SKETCHABLE INFINITY CATEGORIES
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ABSTRACT. A sketch is a category equipped with specified collections of cones and cocones.
Its models are functors to the category of sets that send the distinguished cones and cocones
to limit cones and colimit cocones, respectively. Sketches provide a categorical formalization
of theories, interpreting logical operations in terms of limits and colimits. Gabriel and Ulmer
showed that categories of models of sketches involving only cones (called limit sketches) are
precisely the locally presentable categories, while Lair extended this correspondence to sketches
including both cones and cocones, thereby characterizing accessible categories.

In this article, we discuss a homotopy-coherent generalization of sketches in the context
of oco-categories and prove that presentable co-categories are the oco-categories of models of
limit sketches, whereas accessible co-categories arise as the co-categories of models of arbitrary
sketches. As illustrations, we make the corresponding sketches explicit for a wide range of
oo-categories, including complete Segal spaces, co-operads, Aso-algebras, Exo-algebras, spectra,
and higher sheaves.
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The notion of locally presentable categories, introduced by Gabriel and Ulmer in [11], arose
as an abstraction of the idea of presenting mathematical structures by generators and relations.
A locally presentable category is a cocomplete category generated under filtered colimits by a
set of compact objects. By relaxing the assumption of cocompleteness and only requiring the
existence of filtered colimits, one obtains the broader notion of accessible categories. For example,

the category of fields is accessible but not locally presentable [2, Example 2.3(5)].

A sketch, in the sense of Bastiani and Ehresmann [5], consists of a small category equipped
with a specified collection of cones and cocones. A model of a sketch ¥ is a functor from ¥ to the
category of sets that sends each distinguished cone to a limit cone and each distinguished cocone
to a colimit cocone. If the collection of distinguished cocones is empty, then X is called a limit

sketch. Likewise, if the collection of distinguished cones is empty, X is a colimit sketch.



There are numerous examples in the literature of categories modeled by limit sketches, including
colored operads and the models of any Lawvere theory. Through categorical logic, one can show
that the models of limit sketches are equivalent to the models of essentially algebraic theories.
A foundational result of Gabriel and Ulmer [11], revisited by Addmek and Rosicky in [2],
highlights the importance of sketches by showing that locally presentable categories are precisely
the categories of models of limit sketches. Extending this correspondence, Lair [19] proved that
accessible categories are exactly those modeled by mixed sketches, that is, sketches equipped
with both cones and cocones; see also [2, Theorem 2.58]. Moreover, Makkai and Paré [24,
Subsection 5.1.3] exhibited a 2-adjunction between the small 2-categories of categories and of
sketches.

The theory of limit (and colimit) sketches was first considered in homotopical settings through
the framework of Quillen model categories [4, 7, 32, 33]. In [4], Badzioch introduced the notion
of homotopy models of algebraic theories on spaces, and Rosicky [32] extended this work by
considering homotopy models of simplicial algebraic theories on spaces. Moreover, he established a
correspondence between homotopy models of simplicial limit sketches and homotopy locally finitely
presentable simplicial categories. In [33], Rosicky further studied models of finite weighted enriched
limit sketches in combinatorial monoidal model categories, proving that their homotopy models
are again combinatorial, and hence locally presentable, under mild assumptions. Subsequent
developments include Corrigan-Salter’s generalization of Badzioch’s results to the multi-sorted
setting [10], the work of Caviglia and Horel on homotopy models of limit sketches whose cones have
finite connected diagrams [7], and Marelli’s construction of a homotopy limit 2-sketch modeling
derivators [25].

Joyal [15, 16] developed the theory of oo-categories modeled as quasi-categories, which was
followed by the influential work of Lurie [22]. In his notes, Joyal introduced the notion of limit
sketches on quasi-categories and outlined several examples of higher categories modelled by them.
Since then, very few authors have pursued the theory of limit sketches in this setting. In [§],
Chu and Haugseng studied algebraic patterns on co-categories, a particular kind of limit sketch
endowed with additional structure. This extra structure enables a direct connection between
algebraic patterns and a certain class of higher monads. In unpublished work [23], Macpherson
examined colimit sketches with models in co-categories, introducing a refined notion of colimit
sketch with constructions, which additionally specifies the colimits required to exist in the target
category of models.

Within the framework of co-categories, Joyal [15, 16] and Lurie [22] pioneered the study of
presentability and accessibility. Both defined an accessible quasi-category as one equivalent to
an Ind,-category (see [22, Definition 5.3.5.1] for details) of some small co-category and some
regular cardinal k. However, their definitions of presentable quasi-categories differ. Joyal defined
presentable co-categories as those equivalent to the categories of models of limit sketches, whereas
Lurie defined them as those that are both cocomplete and accessible. In his notes [15, 16],
Joyal asserts that his definition is equivalent to the condition of being cocomplete and accessible.
Modern literature generally follows Lurie’s conventions, and, to the best of our knowledge, no
proof of Joyal’s claim has yet appeared in print. Nevertheless, there are several partial results
in this direction: Lurie [22, Proposition 5.5.8.10] proved that the oo-category of models of a
higher Lawvere theory (that is, a sketch with only product cones) is presentable, and Chu and
Haugseng [8, Lemma 2.11] showed that the oco-category of models of an algebraic pattern is



presentable. Macpherson established in [23, Proposition 3.4.1] that the co-category of models of
any colimit sketch is presentable.

The goal of this article is to extend to the setting of higher category theory both the equivalence
between sketchability and accessibility and the equivalence between limit sketchability and
presentability. Our main results can be summarized as follows; see Corollaries 5.3 and 6.3.

Theorem. Let C be an oo-category. Then

(i) C is presentable if and only if C is equivalent to the category of models of a limit sketch.
(ii) C is accessible if and only if C is equivalent to the category of models of a sketch.

In Section 3 we provide explicit limit sketches for the following presentable oco-categories:
spectra, Segal spaces and complete Segal spaces, Ay .-spaces and A.-rings, F.,-spaces and
E.-rings, infinite loop spaces, dendroidal Segal spaces and complete dendroidal Segal spaces,
and higher sheaves. We also give an example of a mixed sketch whose models are the nonempty
path-connected spaces whose fundamental group is perfect, which form an accessible co-category
that is not presentable.

Our proofs rely on a higher-categorical analog of the following classical characterization for
ordinary categories. Given a regular cardinal s, a functor is called k-flat if its left Kan extension
along the Yoneda embedding preserves k-small limits. Then the following holds:

(1.1) A functor is k-flat if and only if it is a k-filtered colimit of representable functors.

This characterization was first established by Kelly [17] and subsequently employed by Makkai
and Paré [24] in their proof of the equivalence between sketchability and accessibility for ordinary
categories. The same result was later included by Borceux in [6] and by Addmek and Rosicky
in [2], and was further generalized by Adamek, Borceux, Lack, and Rosicky [1], by replacing
regular cardinals with classes of categories. More recently, Lack and Tendas [18] established an
enriched version of the same claim (1.1).

Our principal technical contribution in this article is the following characterization of flatness,
where we write A, for the relative slice of a presheaf F': A — S along the Yoneda embedding,
and Lan F' for the corresponding left Kan extension; see Theorem 4.1.

Theorem. Let A be a small co-category, k a reqular cardinal, and F: A°® — S a presheaf. The
following statements are equivalent:
(i) F is k-flat.
(ii) Lan F preserves k-small limits of representables.
(iii) A,p is a k-filtered oo-category.
(iv) F is a k-filtered colimit of representables.

Further work on flatness in higher categories has also appeared in the literature. Raptis and
Schappi [27] proved a version of (1.1) for presheaves valued in arbitrary co-topoi, restricted to
the finite case k = Ng. An unpublished preprint by Rezk [30] contains a generalization of (1.1) to
classes of categories.

Organization of the paper. The structure of the paper is as follows. Section 2 reviews the
necessary background on oo-categories, including notation, size conventions, and the main results
concerning accessibility and presentability. Section 3 introduces the notion of higher sketches,
generalizing the classical concept to the co-categorical setting, and provides several illustrative



examples. In Section 4, we study flat functors and prove the higher-categorical analog of the
classical characterization of x-flatness (Theorem 4.1). As consequences, we obtain new characteri-
zations of accessible and presentable co-categories (Corollary 4.4 and Corollary 4.5). Section 5
establishes the equivalence between limit-sketchability and presentability for co-categories, culmi-
nating in Corollary 5.3. We study limit sketches with models in arbitrary co-categories using a
construction which, at the level of models, corresponds to Lurie’s tensor product of presentable
oo-categories. Section 6 extends the argument to arbitrary sketches, proving the equivalence
between sketchability and accessibility (Corollary 6.3).
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and we also thank Jifi Rosicky and Ivan di Liberti for valuable conversations. The authors
acknowledge support from the Departament de Recerca i Universitats de la Generalitat de
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under grants PID2020-117971GB-C22, PID2024-155646NB-100, and Europa Excelencia grant
EUR2023-143450.

2. PRELIMINARIES

2.1. Quasi-categories. In this work, we implicitly use the formalism of quasi-categories [9,
14, 22] for oo-category theory. Thus, we use the term oco-groupoid to refer to a Kan complex.
Every oco-category C has a collection of objects Ob(C), but we denote the fact that x is an
object of C by writing x € C. We denote A™ = A(—, [n]), where A is the simplex category and
[n]={0<1<---<n}. If Cand D are co-categories, then the simplicial set Fun(C, D), whose
n-simplices are the maps C x A™ — D, is an oo-category. We call Fun(C, D) the oo-category of
functors from C to D, and denote an object F' € Fun(C, D) by F': C — D. A natural transformation
between two functors F,G: C — D is a 1-simplex a: C x Al — D of Fun(C, D) whose restriction
to C x {0} is equal to F' and whose restriction to C x {1} is equal to G.

