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Llista 5: Compacitat

. Sigui X = {(z,y) € R? | 22+ y> < 1} ~ {(1,0)} amb la topologia induida per la
inclusié X C R?. Construiu un recobriment obert de X per al qual no existeixi cap
subrecobriment finit.

. Sigui X un espai topologic i sigui A € X un subespai amb la topologia induida.
Demostreu que A és compacte si i només si per a tota colleccié {U;};e; d’oberts
de X tals que A C U U; existeix algun conjunt finit {iy,...,i,} C I tal que
ACU;,U---UU;,.

. Sigui X un espai topologic de Hausdorff i sigui A C X un subconjunt compacte
de X. Sigui y € X \~ A. Demostreu que existeixen oberts U i V de X tals que
yeV,ACUIUNV =0.

. Sigui X = R[z] I'espai de polinomis en una variable amb la topologia associada a la
norma segiient: per a tot P = Y, o apz®, definim || P|| = sup |ax|. Demostreu
que l'esfera unitat de X no és compacta.

. Una matriu n X n amb coeficients a R es pot veure com a un punt de R™: si la ma-
triu és A = (a;j)i j=1..» €l punt de R™ és (@11, -y Q1ny 21y ooy A2y e ey Gy e e vy Q).
D’aquesta manera, podem identificar el conjunt de totes les matrius M, x,(R) amb
R™ i dotar-lo de la topologia euclidiana. Decidiu si sén o no compactes els subcon-
junts segiients de R™:

(a) GL(n) ={A € M,x,(R) | det(A) # 0}.

(b) SL(n) ={A € M,x,(R) | det(A) = 1}.

(c) O(n) ={A € M,,(R) | AA" = 1d}.

. Sigui T la topologia euclidiana de R. Definim

T ={0} U{X CR|R~\ X és compacte en (R, T)}.

(a) Demostreu que (R,7") és un espai topologic i compareu 7 1 7.
(b) Es (R, 7") un espai de Fréchet? I de Hausdorff?
(c) Es (R,T") compacte?

. Siguin 7y, T3 dues topologies en un conjunt X. Demostreu les afirmacions segiients:

(a) Si 72 € 71 i (X,7Ti) és compacte, aleshores també ho és (X, 73). Trobeu un
exemple que demostri que el reciproc no és cert.

(b) Si X és compacte i de Hausdorff respecte a 7T; i 7, aleshores o bé T; = T3 o bé
T1 i T no sén comparables.

CSiguin X = [-L1JiT={UCX|0¢&Uobé (-1,1) CU}.

(a) Demostreu que (X,7) és un espai topoldgic. Es un espai de Fréchet? Es un
espai de Hausdorff?

(b) Demostreu que (X, 7T) és compacte i no admet cap base numerable.
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9. Demostreu que tot espai metric compacte satisfa el segon axioma de numerabilitat.

10. (a)

()

Demostreu que si K, ..., K, son subespais compactes d'un espai topologic X
qualsevol llavors K, U ---U K,, és compacte, i doneu un exemple d'una familia
infinita {K;};e; de subespais compactes d'un espai X tal que la unié U;e; K;
no sigui un subespai compacte.

Demostreu que si X és de Hausdorff i { K;};c; és qualsevol familia de subespais
compactes de X llavors la interseccié N;e; K; és un subespai compacte.

Sigui X el conjunt ZU{7w, —7} amb la topologia que té per oberts K; = ZU{r},
Ky =Z U {—n} i tots els subconjunts de Z, a més de X. Demostreu que K; i
K5 sén compactes perdo K; N Ky no és compacte.

Ny . n 1 2 . N
Demostreu que una unié puntual finita \/;_; S' és un espai compacte, pero que
si el conjunt J és infinit llavors \/ s ! 1o és compacte.

Descriviu un subespai W,, C R? tal que W,, = \/7_, S, on n és un enter positiu
qualsevol.

Demostreu que no existeix cap subespai X C R* tal que X =/, S'. (Indi-
cacio: Demostreu que \/ jen ! no satisfa el primer axioma de numerabilitat,
mentre que qualsevol subespai de R? sf que el satisfa.)

Doneu una aplicacié bijectiva i continua de \/ g S' en un subespai de R*.

12. Un espai metric A és complet si tota successiéo de Cauchy a A és convergent. Un
espai metric A és totalment acotat si per a cada € > 0 existeix una col-leccié finita

B,..

., B,, de boles obertes de radi € tals que B;U---UB, = A. Resoleu els exercicis

segiients:

(a)

(b)

Considerem el conjunt Q dels nombres racionals amb la topologia induida per la
distancia euclidiana de la recta real. Demostreu que A={r € Q|0 <z <1}
és tancat i acotat a Q pero no és compacte.

Demostreu que si X és un espai metric i A és un subespai compacte de X,
llavors A és complet i totalment acotat. (Indicacié: Un espai metric A és
compacte si i només si tota successié de punts de A té alguna subsuccessié
convergent. )

Demostreu el reciproc de 'afirmacié anterior: si X és un espai metric i A és un
subespai de X complet i totalment acotat, llavors A és compacte. (Indicacio:
Donat un subespai A C X complet i totalment acotat, si A no és compacte,
llavors hi ha algun recobriment obert & de A que no admet cap subrecobriment
finit. Definiu inductivament una successié de boles B, = B, (p,) a A de radis
r, = 27" amb B, 1NB, # 0 per a tot n de manera que B,, no estigui recoberta
per cap nombre finit d’oberts de Y. La successié (p,) de centres d’aquestes
boles és de Cauchy i per tant té un limit £ € A. Si V € U és tal que £ € V,
aleshores B,, C V per a n prou gran, que és una contradiccid.)
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