

CLASSIFICATION OF PERSISTENT MODULES AND SOME GEOMETRIC EXAMPLES

JOANA CIRICI

Summary of my talk introducing persistence modules and discussing a couple of examples arising from geometry. Mainly followed the first chapter of [PRSZ19].

1. PERSISTENCE MODULES

Let \mathbf{k} be a field and denote by $\text{Vect}_{\mathbf{k}}$ the category of finite-dimensional vector spaces over \mathbf{k} . We will consider the real numbers as a posetal category (\mathbb{R}, \geq) .

Definition 1.1. A *persistence module* is a functor $V : (\mathbb{R}, \geq) \rightarrow \text{Vect}_{\mathbf{k}}$. Therefore it is given by a family $\{V_t\}_{t \in \mathbb{R}}$ of finite dimensional vector spaces over \mathbf{k} together with morphisms $\pi_{st} : V_s \rightarrow V_t$ for all $s \leq t$ such that the diagram

$$\begin{array}{ccc} V_s & \xrightarrow{\quad} & V_t \\ & \searrow & \swarrow \\ & V_r & \end{array}$$

commutes. A *morphism of persistence modules* is just a natural transformation. Therefore it is given by maps $f_t : V_t \rightarrow V'_t$ compatible with the maps $\pi_{s,t}$. This defines a category Pers of persistence modules.

Remark 1.2. The category of persistence modules is abelian. In fact, many of the constructions for persistence modules are also valid if we replace $\text{Vect}_{\mathbf{k}}$ by an abelian category. In particular, one can consider persistence modules with values in cochain complexes instead of vector spaces.

We will assume the following *finite type conditions*:

- (a) For any $t \in \mathbb{R} \setminus S$, with S a finite set, there exists a neighborhood U of t such that $\pi_{s,r}$ is an isomorphism for all $s < r$ in U .
- (b) $V_s = 0$ for s sufficiently small.

Note that (a) implies that there is a finite “number of jumps”. In particular, for s sufficiently large, we have that $V_s = V_\infty$.

We will also consider the following *semi-continuity property*:

- (c) For all $t \in \mathbb{R}$ and for all $s \leq t$ with $t - s$ sufficiently small, the map $\pi_{s,t}$ is an isomorphism.

This last condition is easily visualized in the following special persistent modules:

Definition 1.3. Let I denote an interval of the form $(a, b]$ or $(a, +\infty)$. Define the *interval module* $\mathbf{k}(I)$ by letting

$$\mathbf{k}(I)_t := \begin{cases} \mathbf{k}; & \text{if } t \in I \\ 0; & \text{otherwise} \end{cases} \quad ; \quad \pi_{st} := \begin{cases} 1; & \text{if } s, t \in I \\ 0; & \text{otherwise} \end{cases} .$$

Theorem 1.4 (Normal forms). *Every persistent module V is isomorphic to a direct sum of interval modules*

$$V \cong \bigoplus_{i=1}^N \mathbf{k}(I_i)_i^m$$

with $I_i \neq I_j$ for all $i \neq j$. This isomorphism is unique up to permutations.

Proof. We may define a functor from persistent modules to the category of $\mathbf{k}[t]$ -graded modules by sending V to the graded module $M = \bigoplus_t V_t$ together with the action

$$t \cdot (v_0, v_1, \dots) := (0, \pi_{01}(v_0), \pi_{12}(v_1), \dots).$$

Note that conditions (a) – (c) ensure that M is finitely generated. This functor is an equivalence of categories, with obvious inverse. We may now apply the Structure Theorem for PID's to obtain isomorphisms

$$M \cong \bigoplus_{i=0}^n T^{\alpha_i} \mathbf{k}[t] \oplus \bigoplus_{j=0}^m T^{\gamma_j} \mathbf{k}[t]/(t^{n_j}).$$

This proves the existence of decompositions, where the intervals I_i are given by $(\alpha_i, +\infty)$ and $(\gamma_j, \gamma_j + n_j)$.