Since the nerve of any category is a quasi-category, we treat categories as quasi-categories
without specifying the nerve functor in the notation, if no confusion can arise. In particular, A™
can be viewed as an oco-category, since A" is the nerve of the poset 0 — -+ — n.

Given two objects z,y of an co-category C, we denote by Map.(x,y) the oco-groupoid of
morphisms (or mapping space) from x to y, which is defined by the following pullback of simplicial
sets:

Map¢(z,y) — Fun(Al,C)
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where (evg,evy) is obtained by applying Fun(—,C) to the map (do,d1): Al — A® x A°. We
denote by f: x — y the fact that f € Mape(z,y). A mapping space of a functor co-category
Mapgyy ¢, py (F, G) has as 0-simplices the natural transformations from F' to G. We denote these
by a: F = G.

Every oo-category C has a homotopy category h(C), with the same objects as C and with
h(C)(z,y) = mo Map.(z,y). Given a morphism f: x — y, we denote by [f] the corresponding
morphism in h(C). A morphism f: z — y in C is an isomorphism if it is invertible in h(C).

We call an object unique with a property when it is unique up to isomorphism among those
sharing the property. In the case of a morphism f: z — y, we call it unique with a property if



the subspace of Map,(x,y) of those morphisms sharing the given property is contractible. For
example, the inverse of an isomorphism is unique.

With this convention, given two composable morphisms f: z — y and g: y — z in C, there is
a unique morphism h: x — z such that [h] = [g] o [f]. Composition can also be studied at the
level of mapping spaces, where there is a unique (up to natural isomorphism) composition functor

—o—: Map¢(y, 2) x Mape(z,y) — Mape(z, 2),

defined by the construction given in [31, §45.6]. It has the expected properties; namely, it is
associative up to homotopy, and it matches with the composition defined in h(C).

2.2. Cardinality assumptions. The main concepts studied in this article are related to sizes of
oo-categories. Regular cardinals are assumed to be infinite. For an uncountable regular cardinal &,
an oo-groupoid X is called k-small if m9(X) and the homotopy groups 7, (X, z) have cardinality
smaller than  for each x € X and each n > 1. If Kk = Ng, then an co-groupoid X is called Ry-small
if it is a homotopy retract of a finite simplicial set. An oco-category is called locally k-small if all
its mapping spaces are k-small co-groupoids. Furthermore, an oco-category is called k-small if
it is locally k-small and its set of isomorphism classes of objects has cardinality smaller than «.
This definition is found with the name of essentially k-small co-category in some references such
s [22], but we follow the conventions of [3, 9].

We assume the existence of a strongly inaccessible cardinal , and call small sets (or sometimes
just sets) the sets with cardinality smaller than x. An oco-category will be called small (resp.
locally small) if it is k-small (resp. locally x-small). The locally small co-category of all small
oo-groupoids is denoted by S, and the one of all small co-categories is denoted by Caty.

As is common in the literature, the isomorphisms between oco-categories or oo-groupoids,
viewed as objects of Cat.,, will be called equivalences.

If K is small and C is locally small, then Fun(K,C) is a locally small co-category [22, Exam-
ple 5.4.1.8]. Throughout this paper, unless explicitly specified, all co-categories are assumed to
be locally small. In the case where we need some oco-category which is not necessarily locally
small, it will be called a large oo-category.

2.3. Notation and basic constructions. A functor F: C — D is essentially surjective if for
every object y € D there exists an object x € C together with an isomorphism y & Fz. We say
that F is fully faithful if the map

Mape (z,y) — Mapp(Fz, Fy)

is an equivalence for every pair of objects x,y € C. A full subcategory of C is an oo-category A
together with a fully faithful functor J: A — C. We then say that J is an inclusion of A into C.
Every subset of objects of C determines a full subcategory, which is unique up to equivalence.
We say that F': C — D is left adjoint to G: D — C (or that G is right adjoint to F) if
there exist natural transformations p: ide — GF and €: FG — idp such that the composite

transformations

FES par < R a X ara 45

are equivalent to idr and idg respectively.
For any oco-category C, the opposite co-category C°P has the same objects as C together with
Mapees (7,y) = Mape(y, z)°?, where the opposite of a simplicial set is defined by reversing the



indexing of faces and degeneracies [9, Definition 1.5.7]. Consequently, (C°P)° = C. For any small
oo-category A, we denote PSh(A) = Fun(A°P,S) and call it the co-category of presheaves on A.
The slice C/,, of an object = € C is defined as the following pullback:

C/y —— Fun(AL,C)

(2.1) | ’ mem

C~oCxA—— s CxC.
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More generally, we define the relative slice F, as the pullback of C/, along a functor F': A — C:

F/w E— C/l.
A—E ¢
Dually, the coslice C,, is defined as in (2.1), by replacing id x x by = x id. A relative coslice
category F,, along a functor F': A — C is defined similarly, by taking a pullback of C,, — C.

If K is a small co-category, a K-diagram in an oo-category C is a functor K — C. For any small
oo-category K and any object x € C, the constant diagram 6 x: KC — C sends all objects of K to x
and higher morphisms of K to higher identities over z, i.e., the iterated application of the first
degeneracy over z. By applying Fun(—,C) to the terminal map K — A we obtain the diagonal
functor §: C — Fun(K,C), which sends any object z € C to the constant diagram § z, and any
morphism f: x — y to a natural transformation § f: d x = Jy defined by post-composition
with f. The left cone K< and right cone K* are defined as the following pushouts:

KCx A 29X0 g Al K ox A0 19XL g o Al
A S N US—e

For a diagram D: K — C, we define the oo-category of cones C,p as the relative slice §,p
along the constant functor. An object o € C;/p can be viewed as a pair (z,«), where x € C is
the cone point and a: d x = D is a natural transformation. By [22, Proposition 1.2.9.2], a cone
a € C/p is equivalent to a functor a: K< — C such that &’K =D.

Then, a limit for D is a terminal object of C,p, which can be viewed as a pair (lim D, £) where
limD € C and ¢: 6lim D = D is a natural transformation. By [22, Lemma 4.2.4.3], a limit for D
has the following universal property: for all y € C, the map

. é . Lo—
MapC (yv lim D) — MapFun(K, C) (6 Y, 4 lim D) — MapFun()C, C) (5 Y, D)

is an equivalence of co-groupoids. Dually, a K-cocone in C is a KC-cone in the opposite co-category
C°P, and a colimit is a limit in C°P.

An oco-category C is (co)complete if, for every small oo-category K, each diagram D: K — C
admits a (co)limit. For example, the co-category of presheaves over any small co-category is
complete and cocomplete.

Let A and K be small oo-categories, and k be a regular cardinal. A K-diagram, K-cone
or limit /C-cone is k-small if K is xk-small as an oco-category. A functor F': 4 — S is called
K-(co)continuous if it preserves x-small (co)limits. In particular, it is called finitely (co)continuous
if it is Ng-(co)continuous. We denote by Cont,(A) the full subcategory of Fun(A, S) spanned by
all k-continuous functors.



Let F': C — D be a functor of co-categories which admits a right adjoint G: D — C. For every
small co-category K, the functor F' preserves colimits and the functor G preserves limits [22,
Proposition 5.2.3.5]. Given an object ¢ € C, define the evaluation functor ev.: Fun(C,D) —
Fun(A°, D) ~ D as the functor resulting from applying Fun(—, D) to the morphism c: A? — C
of simplicial sets. By [22, Proposition 5.1.2.3] and its dual, ev.: Fun(C, D) — D preserves limits
and colimits for all ¢ € C.

Later, we will need both the covariant and the contravariant Yoneda embeddings, and thus we
need to fix a notation to distinguish between the two:

Theorem 2.1 (Yoneda Lemma). Let A be a small co-category. There exists a unique functor
hA: A— PSh(.A)

such that ha(x)(y) ~ Map 4(y, x) for all x,y € A. Furthermore, h4 is fully faithful, and, for any
object © € A and any functor F: A°® — S, there is a natural equivalence

MappSh(A)(hA(x), F)~ Fz.

We refer to hy as the covariant Yoneda embedding; see [22, Lemma 5.5.2.1 and Proposi-
tion 5.1.3.1] for a proof and further details. Conversely, the covariant Yoneda embedding applied
to the opposite of an co-category A yields a unique (and fully faithful) functor

hA: AP —; Fun(A,S)

such that h4(z)(y) =~ Map 4(,y) for all z,y € A. We refer to h** as the contravariant Yoneda
embedding. For every functor G: A — S, there is a natural equivalence

MapFun(A, S)(hA(x)v G) ~ Gz.

By [22, Proposition 5.1.3.2], the covariant Yoneda embedding h 4 preserves all limits that exist
in A, and the contravariant Yoneda embedding h* sends colimits that exist in A to limits.

2.4. Localizations, accessibility and presentability. A functor L: C — D between oo-cat-
egories is a reflective localization if it has a fully faithful right adjoint J: D — C. Hence, L is
a reflective localization if and only if D embeds as a reflective subcategory into C, that is, for
every object & € C there exists an object 2’ € D and a morphism r: x — Jz’ such that the
pre-composition map
Mape (7, 2): Mape(Ja', 2) — Mape(x, 2)

is an equivalence of co-groupoids for all z € D. The term reflective emphasizes a distinction with
a more general concept of localization, used in [3], of a universal functor from C inverting a given
class of morphisms S, without necessarily being coaugmented.

