News
Home  >  News > New metabolic profile in patients with acute myeloid leukemia

New metabolic profile in patients with acute myeloid leukemia

-	A better knowledge of the metabolic profile of the acute myeloide leukemia is determining for opening future options in the design of combined and specific techniques for patients.

- A better knowledge of the metabolic profile of the acute myeloide leukemia is determining for opening future options in the design of combined and specific techniques for patients.

The consolidated research group on Integrative Biochemistry, led by Professor Marta Cascante.

The consolidated research group on Integrative Biochemistry, led by Professor Marta Cascante.

13/07/2022

Recerca

An article published in the journal Nature Communications describes a specific metabolic adaptation in some patients with acute myeloid leukemia affected by tandem mutations in the FLT3 gene. The findings, which could shed light on future specific-type combined therapies for these patients, is the result of the collaboration between the teams led by Professor Marta Cascante, from the Faculty of Biology, the Institute of Biomedicine of the University of Barcelona (IBUB) and the Liver and Digestive Diseases Networking Biomedical Research Centre (CIBEREHD), and Professor Jan Jacob Schuringa, from the University of Groningen (the Netherlands).

The study includes the participation of lecturer Silvia Marín (UB-IBUB) and its first author is the researcher Ayşegül Erdem, who finished her doctoral studies under the supervision of Cascante and Schuringa as part of the European project “Decipgering the metabolism of haematological cancers” (HaemMetabolome).

The great genetic and metabolic variability of acute myeloid leukemia

Acute myeloid leukemia (AML) is a pathology with a high genetic, clinical and metabolic heterogeneity which hinders the success of the currently available therapeutic treatments. Specifically, the FTL3 internal gene duplications (FLT3-ITD+) represent the most prevalent mutations in AML patients and are associated with high relapse rates in those affected.

The new study defines a new specific metabolic profile related to the patients with the FLT3-ITD+ phenotype. To get the results, the team applied innovative techniques of metabolomics, proteomics and stable isotope-resolved metabolomics (SIRM). The team found that leukemic cells in patients with these mutations present high levels of the succinate-CoA Ligases enzymes and a high activity of the chain of mitochondrial electron transport complex II which provides energy to the cell metabolism.

Moreover, “the study shows for the first time that this subtype of leukemic cells uses the lactate as a substrate for mitochondrial respiration. Therefore, this profile of cancer cells could be sensitive to the simultaneous pharmacological inhibition of complex II of the respiratory chain and lactate transporter”, notes Professor Marta Cascante, from the Department of Biochemistry and Molecular Biomedicine of the UB.

In all cells, the main substrates of the mitochondrial respiration chain are pyruvate (from glucose) and other carbohydrates and amino acids that lead to pyruvate, apart from ketone bodies, glutamine and fatty acids. “However, in general, lactate had not been described to date as a subtrate of mitochondrial respiration in tumour cells”, adds Marta Cascante, also ICREA Academic researcher.

Customized medicine depending on the identified mutations 

As stated in the study, the chain of mitochondrial respiration in these leukemic cells could be inhibited pharmacologically if we combine synergistically the complex II inhibitors (specifically, TTFA and 3-NPA compounds) with those from the MCT1 lactate transporter (CHC and AZD3965).

This better knowledge of the metabolic profile of a patient’s leukemic cells could lead to new and potential possibilities in the design of specific-type combined therapies according to the mutations identified at the genetic level. “Customized medicine, which aims to establish specific therapies for each patient according to the phenotype of their tumour, implies having the best knowledge of each patient’s tumour in order to be able to offer them the best therapeutic option for their specific tumour”, concludes researcher Marta Cascante.

 

Reference article:

Erdem, A.; Marin, S.; Pereira-Martins, D. A. et al. «Inhibition of the succinyl dehydrogenase complex in acute myeloid leukemia leads to a lactate-fuelled respiratory metabolic vulnerability». Nature Communications, April 2022. DOI: 10.1038/s41467-022-29639-0

Share this at:
| More |
  • Follow us:
  • Button to access University of Barcelona's Facebook profile
  • Button to access University of Barcelona's Twitter profile
  • Button to access University of Barcelona's Instagram profile
  • Button to access University of Barcelona's Linkedin profile
  • Button to access University of Barcelona's Youtube profile
  • Button to access University of Barcelona's Google+ profile
  • ??? peu.flickr.alt ???
Member of International recognition of excellence HR Excellence in Research logo del leru - League of European Research Universities logo del bkc - campus excel·lència logo del health universitat de barcelona campus

© Universitat de Barcelona