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Summary of my talk introducing persistence modules and discussing a couple of examples
arising form geometry. Mainly followed the �rst chapter of [PRSZ19].

1. Persistence modules

Let k be a �eld and denote by Vectk the category of �nite-dimensional vector spaces over
k. We will consider the real numbers as a posetal category (R,≥).

De�nition 1.1. A persistence module is a functor V : (R,≥) −→ Vectk. Therefore it is
given by a family {Vt}t∈R of �nite dimensional vector spaces over k together with morphisms
πst : Vs → Vt for all s ≤ t such that the diagram

Vs

  

// Vt

Vr

>>

commutes. A morphism of persistence modules is just a natural transformation. Therefore
it is given by maps ft : Vt → V ′t compatible with the maps πs,t. This de�nes a category Pers
of persistence modules.

Remark 1.2. The category of persistence modules is abelian. In fact, many of the con-
structions for persistence modules are also valid if we replace Vectk by an abelian category.
In particular, one can consider persistence modules with values in cochain complexes instead
of vector spaces.

We will assume the following �nite type conditions:

(a) For any t ∈ R \ S, with S a �nite set, there exists a neighborhood U of t such that
πs,r is an isomorphism for all s < r in U .

(b) Vs = 0 for s su�ciently small.

Note that (a) implies that there is a �nite �number of jumps�. In particular, for s su�ciently
large, we have that Vs = V∞.

We will also consider the following semi-continuity property :

(c) For all t ∈ R and for all s ≤ t with t − s su�ciently small, the map πs,t is an
isomorphism.

This last condition is easily visualized in the following special persistent modules:

De�nition 1.3. Let I denote an interval of the form (a, b] or (a,+∞). De�ne the interval

module k(I) by letting

k(I)t :=

{
k; if t ∈ I
0; otherwise

; πst :=

{
1; if s, t ∈ I
0; otherwise

.
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Theorem 1.4 (Normal forms). Every persistent module V is isomorphic to a direct sum of

interval modules

V ∼=
N⊕
i=1

k(Ii)
m
i

with Ii 6= Ij for all i 6= j. This isomorphism is unique up to permutations.

Proof. We may de�ne a functor from persistent modules to the category of k[t]-graded
modules by sending V to the graded module M =

⊕
t Vt together with the action

t · (v0, v1, · · · ) := (0, π01(v0), π12(v1), · · · ).
Note that conditions (a) − (c) ensure that M is �nitely generated. This functor is an
equivalence of categories, with obvious inverse. We may now apply the Structure Theorem
for PID's to obtain isomorphisms

M ∼=
n⊕
i=0

Tαik[t]⊕
⊕

T γjk[t]/(tnj ).

This proves the existence of decompositions, where the intervals Ii are given by (αi,+∞)
and (γj , γj + nj).

To prove uniqueness, note that End(k[I]) ∼= k. Indeed, any endomorphism of k[I]t is
given by multiplication by a certain λt. The compatibility with the morphisms πs,t = 1 give
λs = λt for all s, t ∈ I. Now, assume we have⊕

k(Ii) ∼= V ∼= V ′ ∼=
⊕

k(Jj).

Consider the compositions:

fij : K(Ii) ↪→ V ∼= V ′ � K(Jj)

and
gij : K(Jj) ↪→ V ′ ∼= V � K(Ii).

Then we have
∑
gijfij = 1 and so at least one component is non-zero. For this component we

get isomorphisms of the corresponding interval modules, so we may proceed inductively. �

The above result tells us that every persistent modules has a uniquely de�ned barcode:

De�nition 1.5. The barcode associated to a persistent module is the collection of interval
modules together with their multiplicities, given by the above decomposition:

B(V ) := {(Ii,mi)}.

De�nition 1.6. A point t ∈ R is said to be spectral if for any neighborhood U of t there is
s < r in U such that opisr is not an isomorphism. We de�ne the �nite set

Spec(V ) := { spectral points } ∪ {+∞}.
This set is an isomorphism invariant of V .

2. Interleaving distance

For δ ≥ 0, denote by T δ : (R,≥) −→ (R,≥) the translation functor t 7→ t + δ and by
ηδ : Id⇒ T δ the obvious natural transformation.

Given a persistence module V , we obtain a δ-translated persistent module by letting

V [δ] := V ◦ T δ.
Therefore we have V [δ]t = Vt+δ and (π[δ])s,t = πs+δ,t+δ. The natural transformation ηδ

induces a natural morphism φδ : V → V [δ].
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De�nition 2.1. We say that two persistence modules V and V ′ are δ-interleaved if and
only if there exist morphisms of persistence modules F : V → V ′[δ] and G : V ′ → V [δ] such
that the following diagrams commute:

V

φ2δ
!!

