INTRODUCTION TO FLOER HOMOLOGY

Recap on Morse theory:

 In Morse theory we start with a Riemannian manifold M and a function f : M — R (satisfying Morse
conditions, namely all critical points are non-degenerate and some spaces of flows arriving and leaving
to/from critical points intersect transversally).

e Each critical point has an associated finite index, given by the number of negative eigenvalues of the
Hessian at the point, and this index is taken as the grading of a chain complex spanned by the critical
points.

e The differential of a critical point x is a sum of a signed count of the gradient flow lines from x to points
of index Ind(x) — 1.
» This defines a homology H.(M, f) which is isomorphic to singular homology.
Floer analogue:

» Consider contractible loops L(M) on a symplectic manifold M. This space is infinite-dimensional! So
given a functional f : L(M) — R the index of a critical point is infinite. However, there is a relative
notion of index u(x,y) = “Ind(z) — Ind(y)”.

» We need a metric on £(M), which is defined via almost complex structures compatible with w. This
gives rise to a formal gradient.

e Solutions of the gradient equation, if they exist, may not converge to critical points, but this has a fix.

1. HAMILTONIAN PRELIMINARIES
Let (M, w) be a closed symplectic manifold. Since w is closed, it induces an isomorphism I, : T*M — T M.

Definition 1.1. A Hamiltonian vector field Xy : M — TM is the image via I, of an exact 1-form
dH : M — T*M. It is thus determined by the condition w(Xg,—) = —dH and we say that H : M — R is
the generating Hamiltonian function.

We will actually be considering time-dependent 1-periodic Hamiltonian functions H : M x R — M, so
H, = H;y,, where Hy := H(—,t). Also, note that if we change H; by a time-dependent constant, then Xy
does not change. We will assume our Hamiltonian functions are normalized:

/ H =0,
M n.

From now on, we fix such a normalized Hamiltonian function H : M x R/Z — M.

Definition 1.2. The Hamiltonian flow is a 1-parameter family of diffeomorphisms {pf : M — M} with
t € [0,1] such that p{f =1 and for all p € M, the curve v(t) := ¢,(p) satisfies

/(1) = Xu,(v(1) |

Remark 1.3. There is a one to one correspondence between fixed points of ¢ and loops v : R/Z — M
satisfying the boxed equation. Denote by P(H) this set of curves.

Definition 1.4. A loop v € P(H) is non-degenerate if det(1 — dp!(v(0))) # 0.
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Arnold’s conjecture. Assume that every point in P(H) is non-degenerate. Then the number of points
in P(H) is topologically bounded below:

#P(H) > > dimH*(M;Q).

 This was proved by Floer in the case m3(M) = 0 / monotone symplectic manifolds. Then extended by
others to ther general case, using the ideas of Floer. An intermediate recurrent condition is to ask that
w and ¢; of T'M vanish on 7.

 Note that if H; = H is time-independent, then the condition that all points in P(H) are non-degenerate
implies that H : M — R is a Morse function and Arnold’s conjecture follows from Morse theory.
2. SYMPLECTIC ACTION FUNCTIONAL
Fix a symplextic manifold (M, w) with m2(M) = 0 and a normalized Hamiltonian function H;. Let
L(M) :={y:8* = M;~ contractible }.
For any v € L(M), since « is contractible, we may find a spanning disc, i.e., a smooth map
v:D:={2€Cz| <1} > M

such that v(e?™) = ~(t).
Define the symplectic action functional by:

Ap(y) == —/Dv*(w)—i—/o Hi(y(t))dt.

e The above does not depend on the choice of v if and only if
/ gfw=0forall g: 5% - M,
S2

so that w vanishes on mo(M). So the simplest is to ask for w2 (M) = 0 but there are many intermediate
conditions that also work.

e Also, why this disc trick? Let’s consider the case M = R2. Then w = d\ with A = ydz and the first

summand of Ag(7) is
1
/ A= / y(t)x' (t)dt.
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but when w is not exact (and w is never exact if M is compact) this is not defined.

e Note that if the second summand is trivial, then the only critical points are constant loops. The
perturbation by a Hamiltonian avoids this degeneracy.

Thinking a la Morse, we want to study the critical points of this functional.
Lemma 2.1. A loop v € L(M) is a critical point of Ay if and only if v € P(H).
Proof. This is easily checked if we identify tangent vectors of £L(M) at v with time-dependent vector fields
¢ of TM such that §(t) € Ty ;)M and £(t) = £(t + 1). We get:
dAx(7)[E] = /01 w (X, (v(t)) = (1),8(1)) dt.
O

Remark 2.2. Note that the 1-form dAg(§) is well defined also when + is not contractible, and when w
does not vanish on mo(M). Such a form is exact on the space of contractible loops if and only if w vanishes
on mo(M).
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To study the gradient flow lines of this functional we require a metric. We do this by taking a loop J; of
w-compatible almost complex structures (J; : TM — TM satisfy J? = —I and w(—, J;—) is a Riemannian
metric). Then on TL(M) we obtain an inner product on each fiber of TL(M):

(€)= / w (), Jn(t)) dt ;€. € T,L(M).