Let S be a class of morphisms in an co-category C. An object z € C is S-local if, for every
f:x — yin S, there is an equivalence of co-groupoids induced by composition with f:

f*: Mape(y, 2) — Mape (2, 2).

We denote by Loc(C, S) the full subcategory of C spanned by S-local objects. In general, Loc(C, S)
need not be reflective.

Let A, K and Z be small co-categories, C be an oo-category, and x be a regular cardinal. An
oo-category Z is k-filtered if it has at least a cocone for any diagram D: K — Z where K is
k-small. A diagram F': 7 — C where Z is a s-filtered oo-category is called a k-filtered diagram,
and a k-filtered colimit is a colimit over a k-filtered diagram.



An object = € C is k-compact if h¢(x): C — S preserves r-filtered colimits. We denote by C*
the full subcategory of C spanned by k-compact objects. If C is a cocomplete co-category, we say
that a class of objects G C Ob(C) generates C under (k-filtered) colimits if every object in C is
the (k-filtered) colimit of a diagram with objects in G. For example, for every small co-category
A, the image of the covariant Yoneda embedding h4: A — PSh(A) generates PSh(A) under
colimits; see [22, Corollary 5.1.5.8].

The oco-category Ind,(A) is defined as the full subcategory of PSh(A) spanned by those
presheaves F': A°P — S which classify right fibrations A — A where A is r-filtered [22, Defini-
tion 5.3.5.1]. It is shown in [22, Corollary 5.3.5.4] that Ind,(.A) is the cocompletion of A under
r-filtered colimits, from which it follows that the full subcategory Ind,(A) C PSh(A) is stable
under k-filtered colimits [22, Proposition 5.3.5.3].

An oo-category is k-accessible if it is equivalent to Ind, (A) for some regular cardinal x and
some small co-category A. Furthermore, a functor F': C — D is k-accessible if C is k-accessible
and F' preserves k-filtered colimits. We say that an co-category C (resp. a functor F': C — D) is
accessible if it is k-accessible for some regular cardinal x. When considering a functor between
accessible co-categories, it can be shown [22, Proposition 5.4.7.7] that, if it has a left or right
adjoint, then it is itself accessible. As shown by Lurie in [22, Corollary 5.3.5.4] and [22, Proposition
5.4.2.2], the following theorem characterizes accessibility, where the third property is equivalent
to the classical definition of accessibility for categories [2, 24]:

Theorem 2.2 (Characterization of accessibility). Let C be an oco-category and  be a regular
cardinal. Then, the following statements are equivalent:
(i) C is a k-accessible co-category.
(ii) C is equivalent to the full subcategory of PSh(A) spanned by the k-filtered colimits of
representable presheaves for some small co-category A.
(iii) C is locally small and admits k-filtered colimits, the full subcategory C* C C of k-compact
objects is small, and C* generates C under r-filtered colimits.

An oo-category is k-presentable (resp. presentable) if it is r-accessible (resp. accessible) and
cocomplete. We say that a reflective localization L: C — D is an accessible reflective localization
if the right adjoint to L is an accessible functor. For example, any reflective localization between
accessible oo-categories is accessible [22, Proposition 5.5.1.2]. As shown by Simpson [34] and Lurie
[22, Theorem 5.5.1.1], presentability can be characterized in terms of an accessible reflective
localization of an oco-category of presheaves:

Theorem 2.3 (Characterization of presentability). Let C be an oo-category and k be a reqular
cardinal. Then, the following statements are equivalent:

(i) C is a k-presentable co-category.
(ii) C is equivalent to Ind, (A) for some small co-category A which admits k-small colimits.
(iii) C is equivalent to a k-accessible reflective localization of the co-category of presheaves
PSh(A) on some small category A.

Examples of presentable co-categories include S, any oco-topos, and the nerve of any presentable
category. If A is a small oo-category and C is a presentable co-category, then Fun(A4,C) is
presentable [22, Proposition 5.5.3.6]. In particular, PSh(A) and Fun(.A,S) are presentable for
every small co-category A. Furthermore, every presentable co-category is not only cocomplete but
also complete [22, Corollary 5.5.2.4], and the Adjoint Functor Theorem (see [22, Corollary 5.5.2.9]



and [26]) characterizes right (resp. left) adjoints of functors between presentable co-categories as
the ones preserving colimits (resp. preserving limits and being accessible).

In addition, presentable co-categories provide a convenient ambient for localization. As shown
in [3, Propositon 2.2.1], every reflective localization induces a reflector which inverts a class of
morphisms. Conversely, if we choose a set of morphism S in a presentable co-category, then there
exists a reflective localization which inverts a class S containing S; see [22, Proposition 5.5.4.15].

3. HIGHER SKETCHES

Let D be any set of diagrams in an co-category C. We say that C is D-(co)complete if all the
diagrams of D have a (co)limit in C.

Definition 3.1. A sketch ¥ = (A,L,C) is a triple consisting of a small co-category A, a set of
cones L in A and a set of cocones C in 4. Given an L-complete and C-cocomplete oco-category C,
a model of a sketch ¥ in C is a functor F': A — C that sends cones of L to limit cones in C and
cocones of C to colimit cocones in C.

Denote by Mod(X, C) the co-category of models of ¥ in C, and by Mod(X) = Mod(X, S) the
oo-category of models of ¥ in S. A sketch with C = ) is called a limit sketch, and one with L = ()
is called a colimit sketch. If A is L-complete and C-cocomplete, we say that ¥ is normal if all
the cones of L are limits and all the cocones of C are colimits. Given a regular cardinal x, we
say that a sketch is k-small if all the cones of L have x-small diagrams. In particular, we say
that a sketch is finite when it is Rg-small. We say that an oo-category is (limit) sketchable if it is
equivalent to Mod(X) for some (limit) sketch X.

The condition for a model of a sketch can be rewritten in terms of inverting certain morphisms.
Let C be a complete and cocomplete co-category, F': A — C be a functor, and ¥ = (A4,L,C) be
a sketch. Consider a cone a: K? — A of L, with cone point z € A and diagram D: K — A,
and a cocone 3: H> — A of C, with cocone point y € A and diagram E: H — A. Consider the
composites

Foa:K'—=C and Fop:H” —C.

Since C is complete and cocomplete, we can take the limit and colimit of FF o D and F o E
respectively. By the universal properties of limits and colimits, there are morphisms

(3.1) to: Fo — hlgn(F o D) and ug: cogl{im(F oE) — Fy.
Then, t, and ug are isomorphisms for all & € L and 3 € C if and only if F' is a model of X.

Proposition 3.2. Let C be a presentable co-category. If ¥ is a limit sketch, then Mod(X%,C) is
complete. Dually, if ¥ is a colimit sketch, then Mod(%,C) is cocomplete.

Proof. Let ¥ = (A, L) be a limit sketch. Since C is presentable, Fun (A, C) is complete. Thus, for
any diagram F: T — Mod(X,C) of models of X, there is a limit limz F' € Fun(A,C). We want to
show that limz F' is in fact also a model of 3. By (3.1), limz F € Mod(X,C) if and only if, for
every cone a: K9 — A of L, with cone point x € A and diagram D: K — A, the morphism

(3.2) (li%n Fyz — 1i}£n((li%n F)o D)

is an isomorphism. Since K is small and C is complete, (— o D) is a right adjoint and preserves
limits. Using that the evaluation functor also preserves limits, and that limits commute with



limits, (3.2) is an isomorphism if and only if

. lim(F (i lim lim(F (i) o D
(3.3) lim(F(¢)z) — lim lim(F(i) o D)
is an isomorphism in C. Thus, since each F'(i) is a model of ¥, the equivalences in (3.1) hold for
every F'(i), and (3.3) is an isomorphism, as we wanted to show. If ¥ is a colimit sketch, the same
argument follows using the fact that C is cocomplete. ]

Example 3.3 (Morphisms). Let ¥ = (A!,0) be the trivial limit sketch over A!. A model
F: A' — C of ¥ in any oco-category C exhibits a morphism of C. Therefore, Mod(%,C) =
Fun(A!,C) is the oo-category of morphisms in C. The same construction can be carried out with
any small co-category A; hence Mod((A, ?),C) = Fun(A,C) is limit-sketchable.

Example 3.4 (Pointed objects). Let f: 0 — 1 be the generating morphism of Al, and let C be
an oo-category with terminal object 1¢. Let ¥ = (Al L) be the limit sketch with set of cones L
consisting of the empty diagram D: ) — A, cone point 0, and the unique natural transformation
a: 60 = D. A model F: A' — C of ¥ in C sends f to a morphism F(f): F(0) — F(1), and
it also sends the only cone of L to a limit cone of the diagram F o D: () — C. It follows that
F(0) 2 lim(F o D) = 1¢. Therefore, each model F' exhibits an object F(1) € C as a pointed
object F(f): 1¢ — F(1) of C, and Mod (X, C) can be viewed as the co-category of pointed objects
of C. In particular, Mod(X, S) is the oo-category of pointed spaces.

Example 3.5 (Pullback diagrams). Let A be the nerve of the small category generated by a
commutative square

—

—_ W

2
0.
Consider a limit sketch ¥ = (A,L) with set of cones L consisting of the inclusion diagram

D: {1 -0+ 2} — A, cone point 3 € A, and the natural transformation a: §3 = D. A model
F: A — Cin a complete co-category C for the sketch 3 sends

—

3—— 2 r3 — T2
" |
1——0 r1 — To

where the right-hand commutative square is a pullback diagram. Therefore, each model of ¥
corresponds to a pullback diagram in C.

