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ABSTRACT

We present the Cellular Transformer (CT), a novel topological deep learning
(TDL) framework that extends graph transformers to regular cell complexes (CCs),
enabling improved modeling of higher-order molecular structures. Representing
complex biomolecules effectively is a notorious challenge due to the delicate
interplay between geometry (the physical conformation of molecules) and topology
(their connectivity and higher-order relationships). Traditional graph-based models
often struggle with these complexities, either ignoring higher-order topological
features or addressing them in ad-hoc ways. In this work, we introduce a principled
cellular transformer mechanism that natively incorporates topological cues (e.g.,
higher-order bonds, loops, and fused rings). To complement this, we propose the
notion of augmented molecular cell complex, a novel and richer representation
of molecules able to leverage ring-level motifs and features. Our evaluations on
the MoleculeNet benchmark and graph datasets lifted into CCs reveal consistent
performance gains over GNN- and transformer-based architectures. Notably, our
approach achieves these without relying on graph rewiring, virtual nodes, or
in-domain structural encodings, indicating the power of topologically informed
attention to capture subtle, global interactions vital to drug discovery and molecular
property prediction.

1 INTRODUCTION
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Figure 2. Tensor diagram illustrating the flow of signals between cochains defined on 0-, 1-, and 2-cells. For pairwise attention, the
neighborhood matrices indicate the bias N in the attention formula (2). For general attention, neighborhood matrices indicates how to
build the bias matrix N by composition of smaller bias matrices Nks→kt between dimensions.

present the second mechanism which performs attention
with all the cells at the same time, disregarding their rank,
similar to what was proposed in (Zhou et al., 2024):

Proposition 3.3 (General Cellular Attention (GCA)). We
propose the following single-head GCA attention:

A•
g(X) = softmax

(
XQ(XK)→ ω ε(N)

)
XV, (3)

using the same notations as in prop. 3.2, where cells share
the same key and query matrices, but have different value
matrices for each rank. In this case, the prenorm trans-
former layer is performed as usual.

The algorithm corresponding to the GCA layer is detailed
in App. B.1. As in our pairwise attention, multi-head atten-
tion can be performed by splitting the original cochains into
smaller cochains, applying the general single-head attention
to pairs of the smaller cochains, and concatenating again
into a single, big cochain. In our experiments, we let N be
the following combination of the previous Nks↑kt matrices

N =




N0↑0 N1↑0 . . . 0
N→

1↑0 N1↑1 . . . 0
...

...
. . .

...
0 0 . . . Ndim X↑dim X


 . (4)

3.2. Attention Tensor Diagrams for CTs

CTs involve interactions between cochains of different ranks.
Tensor diagrams (Hajij et al., 2022b) provide a graphical
abstraction illustrating the flow of information on one CT
layer. A tensor diagram portrays a CT Layer through the
use of a directed graph, where the nodes represent cochain
spaces for different ranks 0 → k → n, n being the maximum
allowed rank of CCs processed by that CT layer. If the input
CC X is of lower dimension than n, the attention on ranks
k > dim X are ignored. In turn, edges represent either
the pairwise attentions performed in the CT layer together
with the bias matrices Nks↑kt

, or simply the matrices used
to build the matrix N from smaller matrices Nks↑kt as

in Eq. (4), for the general attention. A missing arrow from
cochains of rank ks to cochains of rank kt implies a zero in
the block of N corresponding to the matrix Nks↑kt . Fig. 2
illustrates the tensor diagram used in our experiments.

In cell complex molecular modeling, incidence matrices in
a molecular cell complex enable cross-attention, while adja-
cency and Hodge-Laplacian matrices enable self-attention
within our CT framework. In particular, cross-attention
captures multiscale interactions between structural levels,
such as nodes, edges, and cycles, while self-attention uses
adjacency relations to refine feature aggregation within the
same rank. This dual mechanism enhances molecular repre-
sentations, capturing both local and global dependencies.

Tensor diagrams provide a graphical abstraction of these in-
teractions, guiding the construction of the CT across cochain
ranks. This aids in designing custom attention mechanisms
within the transformer, ensuring effective encoding of both
cross-rank and self-attention patterns.

3.3. Positional encodings on cellular complexes

Transformers do not leverage the input structure explicitly
by default (Vaswani et al., 2017). Positional encodings
(PEs) help to overcome this problem by injecting positional
and structural information about the input tokens. For se-
quences, the first positional encoding used sine and cosine
functions depending on the position of the token in the se-
quence. For graphs, several positional encodings have been
studied such as the eigenvectors of the graph Laplacian
(LapPE) (Dwivedi et al., 2023) and Random Walk Posi-
tional Encodings (RWPe) (Dwivedi et al., 2022), where the
latter were also adapted for simplicial complex transform-
ers (Zhou et al., 2023; Schaub et al., 2020).

Definition 3.4 (Cellular Positional Encoding (CPE)). Let
0 → k → dim X , where X is a CC. A cellular k-positional
encoding of Xk is a k-cochain Ek that captures some struc-
tural information about Xk within X 1.

1Positional encoding may also be defined on the entire CC X .
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(a) RWBSPe random walk possible transitions from the upper-
left edge.

(b) RWPe random walk possible transitions from the upper-left
edge.

Figure 6. Differences between RWBSPe and RWPe random walks. RWBSPe random walks can jump from a cell to all its incident and
coincident cells, while RWPe random walks can jump from a cell to all its upper and lower adjacent cells.

in common. As in the previous case, the random lower walk can be described as a random walk on a weighted graph Gdown
k ,

whose vertices are the k-cells of X and the weight of an edge (ωi, ωj) is set as the number of (k → 1)-cells that both cells
have in common (as before, if a k-cell is not lower adjacent to any other k-cell, then we draw a loop on it with weight equal
to 1). The lower random k-walk is described by the left stochastic matrix RWdown

k = wAdown
k (Ddown

k )→1, where wAdown
k

and Ddown
k denote the corresponding weighted adjacency and diagonal weighted degree matrices of the graph Gdown

k . The
matrices wAup

k and wAdown
k correspond respectively to the upper and lower adjacency matrices Aup

k and Adown
k with the

diagonal entries in null rows replaced with 1.

We can combine both processes to obtain a random walk in which information flows through upper and lower adjacencies,
in line with (Schaub et al., 2020). The idea is as follows: if we are in a k-cell ω with upper and lower adjacent k-cells, we
take a step with equal probability via either upper or lower connections. If ω has upper adjacent k-cells but not lower ones,
we move following the random upper k-walk process, and vice versa. Lastly, if ω has neither upper nor lower connections,
then we do not move.

The left stochastic matrix that describes the random k-walk is defined for ωi, ωj ↑ Xk by

(RWk)ωiωj
=





1
2 (RWup

k )ωiωj
+ 1

2 (RWdown
k )ωiωj

if deg0,k+1
U (ωj) ↓= 0 and deg0,k→1

L (ωj) ↓= 0

(RWup
k )ωiωj

if deg0,k+1
U (ωj) ↓= 0 and deg0,k→1

L (ωj) = 0

(RWdown
k )ωiωj

if deg0,k+1
U (ωj) = 0 and deg0,k→1

L (ωj) ↓= 0

(i = j) if deg0,k+1
U (ωj) = deg

(0,k→1)
L (ωj) = 0.

An example of the differences between transitions from an edge in the random walks described in this section and the
barycentric subdivision random walks of RWBSPe are described in Fig. 6.