F // V ′[δ]

G[δ]

��
V [2δ]

; V ′

φ2δ
!!

G // V [δ]

F [δ]

��
V [2δ]

De�nition 2.2. We de�ne the interleaving distance between two persistence modules V
and V ′ by letting

dint(V, V
′) := inf {δ ≥ 0;V and V ′ are δ-interleaved } .

This is a pseudo-metric on the isomorphism classes of persistence modules with the same
V∞ (note that V and V ′ are δ-interleaved with δ < ∞ if and only if V∞ = V ′∞). The
semi-continuity condition (c) above ensures that this is actually a (non-degenerate) metric.

Remark 2.3. On the space of barcodes there is also a well-de�ned distance, called the
bottleneck distance, and the assignment V 7→ B(V ) is actually an isometry, so that

dint(V, V
′) = dbottleneck(B(V ),B(V ′).

3. Morse persistence modules

LetM be a compact manifold without boundary and let f : M → R be a Morse function.
We take the uniform norm ||f || := max|f |. We obtain a persistence module V (f) by letting

V (f)t := H∗({f < t};Z2).

For any s < t denote by is,t : {f < s} → {f < t} the inclusion. We let πs,t := (is,t)∗.

Lemma 3.1. Let f, g : M → R be two Morse functions. Then dint(V (g), V (g)) ≤ ||f − g||.

Proof. Note �rst that for any two Morse functions f, g with f ≤ g we have {g < t} ↪→ {f < t}
and so we get a natural morphism of persistence modules V (g)→ V (f).

Now, let δ : ||f − g||. Then since f − δ ≤ g we have a morphism F : V (g)→ V (f − δ) =
V (f)[δ]. Also, since g − δ ≤ f we get G : V (f) → V (g − δ) = V (g)[δ]. Combining
the inequalities f − 2δ ≤ g − δ ≤ f we may complete these morphisms to the desired
commutative diagrams, to see that V (f) and V (g) are δ-interleaved. �

Remark 3.2. Since for a di�eomorphism ϕ of M we have V (f) ∼= V (ϕ∗f), in fact, we have
dint(V (g), V (g)) ≤ infϕ∈Diff(M)||f − g||.

The above lemma proves to be useful in order to quantify the obstructions for the ap-
proximation of Morse functions, as we will see in the following example.

Example 3.3. Let f be the height function associated to the deformed sphere shown below
(which has 4 critical points) and consider the problem of approximating f by the height
function g de�ned on the (round) sphere (with only two critical points).
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The barcodes of f and g only di�er in a �nite interval (a2, a3]. By de�nition of the bottleneck
distance we have

a3 − a2 = 2dbottleneck(B(f),B(g)) = 2dint(V (f), V (g)) ≤ 2||f − g||.
therefore this gives

||f − g|| ≥ 1

2
(a3 − a2).

This tells us that any perturbation g of f will be allowed whenever we either add or remove
bars of lenght ≤ 2||f − g|| or we extend/shorten bars from above and/or below by ||f − g||.

4. Proper persistence modules and loop spaces

Let M a compact manifold without bundary and let g be a Riemannian metric on M .
Given t ∈ R let Ωt(M) denote the space of smooth loops γ : S1 →M of length < et. De�ne
a persistence module by letting V (g)t := H∗(Ω

tM).
This is actually a proper persistence module, in which the �nite-type condition (a) is

replaced by:

(a′) Spec(V ) is a closed, discrete, bounded below subset of R (not necessarily �nite).

Also, we remove condition (b). The new conditions also allow for a normal forms theorem
and an isometry result. In terms of barcodes, the new conditions ensure there are �nite
numbers of barcodes of type (−∞,∞), (−∞, b] ans (a, b].

Now, let g′ be another Riemannian metric on M . Since there is a constant C such that
C−1g ≤ g′ ≤ Cg we have

dint(V (g), V (g′)) ≤ 1

2
logC.

It follows that the equivalence class of the barcode of V (g) is a topological invariant of
M . Note that bars arising from −∞ detect the homology of M , while bars going to +∞
detect the homology of ΩM . The interesting information is contained in the �nite bars,
which account for contractions of loops modulo nullhomotopy. This has applications to the
variational theory of geodesics (see [Wei19]).
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