To prove uniqueness, note that $\text{End}(\mathbf{k}[I]) \cong \mathbf{k}$. Indeed, any endomorphism of $\mathbf{k}[I]_t$ is given by multiplication by a certain λ_t . The compatibility with the morphisms $\pi_{s,t} = 1$ give $\lambda_s = \lambda_t$ for all $s, t \in I$. Now, assume we have

$$\bigoplus \mathbf{k}(I_i) \cong V \cong V' \cong \bigoplus \mathbf{k}(J_j).$$

Consider the compositions:

$$f_{ij} : K(I_i) \hookrightarrow V \cong V' \twoheadrightarrow K(J_j)$$

and

$$g_{ij} : K(J_j) \hookrightarrow V' \cong V \twoheadrightarrow K(I_i).$$

Then we have $\sum g_{ij} f_{ij} = 1$ and so at least one component is non-zero. For this component we get isomorphisms of the corresponding interval modules, so we may proceed inductively. \square

The above result tells us that every persistent modules has a uniquely defined barcode:

Definition 1.5. The *barcode* associated to a persistent module is the collection of interval modules together with their multiplicities, given by the above decomposition:

$$\mathcal{B}(V) := \{(I_i, m_i)\}.$$

Definition 1.6. A point $t \in \mathbb{R}$ is said to be *spectral* if for any neighborhood U of t there is $s < r$ in U such that ${}^0\text{pi}_{sr}$ is not an isomorphism. We define the finite set

$$\text{Spec}(V) := \{ \text{spectral points} \} \cup \{ +\infty \}.$$

This set is an isomorphism invariant of V .

2. INTERLEAVING DISTANCE

For $\delta \geq 0$, denote by $T^\delta : (\mathbb{R}, \geq) \longrightarrow (\mathbb{R}, \geq)$ the translation functor $t \mapsto t + \delta$ and by $\eta^\delta : \text{Id} \Rightarrow T^\delta$ the obvious natural transformation.

Given a persistence module V , we obtain a δ -translated persistent module by letting

$$V[\delta] := V \circ T^\delta.$$

Therefore we have $V[\delta]_t = V_{t+\delta}$ and $(\pi[\delta])_{s,t} = \pi_{s+\delta, t+\delta}$. The natural transformation η^δ induces a natural morphism $\phi^\delta : V \rightarrow V[\delta]$.

Definition 2.1. We say that two persistence modules V and V' are δ -interleaved if and only if there exist morphisms of persistence modules $F : V \rightarrow V'[\delta]$ and $G : V' \rightarrow V[\delta]$ such that the following diagrams commute:

$$\begin{array}{ccc} V & \xrightarrow{F} & V'[\delta] \\ \searrow \phi^{2\delta} & & \downarrow G[\delta] \\ & & V[2\delta] \end{array} \quad ; \quad \begin{array}{ccc} V' & \xrightarrow{G} & V[\delta] \\ \searrow \phi^{2\delta} & & \downarrow F[\delta] \\ & & V[2\delta] \end{array}$$

Definition 2.2. We define the *interleaving distance* between two persistence modules V and V' by letting

$$d_{int}(V, V') := \inf \{ \delta \geq 0; V \text{ and } V' \text{ are } \delta\text{-interleaved} \}.$$

This is a pseudo-metric on the isomorphism classes of persistence modules with the same V_∞ (note that V and V' are δ -interleaved with $\delta < \infty$ if and only if $V_\infty = V'_\infty$). The semi-continuity condition (c) above ensures that this is actually a (non-degenerate) metric.

Remark 2.3. On the space of barcodes there is also a well-defined distance, called the *bottleneck distance*, and the assignment $V \mapsto \mathcal{B}(V)$ is actually an isometry, so that

$$d_{int}(V, V') = d_{bottleneck}(\mathcal{B}(V), \mathcal{B}(V')).$$

3. MORSE PERSISTENCE MODULES

Let M be a compact manifold without boundary and let $f : M \rightarrow \mathbb{R}$ be a Morse function. We take the uniform norm $\|f\| := \max|f|$. We obtain a persistence module $V(f)$ by letting

$$V(f)_t := H_*(\{f < t\}; \mathbb{Z}_2).$$

For any $s < t$ denote by $i_{s,t} : \{f < s\} \rightarrow \{f < t\}$ the inclusion. We let $\pi_{s,t} := (i_{s,t})_*$.

Lemma 3.1. Let $f, g : M \rightarrow \mathbb{R}$ be two Morse functions. Then $d_{int}(V(g), V(f)) \leq \|f - g\|$.