Topological Slepians. Let X be an oriented regular two-dimensional cell complex, with Hodge Laplacians L1 and L2.
Hodge Laplacians admit a Hodge decomposition (Lim, 2020), such that the k-cochain space can be decomposed as

Ck(X , R) = im
(
B̃T

k

)
↔ im

(
B̃k+1

)
↔ ker

(
Lk

)
, (8)

where
⊕

denotes direct sum of vector spaces, and ker(→) and im(→) are the kernel and image spaces of a matrix,
respectively. The k-cochains can be represented by means of eigenvector bases of the corresponding Hodge Laplacian.
Using the decomposition Lk = Uk!kU

T
k , the k-th Cellular Fourier Transform (k-CWFT) is the projection of a k-cochain

onto the eigenvectors of Lk (Sardellitti & Barbarossa, 2022):

X̂k = UT
k Xk. (9)

We refer to the eigenvalue set Bk of the k-CWFT as the frequency domain. An immediate consequence of the Hodge
decomposition in (8) is that the eigenvectors belonging to im(Ld

1) are orthogonal to those belonging to im(Lu
1 ). Therefore,

the eigenvectors of L1 are given by the union of the eigenvectors of Lu
1 , the eigenvectors of Ld

1, and the kernel of L1. We
now introduce two localization operators acting onto a k-cell concentration set (thus, onto the topological domain), say
Sk ↗ X k, and onto a spectral concentration set (thus, onto the frequency domain), say Fk ↗ Bk, respectively. In particular,
we define a cell-limiting operator onto the k-cell set Sk as

CSk
= diag(1S) ↑ R|Xk|↑|Xk|, (10)
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Figure 1: We propose the cellular transformer
backed by topological positional encodings ex-
tracted from a novel augmented molecular cell
complex representation.

Traditional methods for molecular modeling
often rely on graph-based models such as
graph neural networks (GNNs), graph trans-
former (Dwivedi et al., 2022) and GPS (Ram-
pasek et al., 2022), that leverage message pass-
ing and attention mechanisms to encode molecu-
lar graphs effectively. Despite their success, ex-
isting approaches remain limited in their ability
to model higher-order molecular interactions
like ring systems, non-covalent bonds, long-
range dependencies and non-trivial connectiv-
ity patterns, known to be essential to model a
molecule (Jiang et al., 2021; Battiloro et al.,
2025). This leads to limitations in capturing critical chemical and biological interactions. While
graph transformers enjoy improved higher-order feature utilization through the attention mechanisms,
they still rely on a graph-based representation that does not natively encode multi-scale molecular
structures such as fused rings or higher-dimensional topological motifs. This lack of topological
awareness leads to suboptimal feature extraction and generalization.

In this work, we introduce the Cellular Transformer (CT), a novel transformer-based topological deep
learning (Hajij et al., 2022; Papamarkou et al., 2024) framework that extends molecular modeling
beyond graphs (and simplicial complexes (Giusti et al., 2022)) by leveraging cell complexes (CCs). CT
consists of a higher-order attention mechanisms incorporating topological information by interacting
multiple structural levels. We further define augmented molecular cell complexes (AMCCs), an
enriched molecular representation that captures topological motifs at the ring and bond level, leading
to enhanced structural reasoning.

1
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We evaluate CT on molecular benchmarks, including the MoleculeNet, demonstrating its effectiveness
across various molecular prediction tasks. Our model consistently outperforms graph message-passing
and transformer-based architectures while requiring fewer heuristics. Notably, we show that our
approach captures molecular properties more effectively, particularly in datasets where higher-
order structural relationships play a critical role. Our results validate the power of topologically
informed transformers for molecular property prediction and pave the way for further advancements
in topological deep learning for chemistry and materials science.

2 AUGMENTED MOLECULAR CELL COMPLEXES

Cell complexes. Cell complexes encompass various kinds of topological spaces used in network
science, including graphs, simplicial complexes, and cubical complexes. While an exhaustive
definition can be found in Hatcher (2005), in this work, we restrict ourselves to the 2-dimensional
regular CCs for simplicity, although our constructions and discussion carry over to higher-dimensional
regular CCs similarly. In our case, we see a cell complex (CC) as a triplet X = (X0,X1,X2) of finite
sets and an incidence relationship between their elements. Objects in Xi are called rank i cells, or
i-cells, and denoted by vertices (alternatively nodes), edges, and faces, for i = 1, 2, 3, respectively.

X0

X1

X2

X0

X1

X2

Figure 2: An annotated CC. Left: An ACC X consisting
of five vertices, five edges, and one 2-cell. Center: Xk is
the collection of k-cells of X for k = 0, 1, 2. Right: Rows
depict values of a cochain Xk for each k, of dim. d0 = 4,
d1 = 3 and d2 = 2.

A 2-dimensional CC can be realized
from a graph by attaching 0-cells to
its vertices, 1-cells to its edges, and
2-cells to (possibly a subset of) its in-
duced cycles together with the usual
edge-vertices and ring-edges incidence
relationships (see App. A.1 for more
details). This perspective is particularly
useful in molecular modeling, where
chemical compounds are frequently
represented as graphs, with chemical
rings corresponding to induced cycles
(Bodnar et al., 2021b; Battiloro et al.,
2025).

Cochain space. As shown in Fig. 2, cochain spaces are used to process data supported over a
cell complex X = (X0,X1,X2). For k = 0, 1, 2, we denote by Ck(X ,Rd) the R-vector space of
functions Xk → Rd, where d ≥ 1. Here d is called data dimension and elements of Ck(X ,Rd) are
called k-cochains or k-signals on X . For short, we write Ck(X ) instead of Ck(X ,R) when d = 1.

Annotated cell complex. We define a CC X together with k-cochains Xk of dimension dk for each
rank k = 0, 1, 2 as an annotated cell complex (ACC). We view Xk as a matrix in M(|Xk|, dk), that
is, with |Xk| rows and dk columns, whose ith row is the image of the ith element of Xk. In this work,
all datasets consist of ACCs sharing the same dimensions d0, d1 and d2.

Augmented molecular cell complex. Prior work demonstrates the importance of higher-order
structural motifs (e.g. functional groups, pharmacophores) in molecular modeling as demonstrated in
prior work (Battiloro et al., 2025; Luong & Singh, 2024; Zhang et al., 2021). Therefore, we introduce
augmented molecular cell complexes (AMCC), a novel variant of molecular CCs represented by
an ACC with atoms as nodes (0-cells), bonds as edges (1-cells), and rings as faces (2-cells). We
summarize AMCCs in Figure 3, and motivate and describe them in further detail in App. A.2.

3 THE CELLULAR TRANSFORMER

In this section, we present a general transformer architecture for cell complexes, discuss performing
attention on cells, and introduce cellular positional encodings.

Definition 3.1 (Cellular Transformer (CT)). A Cellular Transformer is a neural network which,
given an ACC X , induces a composition of functions CT = R ◦CTL ◦ · · · ◦CT1 ◦ P, called layers,
where P is a preprocessing layer on the input data which combines positional encodings of the
different cells in the ACC and their features, R is a readout layer that converts cochains on top of
cells into an output prediction value, and CTl, for l = 1, . . . , L, are CT layers defined as functions of

2
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the form

CTl : C0(X ,Rdh
0 )× · · · × Cn(X ,Rdh

n) −→ C0(X ,Rdh
0 )× · · · × Cn(X ,Rdh

n), (1)

where n = dimX and h indicates the dimension of hidden layers. In our experiments, we set
dh0 = · · · = dhn, whose value depends on the dataset, specified in our Appendix.

Eq. (1) only describes the function (co)domains and does not provide an explicit parametrization
of the CT layer. A parametrization of the CT layers is given using tensor diagrams together with
the cellular attention formulae, as described below. Transformer and preprocessing layers take as
input an ACC and output the same CC with different cochains. We denote input k-cochains on the
CTl layer as Xk,l. We now introduce the pairwise cellular attention mechanism for CTs, which
generalizes self- and cross-attention and depends on the dimensions of the cells.
Definition 3.2 (Pairwise Cellular Attention (PCA)). Given source and target ranks 0 ≤ ks, kt ≤
dimX and cochains Xkt

, Xks
, the single-head attention from ks to kt is a map Cks(X ,Rdh

s ) ×
Ckt(X ,Rdh

t ) → Ckt(X ,Rdh
t ) defined as

A•
ks→kt

(Xkt
,Xks

) = softmax(Xkt
Qks→kt

(Xks
Kks→kt

)⊤ ⋆ ϕ(Nks→kt
))Xks

Vks→kt
, (2)

where Qks→kt
∈ M(dht , p), Kks→kt

∈ M(dhs , p), and Vks→kt
∈ M(dhs , d

h
t ) are learnable query,

key, and value real matrices with p a fixed hyperparameter shared by all transformer layers. The
symbol • ∈ {d, s} indicates whether we perform dense or sparse attention, respectively. The symbol ⋆
is a sum or a Hadamard product for dense or sparse attention, respectively. Nks→kt is a neighborhood
matrix, and ϕ is a function, possibly with learnable parameters.