Example 3.6 (Pre-spectrum and spectrum objects). Let A be the nerve of the small category
with objects NU (N x {0,1}) and generating morphisms f; ;j: i — (i +1,j) and g; ;: (¢,7) — ¢ for
every i € N and j € {0,1}, i.e., the category of the following shape:

(0,0) (1,0) (2,0)
\ 0 /‘ \ 1 / \ 2
0,1) (1,1) (2,1)

(o,



Consider the limit sketch ¥ = (A, L) with set of cones L consisting of, for each ¢ € N and
j € {0, 1}, the unique cone of the empty diagram and cone point (4,j) € A. A model F: A — C
in a complete co-category C for the sketch X is a diagram

NN
IS

where each (4, j) is replaced by the terminal object 1¢ of C, and a sequence of objects x,, € C is
selected. Giving a model of ¥ amounts to choosing pointed objects 1¢ — x,, for all n € N and
morphisms z,, — Qx,4+1 (by the universal property of the pullback):

e
Ty S---- y Qrpp1 > Tpt1-
e

Hence, each model of ¥ is, by definition, a pre-spectrum object, and Mod (X, C) is the co-category
of pre-spectrum objects in C.

If we want to obtain spectrum objects, we need to add more cones to X. Consider a limit
sketch ¥’ = (A,LU L") where L’ consists of, for each n € N, a cone

(n+1,0)
n/ \n+1
\ e
(n+1,1)

where n is the cone point and (n 4+ 1,0) — n+ 1 + (n+ 1,1) is the corresponding diagram.
A model for ¥’ is a pre-spectrum object in C such that

~

x, = pullback of {l¢ = zpt1 < le} = Qepyg.

Thus, a model for ¥’ is a spectrum object, and Mod(X', C) is the oo-category of spectrum objects
in C. In particular, Mod(X',S) is the co-category of spectra Sp.

In the following examples, we view categories such as the simplex category A, the category I'
of finite pointed sets and pointed maps, or the tree category € defined in [8, § 3.2] as oo-categories
by passing to their respective nerves.



Example 3.7 (Pre-category objects and Segal spaces). Let «,, be the following cone over A°P
with cone point [n]:

e
) 1) 1) 1] )
A A VS BN
0] 0] 0]

Consider the limit sketch ¥ = (A {an}, cn). A model F': A°® — C of ¥ in a complete
oo-category C is a simplicial object in C equipped with isomorphisms
Fp = Fu xp, Fu xRy - xpy By
for all n. Therefore, Mod(%,C) is the oo-category of pre-category objects in C. If C = S, then
Mod(X) is the co-category of Segal spaces.

Example 3.8 (Univalent category objects and complete Segal spaces). Let C be a complete
oo-category and ¢ = (AP, L) be the sketch of Example 3.7. By the characterization found
in [28, §5.5] and [28, Proposition 6.4], a Segal space F is a complete Segal space if and only if
the following is a pullback square in S:

- P,
(3.4) l Jg
Fy 4)1‘. Fy X;l;-;'dl Fy X(}i;%’do Fy

where f = (Sodo, idFl7 Sodl) and g = (d1d3, d0d3, dldo).
Define a sketch ¥ = (A°P L) where L is the union of L¢ with the cone represented by the

following diagram:
/ [0}
(35) 00‘50 iy o001 6163 5003 51‘50

l l

[1] [1] [1]
PN N4
[0] [0]

with cone point [0]. A model F': A°® — C of ¥ exhibits a pre-category object in C and the image
of (3.5) is a limit cone, which is equivalent to the pullback square (3.4). Therefore, Mod(X, C) is
the oo-category of univalent category objects in C. In the particular case when C = S, we have
that Mod(X) is the oo-category of complete Segal spaces.

Example 3.9 (Monoid objects and As-spaces/rings). Let C be a complete oo-category and
Y = (AP, L¢) be the sketch of Example 3.7. Define a sketch ¥ = (A°P,L) where L is the union
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of L¢ and a cone with empty diagram and cone point [0]. Each model of ¥ is a pre-category
object F' in C such that Fy = 1¢. Hence, Mod(%, C) is the co-category of monoid objects in C. In
the case when C = S, we have that Mod(X) is the co-category of As-spaces. If C = Sp, then
Mod (3%, Sp) is the oco-category of A..-ring spectra.

Example 3.10 (Groupoid objects). Let C be a complete co-category and ¥ = (A°P L¢) be the
sketch of Example 3.7. Define a sketch ¥ = (A°P,L) where L is the union of L¢ with a diagram

D: {1 -0+ 2} — AP

sending 1 — 0 < 2 to [1] LIN [0] Lo [1] and a natural transformation o with cone point [2]

defining the following commutative square:

A model of ¥ defines a pre-category object and sends these squares to pullback squares. Therefore,
Mod(3,C) is the oco-category of groupoid objects in C.

Example 3.11 (Group objects and grouplike A..-spaces). Following the construction used
in Example 3.9 but replacing the sketch of pre-categories with the one of groupoids, it follows
that Mod (X, C) is the oo-category of group objects in C. In the particular case when C = S, we
have that Mod(X) is the co-category of grouplike A, -spaces.

Example 3.12 (Commutative monoid objects and F..-spaces/rings). Let T' be the category of
finite pointed sets and pointed maps, where every object is isomorphic to a set [n] pointed by
0 € [n]. For each 1 < k < n, there is a pointed map 0y : [n] — [1] defined by

1 ifi=k,
Ok (i) = o
0 ifi#k.

A T-object in an oo-category C is a functor E: I' — C. If C has finite products, we can take the
product of the morphisms E(dy): E,, — Ep, which we denote by

Pn: En — ﬁ El.
k=1

By definition, E is a commutative monoid object if p,, is invertible for every n > 0.
Consider a sketch ¥ = (T, L), where the set of cones L consists of, for each n € N, a diagram

D,: |i|{k} — 7T
k=1

sending k + [1] for all k, cone point [n] € T', and the natural transformation 67 : d[n] = D,
induced by d; at each object k. Therefore, Mod(3,C) is the oo-category of commutative monoid
objects in C. If C = S, then Mod(X) is the oco-category of E..-spaces, and if C = Sp, then
Mod(X, Sp) is the co-category of E.-ring spectra.

13



Example 3.13 (Abelian group objects and infinite loop spaces). Let sSet denote the category
of simplicial sets, and C be a complete co-category. Consider the functor

1t A°® — T

sending [n] — Homgget, (A7, S'), where S! is the pointed simplicial circle A'/OA!. Since C is
complete, the map

i*: Fun(T',C) — Fun(A°P,C)

sends every commutative monoid object E € Mod(S,C) C Fun(I',C) to its underlying monoid
1*E: A°" — C. We say that F is an abelian group object if i*E is a group.

Let ¥em = (T, L) be the sketch of Example 3.12, and agpqg be the cone added in Example 3.10.
Define a sketch ¥ = (I', Lom LI {i o agpa }), where the cone i o agpq with cone point ¢[2] corresponds
to the following commutative square:

2] - i)

1
i(awl li(«m

A model of ¥ defines an abelian group object by sending these squares to pullback squares.
Therefore, Mod(X,C) is the oco-category of abelian group objects in C. In the particular case
when C = S, we have that Mod(X) is the oo-category of infinite loop spaces.

Example 3.14 (Dendroidal Segal spaces). Let Q be the tree category of Moerdijk—Weiss [12,
§3.2]. Given two trees 77 and T, sharing an edge e which is a leaf of 77 and the root of T5, the
grafting Ty Ue T is the pushout of T7 and T, along the common edge e.

Define a limit sketch ¥ = (Q2°P,L) with the set L consisting of, for each tree T' € Q and each
decomposition of T" as a grafting of subtrees T' = T} o, T5, a cone with cone point T represented
by the following pushout in €2:

T2 ***** s T.
A model for the sketch ¥ is equivalent to a dendroidal space X : Q°° — S such that the squares
of the form

X(T) — X(T1)
X(T>) — X(n)

are pullbacks for any tree T' and any decomposition of T as a grafting of subtrees T = T} o, T5.
By [12, Lemma 12.7], this condition is equivalent to claiming that X is a dendroidal Segal space,
and hence Mod(X) is the oo-category of dendroidal Segal spaces.

Example 3.15 (Complete dendroidal Segal spaces). Consider the inclusion j: A°® — Q°
sending [n] to the linear tree L,. The induced map

J5: Fun(Q°P,8) — Fun(A°P,S)

14



sends every dendroidal space X to its underlying simplicial space j*X. By [12, Remark 12.15], a
dendroidal Segal space X : Q°° — S is complete if and only if its underlying simplicial space j*X
is complete.

Let Xqs = (22°P, Lgs) be the sketch of Example 3.14, which models dendroidal Segal spaces,
and let (D, [0], @) be the cone added in Example 3.8, which models the completeness condition on
simplicial spaces. Define a sketch ¥ = (2°P, L) where L is the union of Lqg and a cone consisting
of a diagram j o D and a natural transformation j o a with cone point j[0] = Lo € 2°P. A model
of ¥ is a dendroidal space X : 2°° — & such that the map

(7*X)[0] = X3[0] —s Lim(X o j o D) = lim((j*X) o D)

is an isomorphism. This condition is equivalent to imposing that the underlying simplicial space
7*X be complete, according to Example 3.8. Hence, X is a model of ¥ if and only if it is a
complete dendroidal Segal space, and Mod(X) is the co-category of complete dendroidal Segal
spaces.