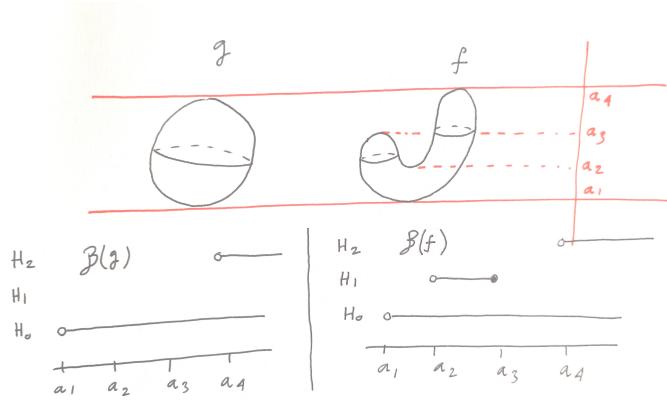
Proof. Note first that for any two Morse functions f, g with $f \leq g$ we have $\{g < t\} \hookrightarrow \{f < t\}$ and so we get a natural morphism of persistence modules $V(g) \rightarrow V(f)$.

Now, let $\delta : \|f - g\|$. Then since $f - \delta \leq g$ we have a morphism $F : V(g) \rightarrow V(f - \delta) = V(f)[\delta]$. Also, since $g - \delta \leq f$ we get $G : V(f) \rightarrow V(g - \delta) = V(g)[\delta]$. Combining the inequalities $f - 2\delta \leq g - \delta \leq f$ we may complete these morphisms to the desired commutative diagrams, to see that $V(f)$ and $V(g)$ are δ -interleaved. \square

Remark 3.2. Since for a diffeomorphism φ of M we have $V(f) \cong V(\varphi^* f)$, in fact, we have $d_{int}(V(g), V(f)) \leq \inf_{\varphi \in \text{Diff}(M)} \|f - g\|$.

The above lemma proves to be useful in order to quantify the obstructions for the approximation of Morse functions, as we will see in the following example.

Example 3.3. Let f be the height function associated to the deformed sphere shown below (which has 4 critical points) and consider the problem of approximating f by the height function g defined on the (round) sphere (with only two critical points).



The barcodes of f and g only differ in a finite interval $(a_2, a_3]$. By definition of the bottleneck distance we have

$$a_3 - a_2 = 2d_{bottleneck}(\mathcal{B}(f), \mathcal{B}(g)) = 2d_{int}(V(f), V(g)) \leq 2\|f - g\|.$$

Therefore this gives

$$\|f - g\| \geq \frac{1}{2}(a_3 - a_2).$$

This tells us that any perturbation g of f will be allowed whenever we either add or remove bars of length $\leq 2\|f - g\|$ or we extend/shorten bars from above and/or below by $\|f - g\|$.

4. PROPER PERSISTENCE MODULES AND LOOP SPACES

Let M a compact manifold without boundary and let g be a Riemannian metric on M . Given $t \in \mathbb{R}$ let $\Omega^t(M)$ denote the space of smooth loops $\gamma : S^1 \rightarrow M$ of length $< e^t$. Define a persistence module by letting $V(g)_t := H_*(\Omega^t M)$.

This is actually a *proper persistence module*, in which the finite-type condition (a) is replaced by:

(a') $\text{Spec}(V)$ is a closed, discrete, bounded below subset of \mathbb{R} (not necessarily finite).

Also, we remove condition (b). The new conditions also allow for a normal forms theorem and an isometry result. In terms of barcodes, the new conditions ensure there are finite numbers of barcodes of type $(-\infty, \infty)$, $(-\infty, b]$ and $(a, b]$.

Now, let g' be another Riemannian metric on M . Since there is a constant C such that $C^{-1}g \leq g' \leq Cg$ we have

$$d_{int}(V(g), V(g')) \leq \frac{1}{2} \log C.$$

It follows that the equivalence class of the barcode of $V(g)$ is a topological invariant of M . Note that bars arising from $-\infty$ detect the homology of M , while bars going to $+\infty$ detect the homology of ΩM . The interesting information is contained in the finite bars, which account for contractions of loops modulo nullhomotopy. This has applications to the variational theory of geodesics (see [Wei19]).

REFERENCES

- [PRSZ19] L. Polterovich, D. Rosen, K. Samvelyan, and J. Zhang, *Topological persistence in geometry and analysis*, arXiv:1904.04044 (2019).
- [Wei19] S. Weinberger, *Interpolation, the rudimentary geometry of spaces of Lipschitz functions, and geometric complexity*, Found. Comput. Math. **19** (2019), no. 5, 991–1011.