BONDS

Bond type
Conjugation

Ring membership
Stereo configuration

Rotatability
Smallest ring size

Hydrogen bond flag
Electronegativity 

difference

ATOMS

Atomic number
Total Valence

Degree
Implicit Valence

Aromaticity
Chiral tag

Formal charge (offset)
Hybridization

RINGS

Ring size
Aromaticity

Heteroatom count
Saturated-ness

Has fusion
Average

electronegativity

Figure 3: Our augmented molecular cell com-
plex enables our topological transformer to use
richer information than traditional graphs.

The PCA mechanism performs pairwise attention
between cells of arbitrary ranks according to a tensor
diagram (see App. A.3), and then aggregates the out-
puts received for the same rank. For our experiments,
we set ϕ(Nks→kt) to be a learnable embedding layer
for dense attention and the identity o.w. Attention
formulae performs query, key, and value projections
without bias for simplicity. A bias term can be added
to the projections, as in most transformers. Multi-
head attention can also be performed by (1) splitting
the cochains Xks

and Xkt
into multiple cochains

X1
ks
, . . . ,Xm

ks
and X1

kt
, . . . ,Xm

kt
of smaller dimen-

sion; (2) performing single-head attention for each
pair of cochains Xi

ks
,Xi

kt
; (3) concatenating the

outputs of the single-head attention for the different pairs into a full cochain of dimension dht .

For a specific rank kt, CT layers can produce multiple attention outputs from different rank sources
ks. In the CT layer, we adopt the standard prenorm design (Xiong et al., 2020), where for each
rank kt, the outputs from the various rank sources ks are added to form the final output for the rank
kt. In App. A we detail the construction of Nks→kt

between and within ranks, and present tensor
diagrams, which provide a graphical abstraction illustrating the flow of information on one CT layer,
guiding the construction of the CT across cochain ranks. Further specifics of the algorithm for the CT
layer is detailed in App. B.

Positional encodings (PE). Transformers do not leverage the input structure explicitly by de-
fault (Vaswani et al., 2017). PEs help to overcome this problem by injecting positional and structural
information about the input tokens in the preprocessing layer of the CT.
Definition 3.3 (Cellular Positional Encoding (CPE)). Let 0 ≤ k ≤ dimX , where X is a CC. A
cellular k-positional encoding of Xk is a k-cochain Ek that captures some structural information
about Xk within X 1.

In this work, we extend the Laplacian and Random Walk positional encodings (Müller et al., 2024;
Dwivedi et al., 2022) from the graph transformers to the cellular domain, and propose barycentric
subdivision positional encoding (BSPe) as a novel CPE. For brevity these definitions and further
details on CPEs are deferred to App. C.1.

1Positional encoding may also be defined on the entire CC X .

3
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4 EXPERIMENTAL EVALUATION

We extensively evaluate the proposed transformer on the MoleculeNet Wu et al. (2018) benchmark as
well as in the Graph Classification Benchmark dataset Bianchi et al. (2022a). All our experiments
use the AdamW optimizer. For classification tasks we use the standard cross entropy (CE) loss, and
for regression we use root mean squared error (RMSE). We present extensive information regarding
the architecture, runtime, and feature representations in App. B

Graph Classification Benchmark dataset. We begin
by evaluating our method on the Graph Classification
Benchmark (GCB) (Bianchi et al., 2022a) in its hard
version. As this is a graph dataset, we obtain our CCs
by adding all the rings belonging to a cycle basis using
the TopoX library Hajij et al. (2024). Tab. 1 presents
a comparison of our best topological model using
RWBSPe positional encodings against the state-of-
the-art architectures evaluated for the dataset. Overall,
even with a simple lifting, we outperform several
graph-based methods in this dataset, and do so with-
out the need for advanced techniques such as graph
rewiring, virtual nodes, or learnable bias matrices in
the attention mechanism. The results corroborate that
leveraging high-order information can be useful even
when the underlying domain is a graph and in such an
uninformative case, our method falls back gracefully.

Table 1: Models and accuracy (↑) for the GCB
dataset. The first seven model rows represent
message-passing architectures, and the next
six are classic machine learning algorithms.

Model Accuracy (↑)

Graclus Dhillon et al. (2007) 0.690± 0.015
NDP Bianchi et al. (2022b) 0.726± 0.009
DiffPool Ying et al. (2018) 0.699± 0.019
Top-K Gao & Ji (2019) 0.427± 0.152
MinCutPool Bianchi et al. (2020) 0.738± 0.019
ESC + RBF-SVM Martino et al. (2019) 0.625± 0.046

ESC + L1-SVM Martino et al. (2019) 0.722± 0.010
ESC + L2-SVM Martino et al. (2019) 0.693± 0.016
Hist Kernel Martino & Rizzi (2020) 0.720± 0.000
Jaccard Kernel Martino & Rizzi (2020) 0.630± 0.000
Edit Kernel Martino & Rizzi (2020) 0.600± 0.000
Stratedit Kernel Martino & Rizzi (2020) 0.600± 0.000

CT (ours) 0.754± 0.017

MoleculeNet. Following Wang et al. (2022), we now compare our work on various subsets of
MoleculeNet Wu et al. (2018) against the strong graph baselines of GCN (Kipf & Welling, 2017),
GIN (Xu et al., 2018), SchNet (Schütt et al., 2017), MGCN (Wang et al., 2020b) and DMPNN (Yang
et al., 2019), as well as the Pytorch Geometric implementation of GPS (Rampasek et al., 2022)
modified to use our AMCC except the 2nd-order features. We also include classical RF (Breiman,
2001) and SVM (Cortes, 1995) performances for reference. Tab. 2 presents our main results across
various tasks where we report Avg. AUC-ROC for classification and root mean square error (RMSE)
for regression. Our CT, leveraging the useful information provided by AMCC and barycentric
subdivision PEs, can often surpass all methods, or remain on par. Notably, GPS, in the lack of
geometric features and limited hyperparameter search, significantly underperforms. This highlights
the capability of our CT in extracting strong topological signals and the importance of the utilization
of our higher-order AMCC. For further details and statistics on MoleculeNet experiments we refer
the reader to App. D.

Table 2: Evaluations across MoleculeNet. All values reported in % with standard deviations computed
over 3 runs with different random seeds.

Dataset BBBP Tox21 ClinTox HIV BACE SIDER MUV FreeSolv ESOL Lipo
Molecules 2,039 7,831 1,478 41,127 1,513 1,427 93,087 642 1,128 4,200

Tasks 1 12 2 1 1 27 17 1 1 1

Metric Average AUC-ROC (↑) RMSE (↓)

RF 71.4± 0.0 76.9± 1.5 71.3± 5.6 78.1± 0.6 86.7± 0.8 68.4± 0.9 63.2± 2.3 - - -
SVM 72.9± 0.0 81.8± 1.0 66.9± 9.2 79.2± 0.0 86.2± 0.0 68.2± 1.3 67.3± 1.3 3.14± 0.00 1.50± 0.00 0.82± 0.00
GCN 71.8± 0.9 70.9± 2.6 62.5± 2.8 74.0± 3.0 71.6± 2.0 53.6± 3.2 71.6± 4.0 2.87± 0.14 1.43± 0.05 0.85± 0.08
GIN 65.8± 4.5 74.0± 0.8 58.0± 4.4 75.3± 1.9 70.1± 5.4 57.3± 1.6 71.8± 2.5 2.76± 0.18 1.45± 0.02 0.85± 0.07
SchNet 84.8± 2.2 77.2± 2.3 71.5± 3.7 70.2± 3.4 76.6± 1.1 53.9± 3.7 71.3± 3.0 3.22± 0.76 1.05± 0.06 0.91± 0.10
MGCN 85.0± 6.4 70.7± 1.6 63.4± 4.2 73.8± 1.6 73.4± 3.0 55.2± 1.8 70.2± 3.4 3.35± 0.01 1.27± 0.15 1.11± 0.04
D-MPNN 71.2± 3.8 68.9± 1.3 90.5± 5.3 75.0± 2.1 85.3± 5.3 63.2± 2.3 76.2± 2.8 2.18± 0.91 0.98± 0.26 0.65± 0.05