In all the examples of limit sketches given so far, the small oco-category associated to the limit
sketch is in fact the nerve of a small category. The following example of higher sheaves has any
small co-category as the base of the corresponding limit sketch:

Example 3.16 (Higher sheaves). Let A be a small oo-category, and let A/, denote the slice
category over an object x € A. A sieve on an object x € A is a full subcategory D, C A/, closed
under precomposition with morphisms in A,,. For S a sieve on = € A and f: y — x a morphism,
the pullback sieve f*S on y is the sieve spanned by the morphisms into y that become equivalent
to a morphism in S after composition with f.

A Grothendieck topology T on an oco-category A, as defined in [22, §6.2.2], is an assignment to
each object & € A of a collection T, of sieves on x, called covering sieves, such that:

1) For each x € A, the trivial sieve A,, C A/, on x is a covering sieve.
/ /
(2) If S is a covering sieve on x and f: y — x is a morphism, then the pullback sieve f*S is
a covering sieve on y.
(3) For a covering sieve S on z and any sieve R on z, if the pullback sieve f*R is covering
for every f € S, then R itself is covering.

By [22, Proposition 6.2.2.5], there is a natural bijection between sieves on x in A and equivalence
classes of monomorphisms U — h4(z) in PSh(A), where h4 is the Yoneda functor, as in
Theorem 2.1, and a morphism U — V is a monomorphism if it is a (—1)-truncated object of
PSh(A) v

Let S(T) be the class of monomorphisms in PSh(.A) corresponding to the covering sieves of T.
A presheaf F' € PSh(A) is a sheaf with Grothendieck topology 7 if it is an S(7T)-local object,
i.e., if for every morphism f: U — h4(z) in S(T), the map

Fz =~ Mappgy,a)(ha(z), F) — Mappgy,4)(U, F)

is an equivalence.

Recall that any presheaf U € PSh(A) can be expressed as a canonical colimit colimh 4 o ,
where 7: A,y — A is the associated forgetful functor. Let ¥ = (A°P,L) be a limit sketch where
the set L consists of, for each covering sieve with corresponding monomorphism f: U — h4(x),
a cone with diagram 7°P: A,;°P — A°P, cone point x € A and natural transformation given

15



by f°P. A model of ¥ is a presheaf F': A°? — S such that

Fr— lim F o7 ~ limMa htor, F
A A Ppsh(a) )

~ Ma (colim hgom, F)
PPsh(A4) by A
~ Mappgp(a)(U, F)

is an equivalence for every f: U — h4(z), i.e., F' is a sheaf with Grothendieck topology 7. Hence,
Mod(X) is equivalent to the co-category Sh(A, T) of sheaves on A with Grothendieck topology T .

This is not the only way to present the oo-category of sheaves by means of a limit sketch. If
we assume that A has pullbacks, we can formulate the sheaf condition in terms of a limit based
on the Cech nerve. We will need the following lemma:

Lemma 3.17. Let {u; — x},.; be a family of morphisms of A that generate the covering sieve
corresponding to a monomorphism n: U — h(x), and let Uy : A°P — PSh(A) be the underlying
simplicial object of the Cech nerve of the induced map [icr ha(u) = ha(x). Then, a presheaf F
1s m-local if and only if the induced map

Fz — lim Mappg () (Us, F)

is an equivalence. If A has pullbacks, the diagram U, can be decomposed into some diagram
Us: A°? — A and the Yoneda embedding h4: A — PSh(A), and then a presheaf F is n-local if
and only if the induced map

Fr — lim F o UJP
A
s an equivalence.

Proof. Let I be a set, and {u; — x},;
sieve corresponding to a monomorphism 7n: U — h4(z). By [22, Lemma 6.2.3.18], f: U —
ha(x) can be identified with the (—1)-truncation of the induced map [[,.; halu;] — ha(z) in
PSh(A) j, , (z)- Since PSh(A) is an co-topos, by [22, Proposition 6.2.3.4], the (—1)-truncation of a
map p: V — h4(x) can be identified with the map colim Vo — h4(x), where V, is the underlying
simplicial object of the Cech nerve of p. Hence, f: U — h4(z) can be identified with a map
colim U, — h4(x), where U, is the underlying simplicial object of the Cech nerve of the induced
map [],c; halu;] — ha(z). Thus, a presheaf F' is n-local if and only if the following map is an

be a family of morphisms of C that generate a covering

equivalence:
Fa — Mappgya) (U, F)) = Mappgy, () (cglgl{n U, F) =~ lim Mappg 4y (Us, F),

which proves the first statement. Now assume that A has pullbacks. Observe that for any [n] € A°P,
U, is an iterated pullback of components of the original morphism [[,.; ha(u;) = ha(z). Since A
f ser Wi — o such that hA(f)%’f. Thus, Uy ~ h 40U,
where U, is the same diagram iterated pullback but using components of f Thus, a presheaf F

has pullbacks, there exists a morphism f: [

is p-local if and only if the following map is an equivalence:
F lim M Us, F) ~ lim M hoU,, F)~lim F o USP,
# — lim Mappgy, 4 ( ) = lim Mappgy,(4) (ha © ) =lim FoU,

as we wanted to prove. (I
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Let A be a small co-category which admits pullbacks and a Grothendieck topology 7. Let
¥ = (A°P,L) be a limit sketch where the set L consists of, for each covering sieve generated by
a family {u; — z}
induced map []
that

ser» @ cone over the underlying simplicial object U, of the Cech nerve of the

ser Wi — o, with cone point € A. A model of ¥’ is a presheaf F': A°® — S such

Fz —lim F o U,
is an equivalence for every f: U — h(x). Hence, as before, Mod(X') ~ Mod(X) ~ Sh(A, T).
To finish this section, we also give an example of a sketch with a nonempty set of cocones:

Example 3.18. Let f: 0 — 1 be the generating morphism of A'l. Define a sketch ¥ = (A, L, C)
where L contains only a cone of the empty diagram with cone point 1, and C contains the cocone
corresponding to the commutative square

0%1
i
1 =—=1.

Let C be an oo-category with a terminal object 1¢ and pushouts. Thus, a model on C is a functor
F: A — C such that F1 = 1¢ and the square

FO——1¢
le=—1¢

is a pushout. If we take models on an oo-topos &, then applying F' is equivalent to choosing
an object F'0 € £ such that the terminal map Fa — 1g is an epimorphism. As a special case,
as observed in [13], the models on § are nonempty spaces X whose suspension is contractible,
i.e., nonempty path-connected spaces whose fundamental group m(X) is perfect, that is, its
abelianization is zero. The oco-category of models of this sketch ¥ on S is not presentable, since it
does not have an initial object.

4. FLAT FUNCTORS

Let A be a small co-category, and let S denote the oo-category of spaces. For notational
purposes, we consider both the covariant Yoneda embedding h4: A — Fun(A°P,S) and the
contravariant Yoneda embedding h*: A°® — Fun(A,S). For a presheaf F': A°? — S, we denote
by Lan F the left Kan extension of F along h**. We denote by A /r the relative slice (h4) /Fata
presheaf F': A°? — S along the Yoneda functor, i.e., the following pullback:

A —— PSh(A).

Thus, the objects of A, are pairs consisting of an object a € A and a natural transformation
a: ha(a) = F, or, equivalently, pairs of an object a € A and an object « € Fa.
Given a regular cardinal s, a presheaf F': 4°P — S is k-flat if the left Kan extension

Lan F': Fun(A,S) — S
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preserves x-small limits. The following theorem characterizes k-flatness and generalizes results
of [1, 2, 17, 24] to the context of oo-categories.

Theorem 4.1. Let A be a small co-category, k a regular cardinal, and F: A°® — S a presheaf.
The following statements are equivalent:
(i) F is k-flat.
(ii) Lan F preserves k-small limits of representables.
(iii) A/p is a k-filtered co-category.
(iv) F is a k-filtered colimit of representables.

Proof. First, (i) = (ii) holds by definition. The implication (iii) = (iv) follows from the fact that
any presheaf F' is a canonical colimit of representables, with diagram

A L A LA Fun (AP, S).

Next we prove that (iv) = (i). If a € A, then, by Theorem 2.1, ev, is a left Kan extension of
ha(a) along h*:

ha(a)

A°P S.
o]
Fun(A,S)

Assume that F' is a k-filtered colimit of representables, i.e.,
F = colim haD(i
colim haD(i),

where 7 is a k-filtered co-category and D: Z — A. Consider its left Kan extension

By definition, Lan is a left adjoint and preserves colimits. Hence, using that F' is a x-filtered
colimit of representables, we obtain that

Lan F' = Lan <C?élzm hAD(z)) & c?élzm Lan(h4D(i)) & C(i)élzm evp(i) -

By [22, Proposition 5.1.2.3], the evaluation functor ev, preserves colimits and limits. Since Z is
k-filtered, colimits indexed by Z on & commute with k-small limits. Therefore, Lan F' preserves
k-small limits.

Finally, we prove that (ii) = (iii). Assume that Lan F': Fun(A,S) — S preserves x-small
limits of representables. To prove that A,r is a s-filtered oo-category, consider any diagram
D: K — A,p where K is k-small, and we aim to show that D has a cocone. Since A, p classifies F,
we have the following pullbacks:

Ko 225 (A)p)P —— S —— Fun(AL,S)
o) | |
Acp S SxS.

