from various domains. For more details about each network, we

refer to [I] and [2].
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FIG. S6: Distributions of the topological properties of real networks. The dotted black lines in each panel indicate
the minimum and maximum value of a given feature in the training dataset.

1000 2000 3000 5 1IO

N (k2)/tk)?
T T T
L 1 1 1
1 1 1
1 1 1
i 1 1 1
i 8 i i
1 1 1
L 1 1 1
6 : :
1 1 :
i 1 4 1 1
i i i
r 1 2 1 1
1 I 1
1 1 1
L L 11 0 L L L 1 1
5 10 15 0 500 1000 1500 00

kmin kmax

T
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2

0 1000 2000
TP

0

500 1000
TP,




UOTISUSWI(] PALIdJUL

@) o 0 Of
O -
o o o g
O -
o o g
o o -
o o 1
co o @
.=
~ o8 BE © 1
@ .5 B o &
282 39§
gom.mns
S g =232 d o0 15} J
0 9 &L QU d
.lcnoer
AEg S e -
00000 © © ]
1 1 1 1 1
o e} © <t 9\l
i

uodsuely, orqng

j1odary

2IeM1J0S

SuIHO

UOTIROTUNIUIOY)

uoreIoqe[o)

ydeib qom

abenbue]

uone)

apeliy,

SUOT]0RISIUT U910

or[oqeIe N

J11eueH

QuwI0]109uu0)

FIG. S7: Inferred dimension of real networks grouped by subdomain category.



TABLE S3: Properties of real networks, with network clustering, path and accuracy measures, and their dimensionality
inferred with the DIMNN model. Part 1 of 2.

Network Domain Subdomain N (k) (E)?/(k)? kmin kmax
Binary interactomes (various species; 2012) Biological Protein interactions 974 4.72 3.52 1 55
Uetz screen yeast interactome (2000) Biological Protein interactions 263 2.14 1.86 1 17
Reguly yeast interactome (2006) Biological Protein interactions 1213 4.21 2.11 1 40
Ito core yeast interactome (2001) Biological Protein interactions 426 2.45 3.44 1 56
Yu yeast interactomes (2008) Biological Protein interactions 964 3.09 3.86 1 85
C. elegans interactomes (2009) Biological Protein interactions 269 21.58 1.55 1 79
Binary interactomes (musculus mouse; 2012) Biological Protein interactions 537 3.83 2.99 1 59
Binary interactomes (homo sapiens; 2012) Biological Protein interactions 3155 3.58 3.31 1 131
Binary interactomes (musculus mouse; 2012) Biological Protein interactions 705 3.53 292 1 59
C. elegans interactomes (2009) Biological Protein interactions 2214 3.20 4.50 1 99
Binary interactomes (musculus mouse; 2012) Biological Protein interactions 890 2.99 4.50 1 76
C. elegans interactomes (scaffold, 2009) Biological Protein interactions 345 2.32 2.67 1 28
Yu yeast interactomes (2008) Biological Protein interactions 1647 3.06 3.82 1 89
C. elegans interactomes (genetic, 2009) Biological Protein interactions 683 4.52 2.39 1 56
C. elegans interactomes (WI-2004, 2009) Biological Protein interactions 1084 2.96 4.42 1 74
C. elegans interactomes (WI-2007, 2009) Biological Protein interactions 1108 2.71 4.42 1 84
Human2-C Biological Connectome 496 32.41 1.17 1 80
Human-M Biological Metabolic 1436 6.57 4.77 1 224
Malaria var DBLa HVR networks Biological Genetic 291 22.34 1.48 1 61
Malaria var DBLa HVR networks Biological Genetic 298 18.01 1.37 1 48
Cargoships Economic Trade 821 10.58 3.12 1 173
Atlas of Economic Complexity export network Economic Trade 774 4.59 2.70 1 43
Atlas of Economic Complexity export network Economic Trade 866 5.85 2.81 1 48
Garfield’s citation networks (2001) Informational Citation 1024 9.60 3.95 1 232
AMiner citation network (2009) Informational Citation 1350 6.01 2.08 1 96
Roget’s Thesaurus (1879) Informational Language 994 7.32 1.44 1 28
Bible-CO Informational Language 1707 10.61 3.92 2 364
WebKB graphs (1998) Informational Web graph 269 3.60 4.36 1 74
WebKB graphs (1998) Informational Web graph 280 3.95 2.75 1 57
WebKB graphs (1998) Informational Web graph 343 4.04 5.43 1 129
Friends-OFF Social Offline 2539 8.24 1.27 1 27
Friends-ON Social Communication 2000 16.10 2.72 1 273
EUEmail Social Communication 986 32.58 2.29 1 345
Jazz-CA Social Collaboration 199 29.23 1.51 1 189
Javax, Java, Jung, AppEngine dependencies (2010) Technological Software 1031 8.55 3.29 1 208
Software function-callgraphs (AbiWord, 2002) Technological Software 1035 3.32 327 1 89
Software function-callgraphs (VTK, 2002) Technological Software 771 3.52 3.66 1 83
Javax, Java, Jung, AppEngine dependencies (2010) Technological Software 435 5.99 2.59 1 109
Guava library dependencies (2012) Technological Software 457 4.05 3.85 1 62
World subways (2009) Transportation Public Transport 266 2.32 1.17 1 7
European airline network Transportation Airport 417 14.16 3.10 1 112
FAA Preferred Routes (2010) Transportation Airport 1226 3.93 1.87 1 34
US airport network (top 500; 2002) Transportation Airport 500 11.92 4.51 1 145
London Transport Network Transportation Public Transport 369 2.33 1.19 1 7
India bus routes (2016) Transportation Public Transport 1103 3.90 1.68 1 54
India bus routes (2016) Transportation Public Transport 1554 4.63 1.84 1 52
India bus routes (2016) Transportation Public Transport 1087 5.43 3.41 1 183
World subways (2009) Transportation Public Transport 217 2.41 1.22 1 9
World subways (2009) Transportation Public Transport 392 2.23 1.11 1 6
World subways (2009) Transportation Public Transport 299 2.38 1.22 1 8
World subways (2009) Transportation Public Transport 209 2.30 1.16 1 7
India bus routes (2016) Transportation Public Transport 1009 3.19 1.49 1 15
World subways (2009) Transportation Public Transport 433 2.19 1.13 1 8
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TABLE S4: Properties of real networks, with network clustering, path and accuracy measures, and their dimensionality
inferred with the DIMNN model. Part 2 of 2.