GPS 60.4± 2.6 63.6± 0.6 58.8± 7.7 66.8± 1.2 72.4± 1.0 54.3± 0.1 68.3± 1.3 0.99± 0.04 1.14± 0.23 0.84± 0.4

CT (ours) 71.2± 0.5 74.4± 1.0 86.6± 6.0 79.7± 0.7 86.8± 2.7 60.5± 1.8 78.9± 2.0 0.66± 0.04 0.87± 0.03 0.69± 0.02

Conclusion. In this work, we introduced the Cellular Transformer (CT), a TDL framework that
extends molecular modeling beyond graph-based methods by leveraging cell complexes. With novel
topological positional encodings and augmented molecular cell complexes (AMCCs), our approach
captures higher-order molecular interactions without requiring heuristics or graph rewiring. Results
presented on MoleculeNet benchmarks demonstrate state-of-the-art or competitive performance
across various molecular property prediction tasks while maintaining architectural simplicity.
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Appendix

A ADDITIONAL DETAILS ON CELLULAR TRANSFORMER

Here we present additional detail on cellular transformer (CT) that were deferred due to space
constraints.

A.1 NEIGHBORHOOD AND INCIDENCE MATRICES

CCs admit a poset representation (Hansen & Ghrist, 2019), i.e., a partial order ≤ on X . The poset
representation enables a combinatorial description of the complex and allows us to define an incidence
relation among cells.
Definition A.1 (Incidence Relation). A cell τ is incident to a cell σ, denoted with σ ≺ τ , iff dim(σ)
≤ dim(τ) and there is no cell δ such that σ ≤ δ ≤ τ .

An edge is incident to its endpoint nodes, and a face is incident to the edges on its sides. We can use
these definitions to introduce the four types of neighborhoods present in CCs.
Definition A.2 (Neighborhoods ). (Hajij et al., 2020) For a cell complex C and a cell σ ∈ PC , we
define:
• The boundary cells of σ are the lower-dimensional cells σ is incident to. For instance, the boundary

cells of an edge are its endpoint nodes.
• The co-boundary cells of σ are the higher-dimensional cells incident to σ. For instance, the

co-boundary cells of a node are the edges having that node as an endpoint.
• The lower adjacent cells of σ are the cells of the same dimension as σ incident to common lower

dimensional cells. For instance, two edges are lower adjacent if they have a common endpoint
node.

• The upper adjacent cells of σ are the cells of the same dimension as σ common higher dimensional
cells are incident to. For instance, two edges are upper adjacent if they are both sides of a common
face.

Neighborhoods in cell complexes can be described through incidence and adjacency matrices, similar
to graphs.
Definition A.3 (Incidence and adjacency matrices). Given an arbitrary labeling of the cells, the entry
(i, j) of the first incidence matrix B1 ∈ R|X0|×|X1| is non-zero if the jth edge is incident to the ith

node. Similarly, the entry (i, j) of the second incidence matrix B2 ∈ R|X1|×|X2| is non-zero if the jth

face is incident to the ith edge. The entry (i, j) of the node upper adjacency matrix Aup
0 ∈ R|X0|×|X0|

(the usual graph adjacency) is non-zero if the ith and the jth nodes are endpoints of a common edge.
The entry (i, j) of the edge lower adjacency matrix Alow

1 ∈ R|X1|×|X1| is non-zero if the ith and
the jth edges share a common endpoint node. The entry (i, j) of the edge upper adjacency matrix
Aup

1 ∈ R|X1|×|X1| is non-zero if the ith and the jth edges are both sides of a common face. Finally,
the entry (i, j) of the face lower adjacency matrix Alow

2 ∈ R|X2|×|X2| is non-zero if the ith and the
jth faces share a common edge.

It is clear from A.3, that the incidence matrices and their transpose encode the co-boundary and
boundary, respectively. In App. C, we also introduce the notion of orientation and signed incidence
matrices, necessary to define a proper discrete (algebraic) Hodge theory for cell complexes Barbarossa
& Sardellitti (2020), which we use to define positional encodings on CCs. We collectively refer to
incidence and adjacencies matrices as neighborhood matrices.

A.2 AUGMENTED MOLECULAR CELL COMPLEXES

Recent GDL / TDL approaches to molecular modeling, especially those leveraging graph transformers,
have benefited greatly from the integration of ring-level or other higher-order structural motifs (e.g.,
functional groups, pharmacophores) Battiloro et al. (2025); Luong & Singh (2024); Zhang et al.
(2021). A prime example is cyclohexyl rings versus straight aliphatic chains. Chemically, both
structures are made of carbon atoms that are sp3-hybridized and form single σ-bonds. Hence, while
atoms and bonds are formally of the same type, ring closure in cyclohexane imposes unique structural
constraints (e.g., the well-known chair conformation) that differ from those in a linear alkane.
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Figure 4: Attention Tensor diagram illustrating the flow of signals between cochains defined on 0-,
1-, and 2-cells. For pairwise attention, the neighborhood matrices indicate the bias N in the attention
formula (2). For general attention, neighborhood matrices indicates how to build the bias matrix N
by composition of smaller bias matrices Nks→kt between dimensions.

As such, methods treating each carbon atom and each bond equally often overlook these subtle but
crucial differences. CCs are a natural solution to this issue, as rings can be explicitly regarded as
2-cells (faces) with their peculiar (ring-level) features, and the topology of the complex inherently
captures vital structural constraints. Thus, we introduce augmented molecular cell complexes
(AMCCs), novel variants of molecular CCs in which atoms are nodes (0-cells), bonds are edges
(1-cells), and rings are faces (2-cells). Here, augmentation refers to a curated set of features for all the
cells being more exhaustive w.r.t. to the ones in Battiloro et al. (2025), and resulting in significantly
better results, shown in our ablation study in Sec. 4. An example of an AMCC listing all the features
we leverage is depicted in Fig. 3. Our CC-Transformer is then naturally able to process and learn
for the rich representation offered by AMCCs, as confirmed by the numerical results in Sec. 4. We
provide an overview of AMCC features in App. D.3.1.

Remark A.4. An informed reader may wonder why we adopted CCs rather than combinatorial
complexes Hajij et al. (2023) as the underlying topological domain, as the latter are more flexible in
modeling relational structures. The reason is that, combinatorial complexes still lack an exhaustive
theoretical characterization, having neither a spectral nor a homology theory. Thus we would have
not been able to define or leverage powerful PEs as the ones in App. C.1. We leave this promising
avenue for future work.

A.3 ATTENTION TENSOR DIAGRAMS FOR CTS

CTs involve interactions between cochains of different ranks. Tensor diagrams Hajij et al. (2022)
provide a graphical abstraction illustrating the flow of information on one CT layer. A tensor diagram
portrays a CT Layer through the use of a directed graph, where the nodes represent cochain spaces
for different ranks 0 ≤ k ≤ n, n being the maximum allowed rank of CCs processed by that CT layer.
If the input CC X is of lower dimension than n, the attention on ranks k > dimX are ignored. In
turn, edges represent either the pairwise attentions performed in the CT layer together with the bias
matrices Nks→kt , or simply the matrices used to build the matrix N from smaller matrices Nks→kt

as in ??, for the general attention. A missing arrow from cochains of rank ks to cochains of rank kt
implies a zero in the block of N corresponding to the matrix Nks→kt . Fig. 4 illustrates the tensor
diagram used in our experiments.