F *x1id
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The composition of the top row can be viewed as a natural transformation between functors
K°P — &, which is a cone of the diagram FU°PD°P with cone point *. Using the universal
property of limits in S applied to cones with cone point *, we obtain an equivalence

Mapgy (kcov, 5 (6 %, FUP DP) ~ Mapg (*, }gg FUOPDOP),

which determines an object x € limyop FU°P D°P. Here §* denotes the constant functor at *.
Consider the diagram
RAUCPDOP: P — Fun(A, S),
where U: A,p — A s the forgetful functor of A, and hA is the contravariant Yoneda embedding.
Since Fun (A, S) is complete, there exists a limit H = limgor hAU°P DP € Fun(A, S). Then
Lan F(H) = LanF(}grpl hAUOPD°p> ~ lim Lan F(hAU" DP) = lim FUP D",

where the first equivalence follows from Lan F' preserving x-small limits of representables, and
the second one from the isomorphism (Lan F) o h* = F' defining a left Kan extension. We denote
by «v: Lan F(H) — limyor FU°P D°P the composite equivalence.
In addition, the left Kan extension Lan F(H) can be computed as a colimit of
Ap L aths.
Consequently, there is an object y~1(z) in colimy . HU.
Since HU is a diagram in S, by [22, Lemma 6.2.3.13], the induced map

[T #a-% colimAHU,

(a,0)€A, R e

which is defined using the universal cocones 0, oy of the colimit for each (a, ), is an effective
epimorphism. In addition, by [22, Corollary 7.2.1.15], the induced map

H mo(Ha) — 770<colimHU)
(a,@)€A,p Asr

is surjective. Hence, there exist (a,o) € A/ and y € Ha such that 0, ) (y) = v (2).
By definition, any object y € Ha can be viewed as a cone §: da = U°PD°P in AP using the
equivalences

Mapg(*, Ha) ~ Mapg (*, (}g)rpl hAUOPDOP) (a)) ~ Mapg <>x<, }égpl Map gop (a, UOPDOP(—)))
~ MapFun(,Cop,S) ((5 *, MapAop (a/7 UOpDOP(_))) ~ Ma,pF\lln(Kop7Aop)(6a/’ UOPDOP).
Thus, we have the following commutative diagram:
Jcop D40p> (A/F)OP N S*/

[ e

(KoP)? ——— AP —— S,

To construct a cone on (A, )P, we need two cones: one on A°? and one on (S, /)Op, compatible
with the pullback square. To obtain a cone on (S,,)°” with cone point (Fa, ), it is enough to
construct a map

Fa — }g)rg FU°PD°P
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sending « to x, because, by [22, Corollary 4.3.1.11], the limit limgor FUP DP lifts to a limit on
(8,/)" with cone point (limger FUPDP, ).

Let 4: h"(a) — H be a natural transformation corresponding to y € Ha by the Yoneda
Lemma. By applying Lan F' to y and composing with ~, we obtain a map

Lan F(y
(@)

tiy: Fa ~ Lan F(h*(a)) Lan F(H) lim FUP D

Using the expression of the left Kan extension Lan F' as a colimit, we obtain a commutative
square in Fun(A, S):

h*(a) Y H

l& J{é
§Lan F(hA(a)) =6 colim((hA(a))U) — 222 E9), § colim HUS 6 Lan F(H),

.A/F .A/F

where 6 is the universal cocone of colim 4 ,» HU, and & is the natural transformation corresponding
to @ € Fa by the Yoneda Lemma. The commutativity of this square implies that Lan F(y)(«) =
0(y), and, therefore, p, (o) = ~v6(y) = . Thus, there is a cone on (A, r)°", which corresponds to

a cocone on A/, as we wanted to achieve. ([l

In the previous proof, we used that, if an co-category Z is r-filtered, then colimits indexed
by Z on & commute with x-small limits, as shown in [22, Proposition 5.3.3.3]. The converse is a
direct corollary of the characterization of flat functors:

Corollary 4.2. An co-category I is k-filtered if and only if the colimits of shape T on S commute
with all k-small limits in S, i.e., if and only if the functor colimz: Fun(Z,S) — S preserves
Kk-small limits.

Proof. Since 0 * is the terminal object of PSh(Z), there are equivalences
PSh(Z),5, ~PSh(Z) and Z;s5.~1T,

where the second equivalence is a pullback of the first one. Then, Z is k-filtered if and only if
T, s+« is r-filtered, and the colimit functor is the left Kan extension along the Yoneda embedding
of the constant functor:

Lan(§ *) & colim(— o U) = colim(—).
T/s. z

By Theorem 4.1, the flatness of § %, i.e., the fact that colimz preserves k-small limits, is equivalent
to the s-filteredness of Z, 5., and thus to the r-filteredness of 7. O

Under the assumptions of Theorem 4.1, if in addition A is k-cocomplete, then the following
simpler characterization of k-flat functors follows as a corollary:

Corollary 4.3. Let A be a small co-category,  be a regular cardinal and F: A°® — S be a
presheaf on A. If F' is k-flat, then it preserves all k-small limits in A°P. Conversely, if A is
k-cocomplete and F preserves all k-small limits in A°P, then F is k-flat.

Proof. Assume that F': A°? — S is k-flat, and consider a diagram D: K — A°P with limit in
A°P and where K is k-small. Then, there are isomorphisms

lim FD 2 lim Lan F(hAD) = Lan F(lim hAD)

>~ Lan F(hA(liIICn D)) = F(lim D),
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where the first and the last follow from the isomorphism Lan F(h*) = F, while the second follows
from the fact that Lan F preserves r-small limits, and the third is given by the fact that h*
preserves the limits that exist in A°P.

Conversely, assume that A is k-cocomplete and F' preserves k-small limits in A4°P. The right
fibration associated to F'is the pullback (S°P) /i XSop A of the universal right fibration by F°P.
Since S is cocomplete, A is k-cocomplete and F' preserves k-small limits, by [22, Lemma 5.4.5.5],
(SOP)/* x gop A is k-complete. Thus, it is k-filtered, and, by Theorem 4.1, F is x-flat. O

Denote by Fun”(A,C) the full subcategory of Fun(A,C) spanned by functors which are left
adjoints. If A is locally small and C is presentable, then the Adjoint Functor Theorem implies that
the left adjoints are precisely the functors preserving small colimits. Recall the universal property
of the oo-category of presheaves (see [22, Theorem 5.1.5.6]): if C is a cocomplete co-category, the
composition with the Yoneda embedding h4: A — PSh(A) induces an equivalence

Fun”(PSh(A),C) = Fun(A4,C).

Using Theorem 4.1 together with the universal property of presheaves, we can prove new
characterizations of accessibility, which generalize results from [1, 2, 24]:

Theorem 4.4. Let C be an oo-category. There exist some small co-category A and some regular
cardinal k such that the following are equivalent:

(i) C is accessible.
(ii) C is equivalent to the full subcategory of PSh(A) spanned by the k-filtered colimits of
representables.
(iii) C is equivalent to the full subcategory of all functors from Fun(A,S) to S preserving
colimits and k-filtered limits.
(iv) C is equivalent to the full subcategory of all functors from Fun(A,S) to S preserving
colimits and k-filtered limits of representables.

Proof. The equivalence (i) < (ii) is well known, and can be found in [22, Corollary 5.3.5.4]
and [31, Subsection 11.7]. In both cases, the small co-category A is equivalent to the co-category
of k-compact objects of C.

Therefore, we need to prove that (ii) < (iii) < (iv). Let A be a small co-category and & be a
regular cardinal. Define D as the full subcategory of PSh(.A) spanned by the s-filtered colimits
of representables, and £ (resp. F) as the full subcategory of all functors from Fun(A,S) to S
preserving colimits and k-filtered limits (resp. s-filtered limits of representables). We want to
show equivalences between these three oco-categories.

In principle, £ and F are full subcategories of the large co-category Fun(Fun(A4,S),S), and
therefore they could be large. Because S is presentable and A is locally small, the co-category of
functors from Fun (A, S) to S preserving colimits is equivalent to Fun”(Fun(A,S),S). Then, £
(resp. F) is equivalent to the full subcategory of Fun® (Fun(A,S),S) spanned by those functors
preserving s-filtered limits (resp. s-filtered limits of representables). By the universal property of
the oco-category of presheaves,

Fun®”(Fun (A, S),S) = Fun® (PSh(A°P), S) ~ Fun(A°,S) = PSh(A).

Thus, £ (resp. F) are also the full subcategories of PSh(.A) spanned by those presheaves whose
left Kan extension preserves r-filtered limits (resp. x-filtered limits of representables). In addition,
& and F must also be locally small co-categories.
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Recall that two full subcategories of the same co-category are equivalent if they have isomorphic
sets of objects. By Theorem 4.1, a presheaf is a x-filtered colimit of representables if and only if
it is x-flat, if and only if the left Kan extension preserves x-filtered limits of representables. Then,
because D, £ and F are full subcategories of PSh(.4) with isomorphic sets of objects, they must
be equivalent. (Il

A natural question to ask is what this characterization looks like when considering presentable
oo-categories instead of accessible ones. We use the notation Cont, (.A°P) for the full subcategory
of functors A°P — S which preserve all limits that exist in A°P. The previous proposition amounts
to an inclusion of full subcategories

Ind, (A) ~ Flat, (A) C Cont,, (A°P).

Furthermore, if A admits x-small colimits, then the inclusion Flat,(A) C Cont,, (A°P) becomes
an equivalence of full subcategories Flat, (A) ~ Cont, (A°P).

This equivalence yields the following corollary, which coincides with the characterization found
in [22, Proposition 5.3.5.4]:

Corollary 4.5. Let C be an oco-category and k be a regular cardinal. Then C is k-presentable
if and only if it is equivalent to Cont,(A) for some small co-category A which admits k-small
colimits.

5. LIMIT-SKETCHABLE 00-CATEGORIES

Our goal in this section is to generalize the well-known characterization of presentable categories
as limit-sketchable categories to the higher setting. Thus, we aim to prove that an co-category is
presentable if and only if it is equivalent to the co-category of models of a limit sketch.

Theorem 5.1. FEvery k-presentable co-category is normally limit k-sketchable.

