
INTRODUCTION TO FLOER HOMOLOGY

Recap on Morse theory:r In Morse theory we start with a Riemannian manifold M and a function f : M → R (satisfying Morse
conditions, namely all critical points are non-degenerate and some spaces of �ows arriving and leaving
to/from critical points intersect transversally).rEach critical point has an associated �nite index, given by the number of negative eigenvalues of the
Hessian at the point, and this index is taken as the grading of a chain complex spanned by the critical
points.rThe di�erential of a critical point x is a sum of a signed count of the gradient �ow lines from x to points
of index Ind(x)− 1.rThis de�nes a homology H∗(M,f) which is isomorphic to singular homology.

Floer analogue:rConsider contractible loops L(M) on a symplectic manifold M . This space is in�nite-dimensional! So
given a functional f : L(M) → R the index of a critical point is in�nite. However, there is a relative
notion of index µ(x, y) = “Ind(x)− Ind(y)′′.rWe need a metric on L(M), which is de�ned via almost complex structures compatible with w. This
gives rise to a formal gradient.r Solutions of the gradient equation, if they exist, may not converge to critical points, but this has a �x.r ...

1. Hamiltonian preliminaries

Let (M,w) be a closed symplectic manifold. Since w is closed, it induces an isomorphism Iw : T ∗M → TM .

De�nition 1.1. A Hamiltonian vector �eld XH : M → TM is the image via Iw of an exact 1-form
dH : M → T ∗M . It is thus determined by the condition w(XH ,−) = −dH and we say that H : M → R is
the generating Hamiltonian function.

We will actually be considering time-dependent 1-periodic Hamiltonian functions H : M × R → M , so
Ht = Ht+1, where Ht := H(−, t). Also, note that if we change Ht by a time-dependent constant, then XH

does not change. We will assume our Hamiltonian functions are normalized :∫
M

Ht
wn

n!
= 0.

From now on, we �x such a normalized Hamiltonian function H : M × R/Z→M .

De�nition 1.2. The Hamiltonian �ow is a 1-parameter family of di�eomorphisms {ϕHt : M → M} with
t ∈ [0, 1] such that ϕH0 = 1 and for all p ∈M , the curve γ(t) := ϕt(p) satis�es

γ′(t) = XHt
(γ(t)) .

Remark 1.3. There is a one to one correspondence between �xed points of ϕH1 and loops γ : R/Z → M
satisfying the boxed equation. Denote by P (H) this set of curves.

De�nition 1.4. A loop γ ∈ P (H) is non-degenerate if det(1− dϕH1 (γ(0))) 6= 0.
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Arnold's conjecture. Assume that every point in P (H) is non-degenerate. Then the number of points
in P (H) is topologically bounded below:

#P (H) ≥
∑

dimHk(M ;Q).rThis was proved by Floer in the case π2(M) = 0 / monotone symplectic manifolds. Then extended by
others to ther general case, using the ideas of Floer. An intermediate recurrent condition is to ask that
w and c1 of TM vanish on π2.rNote that if Ht = H is time-independent, then the condition that all points in P (H) are non-degenerate
implies that H : M → R is a Morse function and Arnold's conjecture follows from Morse theory.

2. Symplectic action functional

Fix a symplextic manifold (M,w) with π2(M) = 0 and a normalized Hamiltonian function Ht. Let

L(M) := {γ : S1 →M ; γ contractible }.
For any γ ∈ L(M), since γ is contractible, we may �nd a spanning disc, i.e., a smooth map

v : D := {z ∈ C; |z| ≤ 1} →M

such that v(e2πit) = γ(t).
De�ne the symplectic action functional by:

AH(γ) := −
∫
D

v∗(w) +

∫ 1

0

Ht(γ(t))dt.

rThe above does not depend on the choice of v if and only if∫
S2

g∗w = 0 for all g : S2 →M,

so that w vanishes on π2(M). So the simplest is to ask for π2(M) = 0 but there are many intermediate
conditions that also work.rAlso, why this disc trick? Let's consider the case M = R2. Then w = dλ with λ = ydx and the �rst
summand of AH(γ) is ∫

S1

λ =

∫ 1

0

y(t)x′(t)dt.

but when w is not exact (and w is never exact if M is compact) this is not de�ned.rNote that if the second summand is trivial, then the only critical points are constant loops. The
perturbation by a Hamiltonian avoids this degeneracy.

Thinking à la Morse, we want to study the critical points of this functional.

Lemma 2.1. A loop γ ∈ L(M) is a critical point of AH if and only if γ ∈ P (H).

Proof. This is easily checked if we identify tangent vectors of L(M) at γ with time-dependent vector �elds
ξ of TM such that ξ(t) ∈ Tγ(t)M and ξ(t) = ξ(t+ 1). We get:

dAH(γ)[ξ] =

∫ 1

0

w (XHt
(γ(t))− γ′(t), ξ(t)) dt.

�

Remark 2.2. Note that the 1-form dAH(ξ) is well de�ned also when γ is not contractible, and when w
does not vanish on π2(M). Such a form is exact on the space of contractible loops if and only if w vanishes
on π2(M).
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To study the gradient �ow lines of this functional we require a metric. We do this by taking a loop Jt of
w-compatible almost complex structures (Jt : TM → TM satisfy J2

t = −I and w(−, Jt−) is a Riemannian
metric). Then on TL(M) we obtain an inner product on each �ber of TL(M):

〈ξ, η〉γ :=

∫ 1

0

w (ξ(t), Jtη(t)) dt ; ξ, η ∈ TγL(M).