In cell complex molecular modeling, incidence matrices in a molecular cell complex enable cross-
attention, while adjacency and Hodge-Laplacian matrices enable self-attention within our CT frame-
work. In particular, cross-attention captures multiscale interactions between structural levels, such as
nodes, edges, and cycles, while self-attention uses adjacency relations to refine feature aggregation
within the same rank. This dual mechanism enhances molecular representations, capturing both local
and global dependencies.

Tensor diagrams provide a graphical abstraction of these interactions, guiding the construction of the
CT across cochain ranks. This aids in designing custom attention mechanisms within the transformer,
ensuring effective encoding of both cross-rank and self-attention patterns.
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A.4 POSITIONAL ENCODINGS ON CELLULAR COMPLEXES

Transformers do not leverage the input structure explicitly by default Vaswani et al. (2017). Positional
encodings (PEs) help to overcome this problem by injecting positional and structural information
about the input tokens. For sequences, the first positional encoding used sine and cosine functions
depending on the position of the token in the sequence. For graphs, several positional encodings
have been studied such as the eigenvectors of the graph Laplacian (LapPE) Dwivedi et al. (2023)
and Random Walk Positional Encodings (RWPe) Dwivedi et al. (2022), where the latter were also
adapted for simplicial complex transformers Zhou et al. (2023); Schaub et al. (2020).

Definition A.5 (Cellular Positional Encoding (CPE)). Let 0 ≤ k ≤ dimX , where X is a CC. A
cellular k-positional encoding of Xk is a k-cochain Ek that captures some structural information
about Xk within X 2.

Given cochains Xk and positional encodings Ek, the input for the first transformer layer is defined as
a function Pk : Ck(X ,Rdk)× Ck(X ,Rdpe) → Ck(X ,Rdh

k ) computed at the end of the preprocessing
layer with X1

k = Pk(Xk,Ek), where Pk combines the signals and the positional encodings. Usual
functions are

SumPE(Xk,Ek) = Xkθin,k + bin,k +Ekθin,pe + bin,pe

ConcatPE(Xk,Ek) = Concat(Xk,Ek)θin,pe + bin,pe,

where θ•, b• ∈ are learnable parameters. For this paper, we use Pk = ConcatPE. Next, we recall
the popular positional encodings for graph transformers before introducing three novel positional
encodings on cell complexes: Barycentric Subdivision, Random Walk, and Topological Slepians.

Definition A.6 (Laplacian PE (LapPE) Dwivedi et al. (2023)). A canonical PE for graphs is given
by graph Laplacian eigenvector, by assigning to each vertex vi a vector LapPE(vi) = (e1i , . . . , e

k
i ),

where {eji | j = 1, . . . , k} are eigenvectors of the k smallest eigenvalues of the normalized graph
Laplacian for a graph G = (V,E), counting multiplicities, where k is a hyperparameter.

A naive extension of LapPE to cell complexes involves using the unnormalized Hodge Laplacian
matrix, instead of the graph Laplacian one. We deem this version HodgeLapPE. We use the
unnormalized version because normalizing the Hodge Laplacian for dimensions greater than zero is
not a trivial task Schaub et al. (2020). HodgeLapPE are, however, not a good choice for high-order
positional encodings a priori due to both a lack of normalization and the ambiguous information
contained in Hodge Laplacians for nonzero rank. Details on LapPE for graphs and their HodgeLapPE
extension can be found in App. C.

Definition A.7 (Random Walk PE (RWPe) Dwivedi et al. (2022)). Given a vertex vi ∈ V , the RWPe
of vi is given by the vector RWPe(vi) =

(
RWii, . . . ,RW

k
ii

)
where RW = AD−1 is the random

walk operator of a graph based on edge connectivity. In the case that each vertex is assigned the
probabilities of landing again on itself on the random walks from one to k steps.

While RWPe(vi) is unique and does not need sign or eigenvector selection invariance, defining
meaningful random walks on general cell complexes is a notoriously difficult task, first explored
in Schaub et al. (2020) and then in Zhou et al. (2023) for simplicial complexes, making a special
focus on edge random walks.

To address both drawbacks and overcome these drawbacks, we consider smarter ways towards
higher-order extensions.

Proposition A.8 (Barycentric Subdivision Positional Encoding (BSPe)). Our first PE leverages the
graph Laplacian eigenvectors of the 1-skeleton of the barycentric subdivisions of the CCs, where the
barycentric subdivision of a CC X , denoted by ∆(X ), is the order complex of its face poset Wachs
(2006), i.e., the abstract simplicial complex whose set of vertices is the set of cells of X and whose
simplices are the totally ordered flags of cells of X . The 1-skeleton of the barycentric subdivision
of X is a graph G = (V,E) where V is the set of cells of X and where two vertices σ1 and σ2 are
connected if one is a face of the other.

2Positional encoding may also be defined on the entire CC X .
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Barycentric subdivisions yield triangulations of
cell complexes that preserve their topological
properties Cooke & Pinney (1967). The positional encoding of a cell σ is the Laplacian positional
encoding of σ seen as a vertex in G.

This positional encoding respects the same theoretical advantages of the LapPE while assigning
relative positions to all the cells at the same time, and thus relative positions take into account all the
cells and not only the cells of a specific dimension. The positional encodings satisfying this property
are called global, in contrast to local PEs, where encodings are assigned independently for each
dimension.

Proposition A.9 (CC Random Walk PE (CC-RWPe)). Similar to prop. A.8, we propose to extend
RWPe to cell complexes by taking the positional encodings given by the original RWPe for the 1-
skeleton of the barycentric subdivision. We denote these global positional encodings as CC-RWBSPe.
We also propose a more sophisticated, local approach, denoted CC-RWPe, extending the random
walks from Schaub et al. (2020) to cell complexes. The full development of the random walk matrix
can be found in App. C.1. From the random walk matrix, PEs are taken as in RWPe for each rank of
the cell complex.

A.5 LIMITATIONS AND FUTURE WORK

Our novel CTs excel at leveraging molecular topological structures but are less effective in directly
modeling geometry. As a remedy, we aim to develop equivariant-CTs that incorporate physical
conformations. We also plan to explore the spectral and homology theories of complexes to strengthen
the foundation of TDL and design Combinatorial Complex Transformers for more chemically
informed molecular modeling. Finally, we plan to learn the topological features, scaling to larger
biomolecules, and extending TDL to scientific domains like materials science and drug discovery.

B ARCHITECTURAL DETAILS AND EVALUATIONS ON GRAPH BENCHMARKS

B.1 ARCHITECTURE DETAILS

In this section, we describe the two different topological transformer layers proposed in the main
text in detail. Following the prenorm Xiong et al. (2020) deisng, at the end of the transformer block,
composed of several transformer layers, a final layer norm is applied, either for each rank in the case
of the pairwise attention transformer layer, and for the whole set of cells in the case of the general
attention transformer layer.

Pairwise attention transformer layer. Following the usual prenorm design Xiong et al. (2020), the
output of the cellular transformer layer for a specific rank kt is denoted Xkt,l+1 and computed in six
steps, as follows:

X1
kt,l = LayerNormkt

(Xkt,l),

X1
ks,l = LayerNormks

(Xks,l) for each ks in the tensor diagram,

X2
ks→kt,l = A•

ks→kt
(X1

kt,l,X
1
ks,l) for each ks in the tensor diagram,

X3
ks→kt,l = Dropout(X2

ks→kt,l) for each ks in the tensor diagram,

X4
ks→kt,l = Xkt,l +X3

ks→kt,l for each ks in the tensor diagram,

X5
ks→kt,l = LayerNorm(X4

ks→kt,l) for each ks in the tensor diagram,

X6
ks→kt,l = Dropout(FFN2(Dropout(ReLU(FFN1(X

5
ks→kt,l))))) for each ks in the tensor diagram,

Xks→kt,l+1 = X4
ks→kt,l +X6

ks→kt,l for each ks in the tensor diagram,

Xkt,l+1 =
∑

ks

Xks→kt,l+1.