Proof. Any k-presentable co-category C is of the form C ~ Ind,(A) for some small co-category A
which admits x-small colimits. Consider a limit sketch ¥ = (A°P, L) where L is the set of all limit
cones of k-small diagrams in A°?. Observe that L is well-defined as a set because A is small,
and that ¥ is x-small because all the diagrams in L are so. The oo-category of models Mod ()
is, by definition, the co-category of functors preserving all limit cones of k-small diagrams in
A°Pie., Cont,(A°P). Since A admits x-small colimits, Corollary 4.5 implies that Ind,(A) is
equivalent to Cont,(A°P) as full subcategories of PSh(.A). Therefore, C ~ Ind,(.A) is equivalent
to Cont,, (A°P) ~ Mod(Z). O

Theorem 5.2. Let k be an uncountable reqular cardinal and X = (A,L) be a limit k-sketch.
Then:

(a) Mod(X) is presentable and an accessible reflective localization of Fun(A,S).

(b) Mod(X) C Fun (A, S) is stable under s-filtered colimits.

(¢) If L : Fun(A,S) &= Mod(X) : @ denotes the adjunction of (a), where i is the inclusion,
then i o L preserves k-filtered colimits.

(d) Mod(X) is k-presentable and a k-accessible reflective localization of Fun(A,S).

Proof. If we prove (a) and (b), then (c¢) and (d) follow from [22, Corollary 5.5.7.3]. Let us start
by proving (a). By [22, Proposition 5.5.4.15] and since Fun (A, S) is presentable, if we find a set
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of morphisms M such that Mod(X) = Loc(Fun(A,S), M), then we may infer that Mod(X) is
presentable and an accessible reflective localization of Fun(A, S).

Let a: K9 — A be a cone of L, with cone point z € A and diagram D: L — A. Consider the
composition of the cocone a°P with the Yoneda embedding:

hA o 0P ; (K9P ~ (K°P)” — A°P — Fun(4, S).

Since Fun (A, S) is cocomplete, the diagram k4 o D°P has a colimit, denoted by colimor h** 0 D°P.
By the universal property of colimits, since h** o a°P is also a cocone with diagram h* o D°P,
there exist a natural transformation of functors

My c%lgrr)n h* o DP —s hA(z).

We pick the collection of morphisms M = {ma},c . Observe that M is a set of the same

cardinality as L. A functor F': A — S is M-local if, for every m, € M, the induced map
mk: Map(h*(z), F) — Map(c%loign h* o DP, F)

is an equivalence. We want to prove that Mod(X) coincides with the full subcategory of Fun(A, S)
consisting of M-local objects. Given a functor F': A — S, we need to show that F' sends cones of
L to limit cones in S if and only if F' is M-local.

Let F: A — S be a functor and a: K¢ — A be a cone of £, with cone point x € A and
diagram D: K — A. Since S is complete, the diagram FoD: K — S has a limit. By the universal
property of limits applied to the cone F o a: K¢ — S, there exists a map

to: Fox — h}gn(F o D).

Then, t, is an equivalence if and only if F' € Mod(X). We can repeat the previous process with
the functor MapFun(A’S)(hA(—), F') instead of F' to obtain a map

%\Ot: MapFun(A,S)(hA(x)aF) — h)ICn MapFun(A,S)(hA(D(_))aF)'

By the naturality of the Yoneda embedding, t, is an equivalence if and only if ¢, is one.

Thus, to show that F' € Mod(X) if and only if F' is M-local, it is sufficient to check that, for
every a € L, t, is an equivalence if and only if m}, is one. Observe that the functor Map(—, F')
can be expressed as

Mapgyn(a. 5)(— F) = hrun(a, s)(F) = evp o BT AS),

and hence it sends colimits to limits, since evp preserves limits [22, Proposition 5.1.2.3] and
RFun (A 8) sends colimits to limits [22, Proposition 5.1.3.2]. Thus, Map(colim(h* o D), F) is a
limit of the diagram Map(h* o D, F). By the uniqueness of limits, there is an equivalence

o: Map(colim(h* o D), F) —s lim Map(h™ o D, F).

Since the two objects are limits of Map(h* o D, F), the following diagram commutes:

Map (hA(2), F) — = Map(colim(h* o D), F)

X o\Lz
lim Map(h™ o D, F).

Therefore, by the two-out-of-three property, ¢, is an equivalence if and only if m}, is one, for
every o € L.
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Thus, it only remains to prove (b), i.e., Mod(X) C Fun(A, S) is stable under x-filtered colimits.
Let T be a r-filtered oo-category, and F': Z — Mod(X) C Fun(A,S) be a s-filtered diagram of
models of . We want to see that the colimit of F' on Fun(A,S) is also a model of X, which is
equivalent to seeing that the maps

m?: Map(h*(z), colIim F)— Map(c%lgn h* o DOP, colIim F)

are equivalences for every a € L, with cone point « € A and diagram D: I — A.

Recall that Fun (A, S) is Ro-presentable (see [22, Proposition 5.3.5.12]) with the essential image
of the Yoneda embedding being the Ng-compact objects. In particular, since Ry < k, every image
of the Yoneda embedding is also a x-compact object. By [22, Corollary 5.3.4.15], a x-small
colimit of k-compact objects is k-compact. Since ¥ is a limit s-sketch, K is k-small. Thus, h*(x)
and colimyoer A 0 D°P are k-compact objects. Therefore, using the commutativity of s-filtered
colimits with maps from x-compact objects, the maps

my = Map(m, colIim F): Map(h*(z), colIim F)— Map(c%lim h* o DP, colzim F)
are equivalent to
coliIm Map (mg, F(3)): cQIiIm Map (h(z), F(i)) — CQliIm Map(c%lim h* o DP, F(i)).
i€ i€ € °p

Since each F(i) is a model of ¥, the maps Map(m,, F(i)) are equivalences for every i € T
and o € L. Thus, the maps m}, = colim;ez Map(m,, F(i)) are equivalences, as we wanted to
prove. ]

Combining the two previous theorems, we recover the characterization of presentable co-cat-
egories as the limit-sketchable ones, and a normalization theorem for limit sketches:

Corollary 5.3. An oo-category C is k-presentable, where k is a reqular cardinal, if and only if C
is limit k-sketchable.

Corollary 5.4. For every limit sketch X, the co-category Mod(X) is complete and cocomplete.

Corollary 5.5. For every limit k-sketch X, there exists a normal limit k-sketch © such that
Mod(X) ~ Mod(®).

Proof. By Theorem 5.2, we know that Mod(X) is presentable. Thus, Theorem 5.1 yields a
normal limit sketch © = (Mod"(%)°”, L) such that Mod(X) ~ Mod(©), where Mod"(X) are the
k-compact objects in Mod(X) and L is the set of all k-small limits of Mod"(X). O

Example 5.6. Every co-topos is a left-exact accessible reflective localization of PSh(.A) for some
small oco-category A. Therefore, Theorem 5.1 implies that every oo-topos is limit-sketchable.

The oo-category Sh(A,T) of sheaves on a small co-category A equipped with a Grothendieck
topology T is a special case. A more explicit sketch whose oco-category of models is equivalent to
Sh(A, T) has been given in Example 3.16.

Let C and D be two presentable oo-categories. According to [21, Section 4.8.1], the co-category
of presentable categories has a symmetric monoidal structure given by the Lurie tensor product,
which is defined as

C ® D = Fun’(C,D?)"",
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and has S as unit. Given two limit sketches ¥ = (A,A) and T = (B,B), we can define the
following limit sketch (see [2, Exercise 1.1.2] and [21, Notation 4.8.1.7]):
SRT=(AxB, AKB) and ARB = (A x Ob(B)) L (Ob(A) x B).

Let xk and A be two regular cardinals, and let ;1 = max(k, ). Observe that, given a limit x-sketch
> and a limit A-sketch T, all cones in the sketch ¥ X T" have u-small diagrams. Hence, X X T is a
limit p-sketch.

Let 1 = (A% () denote the trivial sketch, which has models Mod(1) = Fun(A° S) = S. Then,
taking models of a limit sketch built with the X construction is compatible with the tensor
product of presentable co-categories in the following way:

Proposition 5.7. For limit sketches ¥ = (A,A) and T = (B,B), there are equivalences
Mod(X X T') ~ Mod(X, Mod(T)) ~ Mod(X) ® Mod(T), and
Mod(2 X 1) ~ Mod(X) ~ Mod(X) ® S.
Proof. The second chain of equivalences follows from the first one by taking 7" to be 1. Let
Fun”¥® B(A x B,S) denote the full subcategory Fun(A x B, S) spanned by those functors sending

the cones of A to limits in the first variable, and the cones of B to limits in the second. First
observe that

Mod (2, Mod(T)) = Fun®(A, Fun®(B, 8)) ~ Fun*®B(A4 x B,S) = Mod(L K T),

where the second equivalence follows since Cat, is cartesian closed. Recall that by [22, Proposition
5.2.6.2], there is an equivalence Fun” (@, DOP)Op ~ FunR(DOP, C) for any oo-categories C and D.
Then, using the previous equivalence together with the unit of the tensor and the fact that Cat.,
is cartesian closed, the proposition follows from the following chain of equivalences:

Mod(£) ® Mod(T) = Fun® (Mod (%), Mod(T)*)™ ~ Fun®®(Mod(T)°, Mod(X))
= Fun®(Mod(T)°, Fun (4, S)) ~ Fun®®A(Mod(T)" x A, S)
~ Fun®(A, Fun®(Mod(T)°", S)) ~ Fun” (A, Fun® (S, Mod(T)°")"")
= Fun”(A, S ® Mod(T)) ~ Fun”(A, Mod(T)) = Mod (%, Mod(T)),

where Fun®®A(Mod(T)° x A, S) denotes the full subcategory Fun(Mod(T)*® x A, S) spanned
by those functors which are right adjoints in the first variable, and send the cones of A to limits
in the second. (]

The previous result can be used to generalize Theorem 5.2 to models over any presentable
oo-category:

Corollary 5.8. Let k and A\ be two regular cardinals, and let u = max(k, \). If C is a k-pres-
entable co-category, then, for every limit A-sketch ¥ = (A, L), the co-category of models Mod (%, C)
over C is p-presentable, and it is equivalent to Mod(2) ® C.

