CLASSIFICATION OF PERSISTENT MODULES AND SOME
GEOMETRIC EXAMPLES

JOANA CIRICI

Summary of my talk introducing persistence modules and discussing a couple of examples
arising form geometry. Mainly followed the first chapter of [PRSZ19].

1. PERSISTENCE MODULES

Let k be a field and denote by Vecty the category of finite-dimensional vector spaces over
k. We will consider the real numbers as a posetal category (R, >).

Definition 1.1. A persistence module is a functor V : (R,>) — Vecty. Therefore it is
given by a family {V; }4cr of finite dimensional vector spaces over k together with morphisms
e+ Vs — Vi for all s <t such that the diagram

Vi — =V
Vi

commutes. A morphism of persistence modules is just a natural transformation. Therefore
it is given by maps f; : V; — V/ compatible with the maps 7, ;. This defines a category Pers
of persistence modules.

Remark 1.2. The category of persistence modules is abelian. In fact, many of the con-
structions for persistence modules are also valid if we replace Vecty by an abelian category.
In particular, one can consider persistence modules with values in cochain complexes instead
of vector spaces.

We will assume the following finite type conditions:

(a) For any t € R\ S, with S a finite set, there exists a neighborhood U of ¢ such that
Ts . is an isomorphism for all s < 7 in U.
(b) Vi =0 for s sufficiently small.

Note that (a) implies that there is a finite “number of jumps”. In particular, for s sufficiently
large, we have that Vy = V.
We will also consider the following semi-continuity property:
(c) For all t € R and for all s < ¢ with ¢ — s sufficiently small, the map 7, is an
isomorphism.

This last condition is easily visualized in the following special persistent modules:

Definition 1.3. Let I denote an interval of the form (a,b] or (a,+00). Define the interval
module k(I) by letting

K(I); = k;iftel ) | Lifs,tel
©*7 ) 0; otherwise ' '~ )| 0; otherwise

1



2 JOANA CIRICI

Theorem 1.4 (Normal forms). Fvery persistent module V is isomorphic to a direct sum of
interval modules

with I; # 1; for all i # j. This isomorphism is unique up to permutations.

Proof. We may define a functor from persistent modules to the category of k[t]-graded
modules by sending V' to the graded module M = @, V; together with the action

t- (vo,v1,- ) = (0,m01(v0), m12(v1), - +).
Note that conditions (a) — (c¢) ensure that M is finitely generated. This functor is an

equivalence of categories, with obvious inverse. We may now apply the Structure Theorem
for PID’s to obtain isomorphisms

M = éT‘“k[t] o P Tk(H/ ().

This proves the existence of decompositions, where the intervals I; are given by («;, +00)
and (75,75 +n;)-

To prove uniqueness, note that End(k[/]) = k. Indeed, any endomorphism of k[I]; is
given by multiplication by a certain A;. The compatibility with the morphisms 7, ; = 1 give
As = A\ for all s,t € I. Now, assume we have

Pkr) =V =v' = Pk()).
Consider the compositions:
fij : K(I) > V=V - K(Jj)
and
gij : K(J;) = V' 2V - K(I,).
Then we have ) g;; fi;; = 1 and so at least one component is non-zero. For this component we
get isomorphisms of the corresponding interval modules, so we may proceed inductively. [

The above result tells us that every persistent modules has a uniquely defined barcode:

Definition 1.5. The barcode associated to a persistent module is the collection of interval
modules together with their multiplicities, given by the above decomposition:

B(V) = {(Li,mi)}.

Definition 1.6. A point ¢ € R is said to be spectral if for any neighborhood U of ¢ there is
s <7 in U such that °pig,. is not an isomorphism. We define the finite set

Spec(V) := { spectral points } U {4oc0}.

This set is an isomorphism invariant of V.

2. INTERLEAVING DISTANCE

For § > 0, denote by 77 : (R,>) — (R, >) the translation functor ¢ + ¢t + § and by
n® : Id = T° the obvious natural transformation.
Given a persistence module V', we obtain a d-translated persistent module by letting
Vo] :=VoT®.