The LayerNorm is unique for each rank kt and each layer l.
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General attention transformer layer. Similarly to the pairwise attention transformer layer, the
general attention transformer layer performs the following steps:

X1
l = LayerNorm(Xl),

X2
l = A•

g(X
1
l ),

X3
l = Dropout(X2

l ),

X4
l = Xl +X3

l ,

X5
l = LayerNorm(X4

l ),

X6
l = Dropout(FFN2(Dropout(ReLU(FFN1(X

5
l ))))),

Xl+1 = X4
l +X6

l .

Training details. All experiments use a Cosine Annealing scheduler with linear warmup, an
AdamW optimizer with ϵ = 1−8, (µ1, µ2) = (0.9, 0.999) and variable peak learning rate, and a
gradient clipping norm of 5. All our transformer architectures, after the transformer layers, use a fully-
connected readout whose dropout and number of hidden layers is fixed for each set of experiments,
followed by a global add pool layer over all the vertex signals to perform prediction or regression.
The fully-connected block begins with a number of neurons equivalent to the hidden dimension of the
transformers and concludes with a number of neurons corresponding to the network’s output number.
Throughout the block, each hidden layer has half as many neurons as its predecessor.

Signals on cells. All graphs in the three datasets contain at least discrete signals for the vertices. For
the GCB dataset, we associate to each edge a signal corresponding to concatenating the signals of
its endpoints. For the ogbg-molhiv and ZINC datasets, the edges contain signals, so we do not
change them. As a first step in the transformer architecture, we learn an embedding for the discrete
features. For the edge features in GCB, each vertex feature is embedded individually. For the three
datasets, signals on the 2-cells are given by sum of the embedded signals of their vertices.

GCB architectures. The first six models in Tab. 1 assesses all graph neural networks with different
graph pooling layers and common architecture composition given by MP(32)-Pool-MP(32)-Pool-
MP(32)-GlobalPool-Dense(Softmax), where MP(32) is a Chebyshev convolutional layer Defferrard
et al. (2016) with 32 hidden units, Pool is a pooling message passing layer, GlobalPool is a global pool
layer used as readout, and Dense(Softmax) is a dense layer with softmax activation. Skip connections
were used. The other state-of-the-art models consist of models proposed in Martino et al. (2019);
Martino & Rizzi (2020).

B.2 DATASET STATISTICS

We use the following molecular graph datasets, primarily obtained from MoleculeNet (Wu et al.,
2018). Unless otherwise specified, we follow the scaffold splitting protocol (80/10/10) provided by
OGB (Hu et al., 2020). Below, we list the fine-tuning datasets:

1. BBBP: Contains 2039 molecules with binary labels for blood-brain barrier penetration.
2. Tox21: Comprises 7831 molecules with binary labels indicating toxicity for 12 different

targets.
3. ClinTox: Includes 1478 drugs with two binary annotations: (1) toxicity in clinical trials,

and (2) FDA approval status.
4. HIV: A dataset of 41k molecules annotated with binary labels for their ability to inhibit

HIV virus replication.
5. BACE: Consists of 1513 molecules with binary labels indicating binding results for in-

hibitors of human β-secretase 1.
6. SIDER: Consists of 1427 approved drugs, each annotated with 27 side-effect groups. The

prediction task is to determine whether a drug belongs to each side-effect group.
7. MUV: Consists of 93k molecules curated from PubChem bioassays to remove screening

artifacts Rohrer & Baumann (2009). It provides 17 challenging tasks typically used to assess
virtual screening performance.

8. FreeSolv: Contains 642 molecules with hydration free energy data in water.
9. ESOL: Contains 1128 common organic small molecules with water solubility data (log

solubility in mols per liter).
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10. Lipo: Consists of 4200 molecules with experimental data for the octanol/water distribution
coefficient.

Dataset #Graphs Avg. #Atoms Avg. #Bonds Split #Classes/Task

BBBP 2,039 24.1 26.0 Scaffold 1 (Classification)
Tox21 7,831 18.6 19.3 Scaffold 12 (Classification)
ClinTox 1,478 26.2 27.9 Scaffold 2 (Classification)
HIV 41,127 25.5 25.5 Scaffold 1 (Classification)
BACE 1,513 34.1 36.9 Scaffold 1 (Classification)
SIDER 1,427 33.6 35.4 Scaffold 27 (Classification)
MUV 93,087 24.2 26.3 Scaffold 17 (Classification)
Freesolv 642 8.7 8.4 Scaffold Regression
ESOL 1,427 13.3 13.7 Scaffold Regression
LIPO 93,087 27.0 29.5 Scaffold Regression

Table 3: Statistics of the used datasets.

B.3 IMPLEMENTATION AND HARDWARE RESOURCES

Implementation was performed mainly using the TopoNetX Hajij et al. (2024) library for cell
complex representation and manipulation, PyTorch Paszke et al. (2019) for the deep learning
pipelines, PyTorch Geometric Fey & Lenssen (2019) for feature pooling and dataset load-
ing, Deep Graph Library Wang et al. (2019) and Scipy Virtanen et al. (2020) for sparse
tensor algebraic operations and sparse tensor representation and manipulation, NetworkX Hag-
berg et al. (2008) for graph manipulation, and PyTorch Lightning Falcon & The Py-
Torch Lightning team (2019) as a top layer for experimentation in PyTorch. The most
critical pieces of software implemented in this project have been the DataLoader and the
collate function to batch cell complexes. The DataLoader is implemented in the class
TopologicalTransformerDataLoader. The collate function is implemented in the function
collate, both inside the file src/datasets/cell dataloader.py. The collate func-
tion creates a cell complex batch by performing the disjoint union of cell complexes. As an input, the
collate function receives an object with the signals for each cell, the neighborhood matrices used
in the transformer architecture as bias N in a sparse format, and other data needed by the experiments
such as the label of the dataset and the positional encodings. The neighborhood matrices are batched
into a new sparse block matrix, taking into account that different cell complexes may have different
dimensions and thus not all the cell complexes have the same neighborhood matrices. Currently,
the collate function supports adjacency and boundary matrices, although the function can be
extended easily. Signals, positional encodings, and labels are simply concatenated. To keep track of
which signals and positional encodings correspond to each of the individual cell complex, we also
return, for each dimension, a vector of size equal to total number of cells of that dimension in the
disjoint union which indicates to which cell complex belong each signal or positional encoding.

The experiments were executed on a server with an AMD EPYC 7452 (128) @ 2.350GHz CPU,
503GiB of RAM memory, x4 PNY Nvidia RTX 6000 Ada Generation 48GB GPUs, and Ubuntu
22.04.4 LTS with the 6.5.0-28-generic Linux kernel. Each experiment was executed on a separated
GPU device, using 12 workers per experiment.

C MATHEMATICAL DETAILS AND EXAMPLES

Cell complexes. An exhaustive definition of cell complexes in the context of algebraic topology can
be found in Hatcher (2005). In brief, a cell complex is a topological space X that can be decomposed
as a union of disjoint subspaces called cells, where each cell σ is homeomorphic to Rk for some
integer k ≥ 0, called the rank of σ. Additionally, for every cell σ, the difference σ \ σ is a union of
finitely many cells of lower rank, where σ denotes the closure of σ. The dimension of a finite cell
complex is the maximum of the ranks of its cells. The set of cells of rank k in a cell complex X is
denoted by Xk. The n-skeleton of X is the cell complex spanned by X0, . . . ,Xn, for 0 ≤ n ≤ dimX .
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A characteristic map for a cell σ of rank k is a map from the Euclidean unit closed ball of dimension
k into σ whose restriction to the open ball is a homeomorphism. A cell complex is called regular
if each cell σ admits a characteristic map which is itself a homeomorphism from the closed ball
to σ. For example, a decomposition of a circle as the union of a 0-cell and a 1-cell is not regular.
Geometric realizations of abstract simplicial complexes are regular cell complexes. Cell complexes
generalize simplicial complexes as their cells are not constrained to be simplices.