Network Cy Cs Cp TP TP, TP, Acc. D
Binary interactomes (various species; 2012) 0.1220 0.1228 0.0031 77.7921 49.5511 1.5393 1.000 1
Uetz screen yeast interactome (2000) 0.0262 0.0251 0.0020 1.7500  2.1659 0.2455 1.000 1
Reguly yeast interactome (2006) 0.6015 0.0761 0.0020 227.0699 107.9266 3.2453 0.970 2
Ito core yeast interactome (2001) 0.1345 0.0875 0.0034 11.6167 15.8933 0.7123 1.000 1
Yu yeast interactomes (2008) 0.1217 0.1189 0.0015 39.2622 55.9388 1.0447 1.000 1
C. elegans interactomes (2009) 0.4635 0.1516 0.0021 149.4319 63.0049 0.7239 0.551 2
Binary interactomes (musculus mouse; 2012) 0.1646 0.1508 0.0027 40.5982 50.2391 1.2342 1.000 1
Binary interactomes (homo sapiens; 2012) 0.1933 0.1161 0.0013 301.0725 258.7704 3.5773 0.956 1
Binary interactomes (musculus mouse; 2012) 0.1744 0.1392 0.0023 50.8065 55.3945 1.2488 0.993 1
C. elegans interactomes (2009) 0.0728 0.0519 0.0010 82.7588 70.5024 1.2652 1.000 1
Binary interactomes (musculus mouse; 2012) 0.3684 0.0608 0.0015 82.2267 35.0576 0.9259 0.757 4
C. elegans interactomes (scaffold, 2009) 0.0803 0.0360 0.0034  6.8333  3.9875 0.4651 1.000 1
Yu yeast interactomes (2008) 0.1236 0.0762 0.0013 76.3197 64.8148 1.7078 1.000 1
C. elegans interactomes (genetic, 2009) 0.4244 0.0840 0.0019 153.5247 67.5384 1.5513 0.661 5
C. elegans interactomes (WI-2004, 2009) 0.0843 0.0689 0.0011 38.5890 40.9450 0.6395 1.000 1
C. elegans interactomes (WI-2007, 2009) 0.0727 0.0666 0.0015 30.0982 31.0904 0.7986 1.000 1
Human2-C 0.5378 0.1061 0.0009 323.3771 114.7546 0.7963 0.825 2
Human-M 0.5866 0.0770 0.0011 449.3374 177.3222 3.8313 0.987 3
Malaria var DBLa HVR networks 0.6054 0.1240 0.0018 179.7420 58.5849 1.0851 0.986 2
Malaria var DBLa HVR networks 0.4510 0.0710 0.0019 161.5944 31.7981 0.6912 0.870 6
Cargoships 0.5482 0.0873 0.0014 326.5759 131.8263 2.1144 0.775 5
Atlas of Economic Complexity export network 0.4882 0.0525 0.0022 109.7275 31.6048 1.5757 0.669 5
Atlas of Economic Complexity export network 0.5089 0.0759 0.0019 165.7158 57.9047 1.7043 0.734 4
Garfield’s citation networks (2001) 0.3539 0.0842 0.0013 412.2120 162.5747 1.5339 1.000 1
AMiner citation network (2009) 0.3401 0.0841 0.0027 409.2855 152.9663 5.1329 0.789 3
Roget’s Thesaurus (1879) 0.1964 0.0385 0.0018 307.8835 71.9862 2.8535 0.688 9
Bible-CO 0.6259 0.0347 0.0005 596.0701 122.7898 1.5247 0.828 5
WebKB graphs (1998) 0.3710 0.0731 0.0046 45.2202 20.3393 1.4145 1.000 1
WebKB graphs (1998) 0.4226 0.1367 0.0034 39.4806 28.7375 1.2093 0.689 1
WebKB graphs (1998) 0.2513 0.1365 0.0040 57.6453 44.9548 1.7253 1.000 1
Friends-OFF 0.1785 0.0282 0.0013 794.9442 144.4772 5.0352 0.712 10
Friends-ON 0.5241 0.0543 0.0007 878.8888 227.5659 1.8765 0.996 7
EUEmail 0.4735 0.1363 0.0009 572.1027 228.7467 1.1775 1.000 2
Jazz-CA 0.7568 0.1201 0.0010 133.8771 69.7319 0.6359 0.994 2
Javax, Java, Jung, AppEngine dependencies (2010) 0.4270 0.1397 0.0021 498.0842 235.9069 4.8104 1.000 1
Software function-callgraphs (AbiWord, 2002) 0.1398 0.0966 0.0037 78.2229 65.4463 2.6173 1.000 1
Software function-callgraphs (VTK, 2002) 0.1555 0.0939 0.0034 67.1126 47.4782 1.7499 1.000 1
Javax, Java, Jung, AppEngine dependencies (2010) 0.4683 0.1547 0.0041 154.3303 103.4080 3.3866 0.996 1
Guava library dependencies (2012) 0.6199 0.1396 0.0016 73.3721 55.9591 0.6418 0.976 1
World subways (2009) 0.0642 0.0284 0.0046  7.9000 4.9694 0.5619 0.389 10
European airline network 0.5508 0.1690 0.0018 165.0670 108.7857 1.2235 1.000 1
FAA Preferred Routes (2010) 0.1089 0.0527 0.0047 130.2926 70.0767 6.0710 0.930 1
US airport network (top 500; 2002) 0.8137 0.0907 0.0004 117.4738 106.0472 0.7758 1.000 1
London Transport Network 0.0528 0.0315 0.0023  9.9000  7.4528 0.5900 1.000 1
India bus routes (2016) 0.2469 0.0568 0.0053 225.6782 83.1205 7.2559 0.524 2
India bus routes (2016) 0.2359 0.0735 0.0030 359.0307 158.5868 6.9280 0.581 2
India bus routes (2016) 0.3333 0.0691 0.0032 329.8021 135.2038 6.3026 0.758 3
World subways (2009) 0.0453 0.0150 0.0047  6.0000 2.3667 0.5911 0.575 10
World subways (2009) 0.0111 0.0031 0.0040 2.6667 1.1250 1.0887 0.964 10
World subways (2009) 0.0393 0.0265 0.0040 6.8333  5.0270 0.9486 0.448 10
World subways (2009) 0.0128 0.0179 0.0015 1.6667  2.3889 0.2475 1.000 1
India bus routes (2016) 0.1282 0.1001 0.0044 95.3556 77.7124 3.9028 0.845 1