Therefore we have V[8]; = Viys and (w[0])s,c = Ts+s5,4+s. The natural transformation n°
induces a natural morphism ¢ : V — V[J].
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Definition 2.1. We say that two persistence modules V and V' are §-interleaved if and
only if there exist morphisms of persistence modules F : V. — V'[§] and G : V' — V4] such
that the following diagrams commute:

v—svis s v —Ss v
» lcm » iF[é]
V[20] V[20]

Definition 2.2. We define the interleaving distance between two persistence modules V
and V' by letting

dint(V, V') :=inf {6 > 0; V and V' are d-interleaved } .

This is a pseudo-metric on the isomorphism classes of persistence modules with the same
Voo (note that V and V' are d-interleaved with § < oo if and only if Voo = V). The
semi-continuity condition (¢) above ensures that this is actually a (non-degenerate) metric.

Remark 2.3. On the space of barcodes there is also a well-defined distance, called the
bottleneck distance, and the assignment V' — B(V) is actually an isometry, so that

dint(Vv V/) = dbottleneck(B(V)v B(V/)~

3. MORSE PERSISTENCE MODULES

Let M be a compact manifold without boundary and let f : M — R be a Morse function.
We take the uniform norm || f|| := max|f|. We obtain a persistence module V() by letting

V(f)e:=H{f <t} Zs).
For any s < t denote by is, : {f < s} — {f <t} the inclusion. We let 75 := (i5,).
Lemma 3.1. Let f,g: M — R be two Morse functions. Then dint(V(g9),V(9)) < ||f — gll-

Proof. Note first that for any two Morse functions f, g with f < g we have {g < ¢t} — {f < t}
and so we get a natural morphism of persistence modules V(g) — V(f).

Now, let § : ||f — g||- Then since f — ¢ < g we have a morphism F : V(g) = V(f — ) =
V(f)[0]- Also, since g —0 < f we get G : V(f) — V(g —0) = V(g)[0]. Combining
the inequalities f — 26 < g — § < f we may complete these morphisms to the desired
commutative diagrams, to see that V(f) and V(g) are -interleaved. O

Remark 3.2. Since for a diffeomorphism ¢ of M we have V(f) = V(¢*f), in fact, we have
dint(V(9),V(g)) < infoepiganllf — 9gll-

The above lemma proves to be useful in order to quantify the obstructions for the ap-
proximation of Morse functions, as we will see in the following example.

Example 3.3. Let f be the height function associated to the deformed sphere shown below
(which has 4 critical points) and consider the problem of approximating f by the height
function g defined on the (round) sphere (with only two critical points).



4 JOANA CIRICI

T TEY) — | W FE)
H i T ’
oe——— | Ho o—
—T " | A, 4,
al a, as A4 \ o

The barcodes of f and g only differ in a finite interval (ag, as]. By definition of the bottleneck
distance we have

az — a2 = deottleneck(B(f)a B(g)) = dent(v(f)a V(g)) S 2||f - g”
therefore this gives
1
If =gl = §(a3 — as).

This tells us that any perturbation g of f will be allowed whenever we either add or remove
bars of lenght < 2||f — g|| or we extend/shorten bars from above and/or below by ||f — gl|.

4. PROPER PERSISTENCE MODULES AND LOOP SPACES

Let M a compact manifold without bundary and let g be a Riemannian metric on M.
Given t € R let Q'(M) denote the space of smooth loops v : S — M of length < e’. Define
a persistence module by letting V (g); := H.(Q'M).

This is actually a proper persistence module, in which the finite-type condition (a) is
replaced by:

(a’) Spec(V) is a closed, discrete, bounded below subset of R (not necessarily finite).

Also, we remove condition (b). The new conditions also allow for a normal forms theorem
and an isometry result. In terms of barcodes, the new conditions ensure there are finite
numbers of barcodes of type (—oo, 00), (—o0, b ans (a, b].

Now, let ¢’ be another Riemannian metric on M. Since there is a constant C such that
C~'g < ¢ < Cg we have

dine(V(9), V(g)) < 508 C.

It follows that the equivalence class of the barcode of V(g) is a topological invariant of
M. Note that bars arising from —oo detect the homology of M, while bars going to +oo
detect the homology of QM. The interesting information is contained in the finite bars,
which account for contractions of loops modulo nullhomotopy. This has applications to the
variational theory of geodesics (see [Weil9]).
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