Algebraic Description of Cell Complexes. It is possible a rich algebraic representation of cell

Figure 6: BSPe positional encoding of length three
for a cell complex with two 2-cells. To generate a
colour from the positional encoding, we normalize
each coordinate of the positional encodings to the
[0, 1] range, generating normalized RGB colours.
Note that close cells are assigned similar colours.

complexes This description also provides a sim-
ple tool to develop a discrete Hodge theory for
cell complexes (Grady & Polimeni, 2010). To do
so, it is essential to first introduce an orientation
of the cells. Orienting cells is not mathemati-
cally trivial but, in the end, it is only a ”book-
keeping matter” (Roddenberry et al., 2022). One
of the possible ways of orienting cells (Sardel-
litti & Barbarossa, 2022) is via a simplicial de-
composition of the complex, i.e. subdividing the
cell into a set of internal k-simplices (Barbarossa
& Sardellitti, 2020), so that i) two simplices
share exactly one (k − 1)-simplicial boundary
element, which is not the boundary of any other
k-cell in the complex; and ii) two k-simplices

induce an opposite orientation on the shared (k − 1)-boundary. Therefore, by orienting a single
internal simplex, the orientation propagates on the entire cell. Given an orientation, we can introduce
the signed incidence matrices.

Definition C.1 (Signed Incidence Matrices and Hodge Laplacians). Given arbitrary labeling and
orientation of the cells, the entry (i, j) of the first signed incidence matrix B̃1 ∈ {±1, 0}|X0|×|X1| is
non-zero if the j-th edge is incident to the i-th node. Moreover, it is equal to +1 if the orientation of
the j-th edge is coherent with the orientation of the i-th node. Similarly, the entry (i, j) of the second
incidence matrix B̃2 ∈ {±1, 0}|X1|×|X2| is non-zero if the j-th face is incident to the i-th edge, or
−1 otherwise. Moreover, it is equal to +1 if the orientation of the j-th face is coherent with the
orientation of the i-th edge, or −1 otherwise. From the incidence information, we build the Hodge
Laplacian matrices as:

L0 = B̃1B̃
T
1 , L1 = B̃T

k B̃k︸ ︷︷ ︸
Ldown

k

+ B̃k+1B̃
T
k+1︸ ︷︷ ︸

Ldown
k

, L2 = B̃T
2 B̃2. (3)

It is clear that, similar to the incidence and adjacencies matrices from A.3, signed incidence matrices
and Hodge Laplacians encode the neighborhoods of the complex. For this reason, in this work, we
jointly call neighborhood matrices the (signed or non-signed) incidence matrices, Laplacians, and
adjacency matrices.

C.1 POSITIONAL ENCODING DETAILS

In this section, we detail and extend information presented on cellular position encodings.

Random walks on cell complexes. Let X be a regular cell complex. We describe a random walk on
the set of k-cells of X . To this end, we first recall that the number of upper and lower adjacent k-cells
of a given cell σ ∈ Xk are named respectively the (0, k + 1)-upper and (0, k − 1)-lower degree of σ
Hernández Serrano et al. (2020),

deg0,k+1
U (σ) = #{σ′ ∈ Xk : σ ∼U σ′}; deg0,k−1

L (σ) = #{σ′ ∈ Xk : σ ∼L σ′}.
On the one hand, for each k ≥ 0, we define a random upper k-walk based on upper adjacencies
of the k-cells of X . At each step, we move from a k-cell σi to any upper adjacent k-cell σj with
probability proportional to the number of (k + 1)-cells in common. To describe this process, we
consider a weighted undirected graph Gup

k , whose vertices are the k-cells of X and the weight of each
edge (σi, σj) is the number of (k+1)-cells whose closure contains both cells (if a k-cell is not upper
adjacent to any k-cell, we draw a loop on the corresponding vertex with weight equal to 1). Thus, the
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(a) RWBSPe random walk possible transitions from
the upper-left edge.

(b) RWPe random walk possible transitions from the
upper-left edge.

Figure 7: Differences between RWBSPe and RWPe random walks. RWBSPe random walks can
jump from a cell to all its incident and coincident cells, while RWPe random walks can jump from a
cell to all its upper and lower adjacent cells.

upper random k-walk is described by the left stochastic matrix RWup
k = wAup

k (Dup
k )−1, where wAup

k

and Dup
k denote the weighted adjacency and diagonal weighted degree matrices of the graph Gup

k .

On the other hand, for each k > 0, we define a random lower k-walk through lower adjacencies
of the k-cells of X . In this case, we move from a k-cell σi to any lower adjacent k-cell σj with
probability proportional to the number of (k − 1)-faces in common. As in the previous case, the
random lower walk can be described as a random walk on a weighted graph Gdown

k , whose vertices
are the k-cells of X and the weight of an edge (σi, σj) is set as the number of (k − 1)-cells that both
cells have in common (as before, if a k-cell is not lower adjacent to any other k-cell, then we draw
a loop on it with weight equal to 1). The lower random k-walk is described by the left stochastic
matrix RWdown

k = wAdown
k (Ddown

k )−1, where wAdown
k and Ddown

k denote the corresponding weighted
adjacency and diagonal weighted degree matrices of the graph Gdown

k . The matrices wAup
k and wAdown

k

correspond respectively to the upper and lower adjacency matrices Aup
k and Adown

k with the diagonal
entries in null rows replaced with 1.

We can combine both processes to obtain a random walk in which information flows through upper
and lower adjacencies, in line with Schaub et al. (2020). The idea is as follows: if we are in a k-cell
σ with upper and lower adjacent k-cells, we take a step with equal probability via either upper or
lower connections. If σ has upper adjacent k-cells but not lower ones, we move following the random
upper k-walk process, and vice versa. Lastly, if σ has neither upper nor lower connections, then we
do not move.

The left stochastic matrix that describes the random k-walk is defined for σi, σj ∈ Xk by

(RWk)σiσj
=





1
2 (RW

up
k )σiσj

+ 1
2 (RW

down
k )σiσj

if deg0,k+1
U (σj) ̸= 0 and deg0,k−1

L (σj) ̸= 0

(RWup
k )σiσj if deg0,k+1

U (σj) ̸= 0 and deg0,k−1
L (σj) = 0

(RWdown
k )σiσj

if deg0,k+1
U (σj) = 0 and deg0,k−1

L (σj) ̸= 0

1(i = j) if deg0,k+1
U (σj) = deg

(0,k−1)
L (σj) = 0.

An example of the differences between transitions from an edge in the random walks described in
this section and the barycentric subdivision random walks of RWBSPe are described in Fig. 7.

D ADDITIONAL DETAILS AND EVALUATIONS ON MOLECULENET

D.1 EXPERIMENTAL DETAILS

On exclusion of QM7, QM8, and QM9 datasets. We exclude the QM7, QM8, and QM9 datasets
from the MoleculeNet suite due to their inherent dependency on 3D atomic coordinates. Our work
aims to extend the capabilities of transformers to capture topological notions and our work can
always be combined with a geometric one. The inclusion of this geometric information creates an
incompatibility with our evaluation framework and the message we strive to convey. Concretely, these
datasets derive labels (e.g., atomization energy, electronic spectra, and dipole moments) from quantum
mechanical simulations that explicitly require precise interatomic distances and angles—information
not captured by our AMCC representation, which relies only on combinatorial information from the
molecular structure.
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D.2 HYPERPARAMETERS

We report the used hyperparameters both for the graph dataset GCB and for the MoleculeNet in Tab. 4.

Table 4: Cellular transformer hyperparameters for the GCB (left) and MoleculeNet (right) experiments.
The attention type and positional encodings vary with configuration. PE stands for positional
encodings.