Proof. By Theorem 5.1, since C is k-presentable, it is equivalent to Mod(T') for a normal limit
k-sketch T'. Then it follows from Proposition 5.7 that

Mod(%,C) ~ Mod(EXT) ~ Mod(X) ® C,
where ¥ X T is a limit p-sketch by definition. Hence, using Theorem 5.2, we conclude that
Mod(%,C) is p-presentable. O
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From the examples given in Section 3, we can conclude, using Theorem 5.2, that the following
full subcategories of any presentable co-category C are presentable: pointed objects, spectrum
objects, pre-category objects, univalent category objects, monoid objects, groupoid objects, group
objects, commutative monoid objects, and abelian group objects.

Consequently, the following co-categories are presentable: pointed co-groupoids, spectra, Segal
spaces, complete Segal spaces, A..-spaces, grouplike A.,-spaces, A.-ring spectra, Fs.-spaces,
infinite loop spaces, F-ring spectra, and higher sheaves over any Grothendieck topology.

Although these categories are extensively discussed in various forms throughout the literature,
their sketchability is seldom explicitly addressed. The examples in Section 3 of this article draw
on similar examples from unpublished work of Joyal [15, 16]. Our treatment of complete Segal
spaces, dendroidal Segal spaces, and complete dendroidal Segal spaces and higher sheaves in
Examples 3.8, 3.14, 3.15 and 3.16 is new.

6. SKETCHABLE 00-CATEGORIES

In this section, we describe the relation between accessibility and sketchability. Specifically, we
prove that Mod (X, C) is accessible when C is presentable, and that every accessible co-category
can be modeled by a normal sketch.

Theorem 6.1. Every k-accessible co-category is normally k-sketchable.

Proof. Every k-accessible oco-category C satisfies C ~ Ind,(A) for some small co-category \A.
Denote by A C Fun(A,S) the free k-small cocompletion of A°P, in the sense of [29]. Observe
that the Yoneda embedding factors through A as

hA AP Ly A<l Fun(A, S).

The left Kan extension of the Yoneda embedding along itself is equivalent to the identity [22,
Lemma 5.1.5.3]. This yields a canonical colimit for any presheaf f € Fun(A4,S):

colim (A/f LY N «14 Fun(A, 3)) = Lan hA(f) = f,

where : A,y — AP is the forgetful functor. Then, the restriction of Lan h* to A factors through
A itself as the identity. Define a normal sketch ¥ = (.Z, L,C) where L is the set of limits of
k-small diagrams in A°P, and C is the set of canonical colimits of the cone points in A of all limit
cones in L.

We want to show that Mod(X) is equivalent to C. The characterization of Theorem 4.4 shows
that C is equivalent to the oo-category of functors from Fun(A4,S) to S preserving colimits and
r-filtered limits of representables, denoted by £. Hence, it suffices to show that Mod(X) is
equivalent to £. Consider the restriction of functors of £ to /T, i.e., the precomposition functor

—o0i: & — Mod().
By the universal property of the completion and x-small completion of A°P, we have that
Fun® (Fun (A4, S), S) ~ Fun(A°, S) ~ Fun’ (A4, §) < Fun®(A4, S),

where Fun® (./zl\, S) denotes the co-category of functors preserving the colimits in C, and thus the
last inclusion forgets about the preservation of other colimits. Recall that £ is the restriction of
Fun®(Fun (A, S), S) to functors which preserve s-small limits of representables. Therefore, the
restriction of Fun” (/T, S) to functors preserving x-small limits of representables is equal to the
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image of — o4, thanks to A being the k-small completion of A°P. Observe that Mod(X) is the full
subcategory of Func(;l\, S) spanned by the functors that preserve x-small limits of representables.
Hence, the image of £ by — o1 is a full subcategory of Mod(X) given by forgetting the preservation
of other colimits, and therefore it is fully faithful.

Consequently, we only need to show that — o ¢ is essentially surjective. For each model
F € Mod(X), we want to find a functor G € £ such that G o = F. Take as candidate the left
Kan extension of the restriction F' denoted by

_Aop )

G =Lan (F| ,,,) = Lan(Foj): Fun(4,8) — S,

Aep

which preserves colimits by definition. Observe that, for every limit cone point f € A of a r-small
diagram in A°P, we have
G(f) = Lan(F 0 j)(f) = colim(F o jom) = F(colim jom) = F(f),
Ay Ay

where the second isomorphism follows from the fact that F' preserves the canonical colimits of C.
Since I preserves k-small limits of A°P by the definition of L, and G coincides with F' on such
presheaves, G also preserves k-small limits of A°P, and therefore it belongs to £. Now, since G o
preserves k-small limits of A°P, the universal property of a k-small cocompletion of A°P implies
that G oi = F, as we wanted to prove. [l

Theorem 6.2. If C is a presentable co-category, then, for every sketch X, the co-category of
models Mod(X,C) over C is accessible.

Proof. Let ¥ = (A, L,C) be a sketch. Observe that, by definition,
Mod(%,C) = Mod(2L,C) N (Neec Mod(Ec,C)) C Fun(A,C),

where ¥ is the limit sketch (A, L), and X, is the colimit sketch (A, {c}) with only one cocone
¢ € C. These should be understood as intersections between full subcategories of Fun(A,C).

By [22, Proposition 5.4.7.10], every intersection of accessible reflective localizations of an
accessible category is accessible. Since C is presentable and A4 is small, Fun(A4,C) is also
presentable. Thus, proving that Mod(X, C) is accessible is equivalent to showing that Mod(X.,C)
and Mod (X, C) are accessible, and accessible reflective localizations of Fun(.A, S). By Theorem 5.2,
Mod(X,C) is presentable and an accessible reflective localization of Fun(A, S), because X\ is a
limit sketch and C is presentable.

Given a cocone ¢ € C with ¢: D™ — A, there is a functor ¢: Fun(A,C) — Fun(A!,C) defined
by the composition

Fun(A,C) < Fun(D>,C) - Fun((D™)”,C) - Fun(AL,C),
where i: A°xA? — D% A%« AY is the canonical inclusion, which induces a morphism
i*: Fun((D™)”,C) ~ Fun(D* A’ x A%, C) — Fun(A°x A°,C) ~ Fun(A',C),

and L is the colimit-forming functor, left adjoint to the forgetful functor from cocones of diagram
DP on C, which must exist because C is cocomplete. Furthermore, since ¢*, L and i* are left
adjoints, ¢ is accessible.

Let .J be the nerve of the two-point connected groupoid and j: A! — J be the groupoid
completion of A'. By [20, Corollary 2.1.1.8], Fun(J,C) corresponds to the full subcategory

27



of Fun(A',C) spanned by the isomorphisms of C. Because C is presentable and A! is small,
§*: Fun(J,C) — Fun(Al,C) is a left adjoint. Then, Mod(X,,C) can be seen as a pullback

Mod(X.,C) —— Fun(J,C)

[k

Fun(A,C) —5— Fun(Al,C).
This is a pullback of accessible co-categories and accessible functors, since left adjoints between
accessible co-categories are accessible [22, Proposition 5.4.7.7]. Thus, by [22, Proposition 5.4.6.6],
Mod(%,,C) is also accessible and the inclusion i: Mod(X.,C) — Fun(A,C) is an accessible functor.
Therefore, Mod(X,, C) is an accessible reflective localization. O

The previous theorem does not prove that the co-category of models of a k-sketch is k-acces-
sible. This does not follow from our proof, because [22, Proposition 5.4.6.6] only proves that the
pullback of a x-accessible diagram is u-accessible for some p > x. In fact, there are 1-categorical
examples ([2, Remark 2.59] and [24, Example 3.3.6]) of Ry-sketches with a category of models
which is not Ng-accessible.

Corollary 6.3. An co-category is accessible if and only if it is (normally) sketchable.
Corollary 6.4. For every sketch X there exists a normal sketch © such that Mod(X) ~ Mod(©).

Proof. By Theorem 6.2, we know that Mod(X) is k-accessible for some regular cardinal .
Thus, we infer from Theorem 6.1 that there exists a normal k-sketch © = (A°P, L, C) such that
Mod(X) ~ Mod(©), where A is the free s-small cocompletion of the co-category of k-compact
objects in Mod(X), and L is the set of all k-small limits of diagrams in Mod" (). O

The oo-category of models of a sketch ¥ = (A,L,C) can be viewed as the intersection of the
full subcategories of Fun (A, C) spanned by the models of the limit sketch ¥} = (A, L) and those
of the colimit sketch ¥¢ = (A, C), respectively:

Mod(S,C) = Mod (XL, C) N Mod(Sc, C).

If C is presentable, then, by Theorem 5.2, Mod(X.,C) is presentable, and by Theorem 6.2,
Mod(Zc¢, C) is accessible. Proposition 3.2 implies that Mod(X¢, C) is cocomplete, and therefore it
is also presentable. Thus, Mod(3,C) is the intersection of two presentable co-categories.
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