The construction of Floer homology relies on the study of the gradient flow lines of the symplectic
functional. These are the “loops of loops” R — L(M), s — u(s, —) which are solutions to the equation

% + GradAg (u(s,—)) = 0.

Remark 2.3. Here Grad Ay is defined to be the tangent vector field along « such that
(GradAp, &)y = dAn(7)[S]-

does not define a regular tangent vector field on the completion of the space of smooth loops with respect
to our metric (it is not even well-defined on curves v which are not differentiable), so we cannot expect it
to define a gradient flow on such a space. In other words, the above evolution equation is not a well-posed
Cauchy problem. However, it turns out to be a nice PDE.

We can view our solutions as cylinders u : R x R — M such that u(s,t) = u(s,t + 1) and

ou ou

Here the gradient V is taken with respect to the inner product (-,-); on M, so w(VHy, }Y) = dH(Y).

(a) If J, H and u are all independent of ¢ then we recover the gradient flow of the vector field VH : M — T M.

(b) If u(s,t) = v(t) is independet of s then we recover the Hamiltonian equation.

(¢c) If H =0 and J; = J is constant, the above is the equation for J-holomorphic curves (with the cylinder
as a domain. They can be considered on any Riemann surface). This equation is a perturbed version
of Cauchy-Riemann equation. Idea of Gromov: can extend methods from holomorphic analysis to the
almost complex/symplectic setting.

3. CONLEY-ZEHNDER INDEX

The set of symplectomorphisms of (R?",wy) is given by the symplectic group Sp(2n), defined by matrices
A of size 2n x 2n with real entries such that

1, 0
Let v € P(H) be non-degenerate. This happens if and only if
d(p{l : T’y(O)M — T’y(O)M

ALJA = J, withJ = (O _1"> .

does not have 1 as an eigenvalue. Geometrically, non-degeneracy is equivalent to the graph of o being
transversal to the diagonal at (v,).
Linearizing the flow ¢ at 7(0) we obtain a linear symplectomorphism

dep(7(0)) = Ty o) M — Ty iy M.
In order to obtain a path of symplectic matrices we trivialize:

def? (v(0))
ryoM —————T,y)M

T T

R?n R2n
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This is done by choosing a disc spanning v and noting that v*T'M is a symplectic vector bundle over a
contractible base space, so v*TM =2 D x (R?" wj). In this way we obtain a smooth path @ : [0,1] — Sp(2n)
such that ®(0) = 1 and ®(1) does not have 1 in its eigenvalues.

The Conley-Zehnder index 1(®) of ® is an intersection number between ® and the “cycle” ¥ € Sp(2n)
consisting of all matrices A possessing 1 as eigenvalue.

...and we skip lots of details here...

Define the index of v by letting

Ind(y) :=n — u(P).
4. FLOER HOMOLOGY

The key observation by Floer: in order to build a Morse complex in analogy to the finite dimensional
case, it is not necessary to have a globally defined gradient flow. It is enough to have a nice structure for
the spaces of gradient flow lines connecting two critical points.

Given critical points v, € P(H), denote by M(v,n) the space of gradient trajectories u from ~ to 7, so
that:

lim wu(s,t) =n(t) and lm wu(s,t) = ().

Ehde el §—r— 00

Consider the R-action on M(’y, 1) given by T - u(s,t) = u(s + T, t) and let M(~,n) = M(v,n)/R.
Non-trivial fact: generically M(v,n) is a compact finite dimensional manifold of dimension

dim M = Ind(vy) — Ind(n) — 1.

This uses Sobolev spaces+Fredholm operators etc.
When it is a finite collection of points, write n(vy,n) = #M/(v,n) mod Zs.

CFy,(M,H) :=Zy(y € P;Ind(y) = k)
The differential of this chain complex is defined by counting the function’s gradient flow lines connecting
certain pairs of critical points: let 0 : CF, — CFj_1 be given by

ah() = > nlv.nn
Ind(n)=k—1

The fact that 9% = 0 is again non-trivial and uses Gromov’s Compactness Theorem for sequences of .J-
holomorphic curves.

Now HFy,(M, H, J) is the homology of this chain complex. This actually depends only on ¢ = ¢# (thanks
to normalization of H’s). It is also independent of .J.

Remark 4.1. If H : R — M is a C*-small Morse function then P(H) are constant loops and the Floer
complex is isomorphic to the Morse complex.

Remark 4.2. Floer homology computes the homology of the manifold! So Arnold’s conjecture follows.
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