Parameter GCB BBBP Tox21 ClinTox HIV BACE SIDER MUV FreeSolv ESOL Lipo
#Layers 12 8 4 4 8 3 4 8 12 12 12
Hidden dimension (dh) 80 80 64 40 80 30 32 80 8 8 80
# Attention heads (m) 8 8 4 4 8 3 4 8 8 8 8
Hidden dimension of each head 10 10 16 10 10 10 8 10 1 1 10
Attention dropout 0.0 0.25 0.1 0.0 0.0 0.25 0.1 0.0 0.1 0.0 0.1
Embedding dropout 0.0 0.25 0.0 0.0 0.0 0.25 0.0 0.0 0.1 0.0 0.1
Readout MLP dropout 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.25
Max epochs 100 200 500 100 500 200 500 100 200 500 1000
Peak learning rate 1e−4 1e−3 1e−3 1e−4 1e−3 1e−3 1e−3 1e−4 5e−4 1e−3 1e−3
Batch size 32 64 256 64 128 64 256 512 64 256 128
Warmup epochs 10 0 0 0 0 0 0 0 0 0 0
Weight decay 1e−5 1e−2 1e−5 1e−1 1e−5 1e−2 1e−5 1e−5 1e−4 1e−4 1e−2
# hidden layers readout MLP 0 5 5 3 5 5 5 3 3 3 5
PE preprocessing Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc. Conc.
Mol. descriptors used None MACCS None None None MACCS MACCS None None None None

D.3 HIGHER-ORDER MOLECULAR REPRESENTATION

Molecular representation learning is typically conducted within the graph domain, where atoms
are represented as nodes and bonds as edges. However, molecules exhibit higher-order structural
features, such as rings, functional groups, and three-dimensional cavities, that cannot be effectively
captured using simple graph-based representations. These higher-order relationships are crucial
in determining molecular properties. For example, the aromaticity of a benzene ring is a property
of its cyclic structure, rather than any individual atom or bond. Similarly, functional groups, such
as carboxyl or hydroxyl, involve multi-atom interactions that define their reactivity and properties.
Furthermore, three-dimensional cavities and pockets in proteins are critical for their binding properties
and interactions with ligands.

Traditional methods, which treat each atom and bond equivalently, often overlook these subtle yet
significant structural features. To address this limitation, we introduce augmented molecular cell
complexes (AMCCs), a novel framework that explicitly incorporates these higher-order motifs. In
this approach, atoms are treated as 0-cells (nodes), bonds as 1-cells (edges), and rings or functional
groups as 2-cells (faces). The augmented nature of AMCCs comes from the enhanced features
assigned to these cells, allowing for a more comprehensive representation of the molecular structure
compared to prior works. By explicitly incorporating these higher-order structural motifs into the
molecular representation, AMCCs capture structural information that are often crucial for predicting
molecular properties, as demonstrated in our experiments.

Mathematically, an augmented molecular cell complex can be defined as X =
(X0,X1,X2, FX0

, FX1
, FX2

). Here, X0 denotes the set of 0-cells (atoms), X1 represents the
set of 1-cells (bonds), and X2 denotes the set of 2-cells (rings, functional groups, or other higher-order
features). The corresponding feature maps FX0

, FX1
, and FX2

represent the attributes of atoms,
bonds, and higher-order features, respectively.

D.3.1 FEATURE REPRESENTATION

1. Atom-level (0-cell) Features.

Feature vector of an atom includes:

• Atomic Number: The atomic number of the atom.
• Total Valence: The total number of bonds to an atom.
• Degree: The degree of the atom, i.e., the number of neighbors it has.
• Implicit Valence: The number of implicit hydrogens the atom has.

13



Under review at the GEM workshop, ICLR 2025

• Aromaticity: A binary flag indicating whether the atom is part of an aromatic ring (1 if True, else
0).

• Chiral Tag: An integer representation of the atom’s chirality.
• Formal Charge (offset): The formal charge of the atom offset by a constant value (e.g., +3).
• Hybridization: An integer representation of the atom’s hybridization state (e.g., sp2, sp3).

2. Bond-level (1-cell) Features.

Feature vector of a bond includes:

• Bond Type: An integer representation of the bond type (single, double, triple, or aromatic).
• Conjugation: A binary flag indicating whether the bond is conjugated (1 if True, 0 otherwise).
• Ring Membership: A binary flag indicating whether the bond is part of a ring (1 if True, 0

otherwise).
• Stereo Configuration: An integer representation of the bond’s stereo configuration:

– No stereochemistry
– Unspecified stereochemistry (cis)
– Z configuration
– E configuration (trans)

While single and triple bonds don’t exhibit cis/trans or E/Z stereochemistry like double bonds, they
can be involved in other types of stereochemical phenomena.

• Rotatability: A binary flag indicating whether the bond is rotatable (1 if rotatable, 0 otherwise).
• Smallest Ring Size: The smallest ring size that the bond is a part of, or 0 if not in any ring.
• Electronegativity Difference: The difference in electronegativity between the atoms of the bond,

indicating bond polarity.
• Hydrogen Bond Flag: A binary flag indicating whether the bond is a hydrogen bond (1 if True, 0

otherwise).

3. Ring-level (2-cell) Features.

Feature vector of a ring includes:

• Ring Size: Number of atoms in the ring.
• Aromaticity Flag: A binary flag indicating whether the ring is aromatic (1 if True, 0 otherwise).
• Heteroatom Count: The number of non-carbon atoms in the ring.
• Saturated-ness: A binary flag indicating whether the ring is saturated (only single bonds, 1 if True,

0 otherwise).
• Has Fusion: A binary flag indicating if the ring shares any atom with another ring (1 if True, 0

otherwise).
• Average Electronegativity: Average electronegativity of atoms in the ring.

E RELATED WORK

Transformers brought significant advances in various domains, including natural language process-
ing Vaswani et al. (2017); Kenton & Toutanova (2019) or computer vision Dosovitskiy et al. (2020);
Arnab et al. (2021); Han et al. (2022). Hereö we focus on graph transformers, their higher-order
analogues and applications in biology / chemistry.

Graph transformers. Transformers designed to learn from data supported on graphs typically
include three distinct strategies to harness the power of attention in graph contexts. The first kind
integrates GNNs directly into transformers, either by stacking Wu et al. (2021); Rong et al. (2020),
interweaving Lin et al. (2021), or running in parallel Zhang et al. (2020a). A second method
encodes the graph structure into positional embeddings, which are then added to the input for spatial
awareness Dwivedi & Bresson (2021); Hussain et al. (2021). Finally, the third approach hard codes
adjacency information into the self-attention Dwivedi & Bresson (2021); Min et al. (2022b); Mialon
et al. (2021). We refer the reader to Min et al. (2022a) and ?? for an extended overview. Our work
adopts a combination of the second and third methods.

Higher-order transformers. Models beyond pairwise relations represent a natural progression from
graph-based transformers. HOGA Bailie et al. (2024) and HONGAT Zhang et al. (2024) consider
k-hop neighborhoods to develop graph attentions, but with a heuristic choice of the neighbors. The
most prominent category of such higher order versions operates on hypergraphs. In many instances,
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they have also adopted the self-attention mechanism Kim et al. (2021); Hu et al. (2021); Zhang et al.
(2020b); Wang et al. (2020a).

Transformers operating on general topological domains are scarce. To our knowledge, only two
higher-order transformers targeting simplicial complexes have been proposed Clift et al. (2020); Zhou
et al. (2024). While former does not consider higher order features directly, but rather leverages
higher order relations to improve features on nodes, the latter Zhou et al. (2024), although proposing
a fairly general object to define higher-order structures, focuses primarily on graph learning tested
only on nodes and edges. A limitation of simplicial approaches is their representative power, as
triangles and tetrahedra are scarce in natural data domains.

Topological deep learning in structural biology. Earlier works such as TopologyNet Cang & Wei
(2017) and (Wu & Wei, 2018) benefited from persistent homology to bake the topological information
in representation learning for toxicity and biomolecular property predictions, respectively. With
the progress in TDL Hajij et al. (2022), convolution and message passing schemes on simplicial
and cellular Bodnar et al. (2021a) structures were used to address protein classification tasks. Cell
Attention Network Giusti et al. (2023) utilized liftings for molecular graph classification. Equivariant
TNNs on combintorial complexes are introduced in Battiloro et al. (2025) for molecular property
prediction. Recently, Mol-TDL Shen et al. (2024) has modeled polymers by a series of simplicial
complexes and designed novel message passing modules.
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