World subways (2009) 0.0303 0.0015 0.0022  6.6667  0.2571 0.5071 1.000 1
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4. NETWORK GENERATION ALGORITHMS

Algorithm 1 S” network generation algorithm

1: Input: Dimension D, number of nodes N, power-law exponent -, average degree (x), inverse temperature 3
2: Output: Graph G = (V, E) with nodes expressed in angular coordinates
3 V—{}

4: F + {}

5: ko (k) (y —2)(1 = N71)/[(y = 1)(1 = NE=/07D)]

6: ke ko N7V

7: for i =1to N do

8  mi~p(r)=r RS (Y= 1)/(1 = (ke/Ro)' )

9: 0; ~ Uniform([0, 27))
10: V + Vu{b:}
11: end for
12: p + BT(D/2)sin(Dr/B)/(2m P2 (k)

13: for i =1 to N do

14: for j=i+1to N do

15: pij < 1/(1+ [RAG,;/ (pnkiry)'/ P17
16: E + EU{(4,7)} with probability p;;
17: end for

18: end for

Algorithm 2 Geometric randomization rewiring (D-GR)

1: Input: Graph G = (V, E), dimension D, inverse temperature (3
2: Output: Graph G = (V, E) with rewired edges

3: fort=1to010-|E| do

4: (2,7), (I,m) ~ Uniform(FE) without replacement

5 Ln/Le  (A0ij Ay [[A0i Abjim])?

6: if £,/L. > 1 then

7 B BU{(i,m), 1,7}~ {G ), (Lm)}

8: else

9: E+ EU{@,m), 7))} ~{GJ), [, m)} with probability L, /L.
10: end if

11:  if |£,/Lc— 1] < 107° then

12: break
13: end if
14: end for
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