The construction of Floer homology relies on the study of the gradient �ow lines of the symplectic
functional. These are the �loops of loops� R→ L(M), s 7→ u(s,−) which are solutions to the equation

∂u

∂s
+ GradAH(u(s,−)) = 0.

Remark 2.3. Here GradAH is de�ned to be the tangent vector �eld along γ such that

〈GradAH , ξ〉γ = dAH(γ)[ξ].

does not de�ne a regular tangent vector �eld on the completion of the space of smooth loops with respect
to our metric (it is not even well-de�ned on curves γ which are not di�erentiable), so we cannot expect it
to de�ne a gradient �ow on such a space. In other words, the above evolution equation is not a well-posed
Cauchy problem. However, it turns out to be a nice PDE.

We can view our solutions as cylinders u : R× R→M such that u(s, t) = u(s, t+ 1) and

∂u

∂s
+ Jt(u)

∂u

∂t
−∇Ht(u) = 0.

Here the gradient ∇ is taken with respect to the inner product 〈·, ·〉t on M , so w(∇Ht, JtY ) = dHt(Y ).

(a) If J , H and u are all independent of t then we recover the gradient �ow of the vector �eld∇H : M → TM .
(b) If u(s, t) = γ(t) is independet of s then we recover the Hamiltonian equation.
(c) If Ht = 0 and Jt = J is constant, the above is the equation for J-holomorphic curves (with the cylinder

as a domain. They can be considered on any Riemann surface). This equation is a perturbed version
of Cauchy-Riemann equation. Idea of Gromov: can extend methods from holomorphic analysis to the
almost complex/symplectic setting.

3. Conley-Zehnder index

The set of symplectomorphisms of (R2n, w0) is given by the symplectic group Sp(2n), de�ned by matrices
A of size 2n× 2n with real entries such that

AtJA = J, withJ =

(
0 −1n
1n 0

)
.

Let γ ∈ P (H) be non-degenerate. This happens if and only if

dϕH1 : Tγ(0)M → Tγ(0)M

does not have 1 as an eigenvalue. Geometrically, non-degeneracy is equivalent to the graph of ϕH1 being
transversal to the diagonal at (γ, γ).

Linearizing the �ow ϕHt at γ(0) we obtain a linear symplectomorphism

dϕt(γ(0)) : Tγ(0)M → Tγ(t)M.

In order to obtain a path of symplectic matrices we trivialize:

Tγ(0)M
dϕH

t (γ(0)) // Tγ(t)M

R2n

OO

// R2n

OO
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This is done by choosing a disc spanning γ and noting that v∗TM is a symplectic vector bundle over a
contractible base space, so v∗TM ∼= D× (R2n, w0). In this way we obtain a smooth path Φ : [0, 1]→ Sp(2n)
such that Φ(0) = 1 and Φ(1) does not have 1 in its eigenvalues.

The Conley-Zehnder index µ(Φ) of Φ is an intersection number between Φ and the �cycle� Σ ∈ Sp(2n)
consisting of all matrices A possessing 1 as eigenvalue.

...and we skip lots of details here...
De�ne the index of γ by letting

Ind(γ) := n− µ(Φ).

4. Floer homology

The key observation by Floer: in order to build a Morse complex in analogy to the �nite dimensional
case, it is not necessary to have a globally de�ned gradient �ow. It is enough to have a nice structure for
the spaces of gradient �ow lines connecting two critical points.

Given critical points γ, η ∈ P (H), denote by M̃(γ, η) the space of gradient trajectories u from γ to η, so
that:

lim
s→∞

u(s, t) = η(t) and lim
s→−∞

u(s, t) = γ(t).

Consider the R-action on M̃(γ, η) given by T · u(s, t) = u(s+ T, t) and letM(γ, η) = M̃(γ, η)/R.

Non-trivial fact: genericallyM(γ, η) is a compact �nite dimensional manifold of dimension

dimM = Ind(γ)− Ind(η)− 1.

This uses Sobolev spaces+Fredholm operators etc.
When it is a �nite collection of points, write n(γ, η) = #M(γ, η) mod Z2.

CFk(M,H) := Z2〈γ ∈ P ; Ind(γ) = k〉
The di�erential of this chain complex is de�ned by counting the function's gradient �ow lines connecting
certain pairs of critical points: let ∂ : CFk → CFk−1 be given by

∂k(γ) :=
∑

Ind(η)=k−1

n(γ, η)η.

The fact that ∂2 = 0 is again non-trivial and uses Gromov's Compactness Theorem for sequences of J-
holomorphic curves.

Now HFk(M,H, J) is the homology of this chain complex. This actually depends only on ϕ = ϕH1 (thanks
to normalization of H's). It is also independent of J .

Remark 4.1. If H : R → M is a C∞-small Morse function then P (H) are constant loops and the Floer
complex is isomorphic to the Morse complex.

Remark 4.2. Floer homology computes the homology of the manifold! So Arnold's conjecture follows.
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